Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,504)

Search Parameters:
Keywords = AKT3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2153 KB  
Article
New Anti-Cancer Impact of Cerium Oxide, Lithium, and Sn-38 Synergy via DNA Methylation-Mediated Reduction of MMP-2 and Modulation of the PI3K/Akt/mTOR Pathway
by Sidika Genc, Hayrunnisa Nadaroglu, Ramazan Cinar, Esmanur Nigde, Kubra Karabulut and Ali Taghizadehghalehjoughi
Pharmaceuticals 2025, 18(11), 1725; https://doi.org/10.3390/ph18111725 (registering DOI) - 13 Nov 2025
Abstract
Background/Objectives: Glioblastoma, the most common primary tumor of the central nervous system, is characterized by high malignancy and poor prognosis. One of the main challenges in neurological disorders is to develop an effective treatment modality that can cross the blood–brain barrier. Nanoparticles are [...] Read more.
Background/Objectives: Glioblastoma, the most common primary tumor of the central nervous system, is characterized by high malignancy and poor prognosis. One of the main challenges in neurological disorders is to develop an effective treatment modality that can cross the blood–brain barrier. Nanoparticles are revolutionary for neurodegenerative diseases due to their targeted delivery and ability to overcome biological barriers. Cerium oxide (Ce2O3) nanoparticles are suitable for use as drug delivery systems. Methods: In our study, we investigated the anticancer mechanism using SN-38, lithium, and Ce2O3, a powerful agent used in GBM treatment. We evaluated their anticancer activities separately and in combination with U373 cell lines. GBM cell line U373 cells were cultured. Then, all groups except the control group were treated with different doses of SN-38 and lithium combination therapy with SN-38, lithium, and Ce2O3 combination therapy. The results were evaluated using MTT and ELISA tests. Results: When the results were examined, anticancer activity was detected at PTEN, AKT, mTOR, and BAX/Bcl-2 levels in the SN-38 + NPs 25 µg/mL + Lithium 50 µg/mL and SN-38 + NPs 50 µg/mL + Lithium 50 µg/mL dose groups. In addition, findings that inflammation markers were correlated with the apoptosis mechanism were obtained. Conclusion: This study is the first to report that combining lithium with SN-38 and NPs increased oxidative stress more than lithium with SN-38, leading glioblastoma cells to apoptosis and its potential anticancer activity. These results provide a basis for further investigation of its clinical application in cancer treatment. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

15 pages, 2035 KB  
Article
Extracellular ATP Suppresses Perlecan Core Protein Synthesis via P2Y2 Receptor-Mediated Inhibition of Akt Signaling in Cultured Vascular Endothelial Cells
by Lihito Ikeuchi, Takato Hara, Kazuki Kitabatake, Fumiaki Uchiumi, Chika Yamamoto, Mitsutoshi Tsukimoto, Tomoya Fujie and Toshiyuki Kaji
Int. J. Mol. Sci. 2025, 26(22), 10973; https://doi.org/10.3390/ijms262210973 - 12 Nov 2025
Abstract
Perlecan, a major heparan sulfate proteoglycan in the vascular basement membrane, plays an essential role in maintaining endothelial barrier integrity, regulating fibroblast growth factor-2 signaling, and exerting anticoagulant activity. Although alterations in perlecan expression are implicated in the initiation and progression of atherosclerosis, [...] Read more.
Perlecan, a major heparan sulfate proteoglycan in the vascular basement membrane, plays an essential role in maintaining endothelial barrier integrity, regulating fibroblast growth factor-2 signaling, and exerting anticoagulant activity. Although alterations in perlecan expression are implicated in the initiation and progression of atherosclerosis, the upstream regulatory mechanisms remain unclear. In this study, we investigated the effects of extracellular ATP on perlecan expression in vascular endothelial cells. ATP, but not ADP or adenosine, suppressed perlecan expression at both mRNA and protein levels in a time- and concentration-dependent manner. This suppression was recovered by knockdown of P2Y2 receptor (P2Y2R), but not by P2X4 receptor, P2X7 receptor, or P2Y1 receptor knockdown, indicating the selective involvement of P2Y2R. Mechanistically, ATP reduced Akt phosphorylation mediated by P2Y2R, and inhibition of Akt by inhibitors decreased perlecan expression, whereas inhibitors of phosphoinositide 3-kinase, mammalian target of rapamycin complex 1, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, c-Jun N-terminal kinases did not exhibit this recovery effect. These results suggest that ATP downregulates perlecan synthesis via the P2Y2R-mediated inhibition of Akt signaling. Given that ATP is markedly elevated under pathological conditions, such as inflammation and platelet activation, suppression of perlecan synthesis is an important mechanism by which ATP promotes vascular disease progression. Full article
(This article belongs to the Collection Feature Papers Collection in Biochemistry)
Show Figures

Graphical abstract

26 pages, 4735 KB  
Article
Role of Nitric Oxide and Nrf2 to Counteract Vascular Endothelial Dysfunction Induced by Periodontal Pathogens Using HUVECs
by Gunaraj Dhungana, Chethan Sampath, Vineeta Sharma, Olga Korolkova and Pandu R. Gangula
Cells 2025, 14(22), 1777; https://doi.org/10.3390/cells14221777 - 12 Nov 2025
Abstract
Background: Polybacterial infections associated with periodontitis are increasingly linked to systemic vascular complications, yet the underlying endothelial mechanisms remain unclear. This study investigated how a consortium of red-complex bacteria (Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and orange complex ( [...] Read more.
Background: Polybacterial infections associated with periodontitis are increasingly linked to systemic vascular complications, yet the underlying endothelial mechanisms remain unclear. This study investigated how a consortium of red-complex bacteria (Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and orange complex (Fusobacterium nucleatum) affects oxidative stress, inflammation, metabolism, and apoptosis in endothelial cells, and whether L-Sepiapterin [a tetrahydrobiopterin (BH4) precursor via salvage pathway] or bardoxolone methyl (CDDO-Me) [a potent nuclear factor erythroid 2-related factor 2 (Nrf2) activator)] could provide protection. Methods: Human umbilical vein endothelial cells (HUVECs) were infected for 12–72 h and treated with L-Sepiapterin or CDDO-Me. Nitric oxide (NO), BH4, and reactive oxygen species (ROS) levels were quantified, and mRNA expression of key genes regulating nitric oxide synthase activity, antioxidant defense, inflammation (TLR4/NF-κB, cytokines), metabolism (PI3K-AKT-PEA-15), and apoptosis (FAS–caspase pathway) was analyzed. Results: Infection markedly reduced NO and BH4, elevated ROS, activated TLR4/NF-κB and proinflammatory cytokines, disrupted PI3K/AKT signaling, and triggered endothelial apoptosis. Treatments with L-Sepiapterin and CDDO-Me restored NO bioavailability, reduced oxidative and inflammatory responses, normalized metabolic gene expression, and attenuated apoptosis, with CDDO-Me showing more promising effects. This study provides the mechanistic insight linking periodontal polybacterial infection to endothelial dysfunction and metabolic impairment such as diabetes, suggesting that redox-modulating strategies such as L-Sepiapterin and CDDO-Me may help prevent vascular damage associated with periodontal disease. Full article
(This article belongs to the Special Issue Redox Regulation by Nrf2 in Health and Disease)
Show Figures

Figure 1

21 pages, 524 KB  
Review
Mechanistic Insights into the Anti-Inflammatory and Anti-Proliferative Effects of Selected Medicinal Plants in Endometriosis
by Oliwia Burdan, Natalia Picheta, Julia Piekarz, Karolina Daniłowska, Filip Gajewski, Krzysztof Kułak and Rafał Tarkowski
Int. J. Mol. Sci. 2025, 26(22), 10947; https://doi.org/10.3390/ijms262210947 - 12 Nov 2025
Abstract
Endometriosis involves oestrogen-dependent chronic inflammation and the abnormal proliferation of ectopic endometrial tissue. Conventional hormonal therapies suppress systemic oestrogen, but do not fully address local oxidative and inflammatory signalling. This review provides a mechanistic synthesis of recent molecular evidence. This evidence is on [...] Read more.
Endometriosis involves oestrogen-dependent chronic inflammation and the abnormal proliferation of ectopic endometrial tissue. Conventional hormonal therapies suppress systemic oestrogen, but do not fully address local oxidative and inflammatory signalling. This review provides a mechanistic synthesis of recent molecular evidence. This evidence is on four FDA-recognized (Food and Drug Administration) medicinal plants. These are Curcuma longa, Zingiber officinale, Glycyrrhiza glabra, and Silybum marianum. The review highlights their capacity to modulate key intracellular pathways. These pathways are implicated in endometriosis. The review covers the integration of phytochemical-specific actions within NF-κB- (nuclear factor kappa-light-chain-enhancer of activated B cells), COX-2-(Cyclooxygenase-2), PI3K/Akt-(PI3K/Akt signaling pathway), Nrf2/ARE-(Nuclear factor erythroid 2–related factor 2) and ERβ-(Estrogen receptor beta) mediated networks, which jointly regulate cytokine secretion, apoptosis, angiogenesis and redox balance in endometrial lesions. Curcumin downregulates COX-2 and aromatase while activating Nrf2 signalling, shogaol from ginger suppresses prostaglandin synthesis and induces caspase-dependent apoptosis, isoliquiritigenin from liquorice inhibits HMGB1-TLR4–NF-κB (High Mobility Group Box 1, Toll-like receptor 4) activation, and silymarin from milk thistle reduces IL-6 (Interleukin-6) and miR-155 (microRNA-155) expression while enhancing antioxidant capacity. Together, these phytochemicals demonstrate pharmacodynamic complementarity with hormonal agents by targeting local inflammatory and oxidative circuits rather than systemic endocrine axes. This mechanistic framework supports the rational integration of phytotherapy into endometriosis management and identifies redox-inflammatory signalling nodes as future translational targets. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 544 KB  
Review
MicroRNAs in Uterine Leiomyosarcoma: From Molecular Mechanisms to Clinical Applications
by Areti Kourti, Ioannis Kalogiannidis, Kali Makedou and Elisavet Georgiou
Int. J. Mol. Sci. 2025, 26(22), 10952; https://doi.org/10.3390/ijms262210952 - 12 Nov 2025
Abstract
Uterine leiomyosarcoma (uLMS) is a rare, highly aggressive malignancy of uterine smooth muscle, associated with early metastasis, frequent recurrence, and poor prognosis. Accurate preoperative diagnosis remains difficult given that clinical and radiologic features often overlap with benign leiomyomas, and no reliable biomarkers are [...] Read more.
Uterine leiomyosarcoma (uLMS) is a rare, highly aggressive malignancy of uterine smooth muscle, associated with early metastasis, frequent recurrence, and poor prognosis. Accurate preoperative diagnosis remains difficult given that clinical and radiologic features often overlap with benign leiomyomas, and no reliable biomarkers are currently available. This review summarizes recent evidence on the role of microRNAs (miRNAs) in the biology and clinical management of uLMS. Literature from molecular and translational studies was examined to identify dysregulated miRNAs, their target pathways, and potential diagnostic and therapeutic applications. uLMS displays a characteristic miRNA profile, including downregulation of tumor-suppressive miRNAs such as the miR-29 and miR-200 families and upregulation of oncogenic miRNAs including miR-21 and the miR-183~96~182 cluster, leading to activation of PI3K/AKT/mTOR signaling and epithelial–mesenchymal transition (EMT). Circulating and tissue miRNAs show promise as minimally invasive biomarkers for differentiating uLMS from leiomyomas, predicting prognosis, and guiding therapy. Emerging therapeutic approaches aim to restore the tumor-suppressive miRNAs or inhibit oncogenic ones using mimics or antagomiRs. Overall miRNAs represent critical regulators of uLMS pathogenesis and hold significant potential for precision diagnosis, prognostication, and targeted therapy, though larger validation studies and improved delivery systems are required before clinical translation. Full article
Show Figures

Figure 1

22 pages, 9779 KB  
Article
Dietary Polyphenol Combinations Have a Multifaceted Inhibitory Effect on Metabolic Rewiring and Signaling Pathways in Neuroblastoma
by Natalia Karpova, Elizaveta Fefilova, Alexandra Daks, Sergey Parfenyev, Alexander Nazarov, Nick A. Barlev and Oleg Shuvalov
Pharmaceuticals 2025, 18(11), 1717; https://doi.org/10.3390/ph18111717 - 12 Nov 2025
Abstract
Background/Objectives: Numerous studies have demonstrated that dietary plant-derived polyphenols suppress signaling and metabolic pathways in various malignancies, including neuroblastoma. In the present study, we compared the inhibitory activities of selected polyphenols and their combinations on key metabolic and signaling pathways in two [...] Read more.
Background/Objectives: Numerous studies have demonstrated that dietary plant-derived polyphenols suppress signaling and metabolic pathways in various malignancies, including neuroblastoma. In the present study, we compared the inhibitory activities of selected polyphenols and their combinations on key metabolic and signaling pathways in two human neuroblastoma cell lines and two noncancerous cell lines—mesenchymal stem cells (MSCs). Methods: The influence of polyphenols on neuroblastoma cells and MSCs were studied via an MTT-assay, cell cycle analysis, and an apoptosis assay (flow cytometry). Chou-Talalay algorithms were used to quantify drug interactions. SeaHorse energy profiling was applied to study energy metabolism. The influence of the compounds on metabolic enzymes and signaling pathways was examined using immunoblotting. Total protein biosynthesis was assessed using o-propargyl-puromycin labeling (flow cytometry). Results: While most of the studied polyphenols displayed a more significant inhibitory effect on neuroblastoma cells than on mesenchymal stem cells (MSCs), we found that the combinations of curcumin and quercetin (CQ) and curcumin, quercetin, and resveratrol (CQR) were significantly superior to the individual compounds. These combinations displayed synergistic effects and inhibited the cell cycle while inducing apoptosis. The CQ and CQR combinations effectively suppressed metabolic reprogramming by downregulating key enzymes of glycolysis, respiration, one-carbon metabolism, glutaminolysis, and fatty acid biosynthesis, as well as N-Myc and c-Myc, which are master regulators of metabolic processes. Furthermore, CQ and CQR inhibited AKT/mTOR, MAPK/ERK, and WNT/β-catenin signaling pathways and total protein biosynthesis and sensitized malignant cells to doxorubicin. Conclusions: Polyphenol combinations exert multifaceted inhibitory effects on metabolic rewiring and signaling networks in neuroblastoma cells. Full article
Show Figures

Graphical abstract

30 pages, 1209 KB  
Review
Telomere Maintenance and Oncogenesis
by Antonio Torres-Montaner
Int. J. Mol. Sci. 2025, 26(22), 10941; https://doi.org/10.3390/ijms262210941 - 12 Nov 2025
Abstract
An overwhelming majority of cancers exhibit telomere length reduction and differentiation markers consistent with a post-stem cell of origin. On the other hand, telomere shortening/damage is believed to protect cells from malignant transformation through induction of apoptosis. However, increased cancer incidence in the [...] Read more.
An overwhelming majority of cancers exhibit telomere length reduction and differentiation markers consistent with a post-stem cell of origin. On the other hand, telomere shortening/damage is believed to protect cells from malignant transformation through induction of apoptosis. However, increased cancer incidence in the absence of apoptotic factors like p53 may suggest a favorable role of telomere shortening/damage in cancer development. Some findings suggest that telomere shortening may induce architectural changes in telomeric chromatin, such as those underlying the telomere position effect that support telomere maintenance of some tumors Here, we propose that several signaling pathways, in conjunction with telomere shortening/damage, may result in the release of Rap1 from telomeres. Its subsequent interaction with the embryonic stem cell marker Zscan4 may support immortalization and malignant transformation of the target cell. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

16 pages, 2459 KB  
Article
Juvenile and Osteoarthritic Human Chondrocytes Under Cyclic Tensile Strain: Transcriptional, Metabolic and Kinase Responses
by Birgit Lohberger, Vincent Grote, Heike Kaltenegger, Dietmar Glänzer, Patrick Sadoghi, Tanja Kraus and Bibiane Steinecker-Frohnwieser
Int. J. Mol. Sci. 2025, 26(22), 10934; https://doi.org/10.3390/ijms262210934 - 12 Nov 2025
Abstract
Osteoarthritis (OA) involves cartilage breakdown and inflammation. This study compares juvenile and OA chondrocytes in gene expression, metabolism, and kinase activity, and tests mechanical stimulation to better understand cartilage health and degeneration. Juvenile (jCH) and OA (pCH-OA) primary chondrocytes were mechanically stimulated using [...] Read more.
Osteoarthritis (OA) involves cartilage breakdown and inflammation. This study compares juvenile and OA chondrocytes in gene expression, metabolism, and kinase activity, and tests mechanical stimulation to better understand cartilage health and degeneration. Juvenile (jCH) and OA (pCH-OA) primary chondrocytes were mechanically stimulated using the Flexcell™ FX5K system. Gene expression, protein phosphorylation, and metabolism were analyzed pre- and post-stimulation. Principal component analysis and effect size analyses identified molecular and signaling differences. Gene expression revealed significant differences between jCH and pCH-OA, with COL1 and RUNX2 upregulated in jCH, and MMP3 and ACAN downregulated. PCA revealed distinct expression patterns and marker correlations. Cyclic tensile strain affected biomarkers such as RUNX2, IL8, TLR4, BMP2, and MMP1 in a cell type-specific manner. Metabolic profiling indicated lower ROS and NAD+/NADH, and higher glutamate, lactate, and formate, with changes primarily driven by mechanical stimulation rather than cell type. Protein analysis showed altered AKT, STAT3, and MAPK phosphorylation, reflecting different mechanotransduction in healthy versus OA chondrocytes. Juvenile and OA chondrocytes show distinct molecular, metabolic, and signaling profiles, with mechanical stimulation driving key biomarker and metabolic changes. These differences highlight altered mechanotransduction in OA, providing insights into cartilage degeneration and potential therapeutic targets. Full article
(This article belongs to the Special Issue Recent Advances in Osteoarthritis Pathways and Biomarker Research)
Show Figures

Figure 1

16 pages, 8548 KB  
Article
p38 Regulates FoxO3a-Mediated SOD2 Expression to Prevent Cd-Induced Oxidative Stress in Neuronal Cells
by Tianji Lin, Shijuan Ruan, Xinyu Liu, Fangfei Li, Hangqian Zhang, Fei Zou and Bin Wang
Int. J. Mol. Sci. 2025, 26(22), 10919; https://doi.org/10.3390/ijms262210919 - 12 Nov 2025
Abstract
Cadmium (Cd), an environmental toxin, may cause neurological disorders. We studied the role and activation mechanism of FoxO3a in Cd-induced oxidative stress. In addition to oxidative stress, Cd activated the antioxidant defense system in neuronal cells. Furthermore, by using Western blot and confocal [...] Read more.
Cadmium (Cd), an environmental toxin, may cause neurological disorders. We studied the role and activation mechanism of FoxO3a in Cd-induced oxidative stress. In addition to oxidative stress, Cd activated the antioxidant defense system in neuronal cells. Furthermore, by using Western blot and confocal microscopy, we found that Cd induced nuclear expression of FoxO3a. Importantly, knockdown of FoxO3a significantly suppressed its target SOD2 protein expression and elevated the level of intracellular ROS, ultimately reducing cell viability in Cd-exposed neuronal cells. These results suggest the protective effect of FoxO3a is associated with oxidative stress resistance. Then, we investigated the activation mechanism of FoxO3a. Our results indicate that the nuclear expression of FoxO3a by Cd may be independent of Akt, which is generally regarded as an important negative regulator of FoxO3a. Furthermore, we found that p38 regulated the nuclear expression of FoxO3a in Cd-exposed cells. Finally, we demonstrate that the p38-FoxO3a pathway inhibits Cd-induced oxidative stress. These signaling molecules may be used as a novel biological marker of Cd-induced oxidative stress and provide potential therapeutic approaches for it. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

44 pages, 4537 KB  
Article
Extracellular Vesicles from the Myocyte Secretome Contribute In Vitro to Creating an Unfavourable Environment for Migrating Lung Carcinoma Cells
by Dona Mannaperuma, Dan Stratton, Sigrun Lange and Jameel M. Inal
Biology 2025, 14(11), 1578; https://doi.org/10.3390/biology14111578 - 11 Nov 2025
Abstract
Cancer progression in skeletal muscle (SkM) is very rare, and mechanisms remain unclear. This study assessed the potential of SkM (myocyte)-derived EVs (C2C12-EVs) as anti-cancer agents. Using murine in vitro models, we showed that following treatment with C2C12-EVs, lung carcinoma cells failed to [...] Read more.
Cancer progression in skeletal muscle (SkM) is very rare, and mechanisms remain unclear. This study assessed the potential of SkM (myocyte)-derived EVs (C2C12-EVs) as anti-cancer agents. Using murine in vitro models, we showed that following treatment with C2C12-EVs, lung carcinoma cells failed to colonise SkM cells, and that C2C12-EVs selectively exerted apoptosis on cancer cells. Uptake of C2C12-EVs by carcinoma cells caused changes in lysosomal function and mitochondrial membrane properties inducing cell death with elevated caspase 3 and 9. The C2C12-EVs also inhibited cell proliferation, affecting cell cycle arrest at S phase and inhibited cell migration. Proteomic analysis of C2C12-EV cargoes highlighted functional enrichment pathways involved in lysozyme function, HIF-1 and PI3K-Akt signalling, regulation of actin cytoskeleton, pyruvate metabolism, platelet activation, and protein processing in ER. Decorin, a muscle cell-specific cytokine released from myocytes in response to stress, was significantly enriched in C2C12-EVs and may contribute to C2C12-EVs’ inhibitory activity on cancer cells. C2C12-EVs may suppress cancer and potentially be used as therapeutic agents for cancer metastasis. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

17 pages, 1930 KB  
Review
Role of the Interplay Between Autophagy and Cell Senescence in the Pathogenesis and Therapeutics of Glioblastoma in the Aging Population
by Eliezer Masliah
Cells 2025, 14(22), 1764; https://doi.org/10.3390/cells14221764 - 11 Nov 2025
Abstract
Glioblastoma (GBM), formerly referred to as glioblastoma multiforme, represents the most prevalent and aggressive form of glioma, predominantly affecting the aging population. Despite considerable advances in recent years in elucidating its pathogenesis and developing novel immunotherapeutic approaches, the overall survival rate for patients [...] Read more.
Glioblastoma (GBM), formerly referred to as glioblastoma multiforme, represents the most prevalent and aggressive form of glioma, predominantly affecting the aging population. Despite considerable advances in recent years in elucidating its pathogenesis and developing novel immunotherapeutic approaches, the overall survival rate for patients with this central nervous system (CNS) neoplasm remains dismally low. Consequently, there is an urgent and unmet need to identify and characterize additional therapeutic targets that could be employed synergistically with existing treatment modalities to enhance both survival outcomes and quality of life. Among the emerging areas of investigation, substantial interest has been directed toward aging-associated molecular signaling mechanisms that also constitute key oncogenic pathways in GBM. These include aberrant growth factor signaling, hyperactivation of the PI3K/AKT/mTOR axis, and inactivation of critical tumor suppressor pathways such as p53 and retinoblastoma (RB). The dysregulation of these signaling cascades results in profound disturbances of essential cellular homeostatic processes, notably autophagy and cellular senescence, which are intimately involved in both tumor initiation and progression. This review aims to delineate the complex interplay between autophagy and cellular senescence within the context of aging-related GBM pathogenesis. Furthermore, it explores the relevant intracellular signaling transduction mechanisms that govern these processes and discusses prospective therapeutic strategies. Full article
(This article belongs to the Special Issue The Role of Cellular Senescence in Health, Disease, and Aging)
Show Figures

Graphical abstract

28 pages, 6230 KB  
Article
Developmental Phase-Specific Molecular Signatures and Signaling Pathways in Cryptorchidism-Induced Testicular Damage
by Xinying Wang, Fuming Deng, Yijing Chen, Xiaonan Liu, Dian Li, Xiangliang Tang, Hongkun Lai, Qianlong Li, Wen Fu, Guochang Liu, Zhongzhong Chen and Tianxin Zhao
Biomolecules 2025, 15(11), 1584; https://doi.org/10.3390/biom15111584 - 11 Nov 2025
Abstract
Cryptorchidism, characterized by undescended testes, is associated with infertility and increased cancer risk through complex, multifactorial pathophysiological mechanisms involving interconnected alterations in testicular microenvironment, including but not limited to elevated temperature, hormonal dysregulation, altered vascular perfusion, and immune responses. These factors interact synergistically [...] Read more.
Cryptorchidism, characterized by undescended testes, is associated with infertility and increased cancer risk through complex, multifactorial pathophysiological mechanisms involving interconnected alterations in testicular microenvironment, including but not limited to elevated temperature, hormonal dysregulation, altered vascular perfusion, and immune responses. These factors interact synergistically to drive testicular pathology. Using a surgically induced bilateral cryptorchid mouse model established at postnatal day 21 (PND21), we investigated phase-specific pathological mechanisms through analyses at prepubertal (PND35) and sexually mature (PND70) phases. Our transcriptome analysis revealed distinct molecular signatures at different developmental phases, with prepubertal cryptorchid testes showing 2570 differentially expressed genes predominantly enriched in immunoproteasome components and inflammatory pathways, while sexually mature testes exhibited 883 differentially expressed genes primarily related to extracellular matrix (ECM) remodeling and oncogenic pathways. Prepubertal molecular changes indicated immunoproteasome activation and inflammatory responses, whereas mature-phase alterations were characterized by ECM reorganization and fibrotic remodeling. Functional analysis demonstrated prepubertal enrichment in spermatogenesis regulation and interferon responses, while mature-phase signatures were associated with apoptosis, epithelial–mesenchymal transition, and inflammatory signaling cascades. Phase-specific oncogenic pathway correlations revealed distinct mechanisms: metabolic reprogramming and epigenetic regulation in prepubertal testes versus structural remodeling and invasion-related pathways in mature testes. Molecular validation confirmed elevated PI3K-Akt and NF-κB signaling at both developmental phases, identifying these as potential therapeutic targets. This first phase-resolved characterization of cryptorchidism pathology provides insights into developmental phase-specific mechanisms and suggests timing-dependent therapeutic strategies. Although differing from human congenital cryptorchidism in developmental timing and etiology, our surgically induced model recapitulates anatomical testicular malposition with multiple inseparable pathophysiological alterations, and the identified molecular signatures reflect integrated responses to the complex cryptorchid microenvironment. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

20 pages, 4815 KB  
Article
The ErChen Decoction and Its Active Compounds Ameliorate Non-Alcoholic Fatty Liver Disease Through Activation of the AMPK Signaling Pathway
by Ye Wang, Yanting Liang, Man Hei Cheung, Xinran Wang, Huimei Mo, Jiehua Gan, Wei Yang, Jianmin Guo and Chun Liang
Pharmaceuticals 2025, 18(11), 1707; https://doi.org/10.3390/ph18111707 - 11 Nov 2025
Abstract
Backgrounds: Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder that has become a prominent public health problem worldwide. As a traditional Chinese medicine formula, the ErChen decoction (ECD) possesses significant effects on metabolic syndrome. Methods: To determine whether ECD can relieve [...] Read more.
Backgrounds: Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder that has become a prominent public health problem worldwide. As a traditional Chinese medicine formula, the ErChen decoction (ECD) possesses significant effects on metabolic syndrome. Methods: To determine whether ECD can relieve lipid accumulation and insulin resistance (IR) in liver cells, NAFLD and IR cell models were established by treating HepG2 cells with free fatty acids and an overdose of insulin, respectively. Bioinformatics and experimental evidence demonstrated that ECD could ameliorate NAFLD by modulating multiple pathways. The optimal combination of the key compounds in ECD was identified by the orthogonal experiment. Results: For lipid homeostasis, ECD suppressed de novo lipogenesis and reduced the cholesterol level by activating the AMPK signaling pathway. Concurrently, ECD enhanced hepatic β-oxidation by inducing PPARα-mediated upregulation of ACOX-1 and CPT-1α. ECD also resolved hepatic insulin resistance by activating the IRS1-Akt-FoxO1 pathway. The combined treatment with 100 μM liquiritin (LQ), 200 μM glycyrrhizic acid (GA) and 200 μM hesperidin (HEN) exhibited the best effect in reducing TG content in NAFLD model cells. Conclusions: ECD exhibited superior activities in activating the AMPK signaling pathway compared to the optimal compound combination. The comparison between the ECD and its key compounds demonstrated the superior synergistic effects of the herbs in ECD. Full article
Show Figures

Figure 1

18 pages, 3169 KB  
Article
Dehydroandrographolide Alleviates Oxidative Stress, Inflammatory Response, and Pyroptosis in DSS-Induced Colitis Mice by Modulating Nrf2 Signaling Pathway
by Meifen Wang, Zhenyu Li, Xinghua Lei, Ziyue Yang, Shuixing Yu and Guangxin Chen
Biomolecules 2025, 15(11), 1580; https://doi.org/10.3390/biom15111580 - 10 Nov 2025
Viewed by 104
Abstract
Dehydroandrographolide (DA), a bioactive diterpenoid from Andrographis paniculata with diverse biological activity, was investigated for its antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and dextran sulfate sodium (DSS)-induced murine colitis. In vitro, DA inhibited the inflammatory response by modulating extracellular Signal-Regulated [...] Read more.
Dehydroandrographolide (DA), a bioactive diterpenoid from Andrographis paniculata with diverse biological activity, was investigated for its antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and dextran sulfate sodium (DSS)-induced murine colitis. In vitro, DA inhibited the inflammatory response by modulating extracellular Signal-Regulated Kinase (Erk), c-Jun N-terminal Kinase (Jnk), p38 Mitogen-Activated Protein Kinase (P38), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 activation, and downregulated interleukin-6 (il-6) and interleukin-1β (il-1β) mRNA. It also had antioxidant effects by upregulating Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (Nqo-1) and heme oxygenase-1 (Ho-1), promoting protein kinase B (Akt) and 5′-adenosine monophosphate-activated protein kinase-α1 (Ampk-α1) phosphorylation. DA decreased cyclooxygenase-2 (Cox-2) and inducible nitric oxide synthase (iNos) levels and alleviated intracellular reactive oxygen species (ROS) accumulation. In vivo, DA alleviated DSS-induced colitis in wild type (WT) mice by improving weight loss, disease activity index, colonic inflammation, and oxidative stress. The beneficial effects were linked to inhibiting Erk, Jnk, and P38 activation and enhancing Nrf2 signaling pathway. DA inhibited NOD-like receptor family pyrin domain-containing 3 (Nlrp3) inflammasome-mediated pryoptosis. However, DA’s protective effects were abolished in DSS-induced nrf2−/− mice, suggesting its efficacy depends on Nrf2 signaling. Overall, DA alleviates oxidative stress, inflammatory responses, and pyroptosis in experimental colitis mice mainly by activating Nrf2 signaling pathway, highlighting its potential as a promising therapeutic option for inflammatory bowel disease. Full article
(This article belongs to the Special Issue The Value of Natural Compounds as Therapeutic Agents: 3rd Edition)
Show Figures

Figure 1

13 pages, 1681 KB  
Article
Na+/H+ Exchanger 1 Inhibition Overcomes Venetoclax Resistance in Acute Myeloid Leukemia
by Shin Young Hyun, Eun Jung Na, Yu Ri Kim, Yoo Hong Min and June-Won Cheong
Cells 2025, 14(22), 1759; https://doi.org/10.3390/cells14221759 - 10 Nov 2025
Viewed by 99
Abstract
Despite advances with novel targeted agents (e.g., BCL-2 or IDH inhibitors) combined with chemotherapy for acute myeloid leukemia (AML), drug resistance persists. We investigated whether blocking Na+/H+ exchanger 1 (NHE1) could enhance AML cell sensitivity to the BCL-2 inhibitor venetoclax [...] Read more.
Despite advances with novel targeted agents (e.g., BCL-2 or IDH inhibitors) combined with chemotherapy for acute myeloid leukemia (AML), drug resistance persists. We investigated whether blocking Na+/H+ exchanger 1 (NHE1) could enhance AML cell sensitivity to the BCL-2 inhibitor venetoclax and sought to determine the molecular mechanisms. Our results demonstrated that co-treatment with venetoclax and the NHE1 inhibitor 5-(N,N-hexamethylene) amiloride (HMA) synergistically induced apoptosis in both venetoclax-sensitive and -resistant leukemic cell lines. Specifically, the combination significantly increased apoptosis in venetoclax-resistant THP-1 cells to 72.28% (17.79% with 100 nM venetoclax and 10.15% with 10 μM HMA alone; p < 0.001). Conversely, another venetoclax-resistant line, U-937, showed no significant apoptotic response to the combination. In THP-1 cells, this synergy was mediated via a caspase-dependent programmed cell death pathway, evidenced by an increased BAX/BCL-2 ratio, mitochondrial cytochrome c release, and subsequent caspase-9 and caspase-3 activation. Furthermore, co-treatment downregulated the anti-apoptotic protein MCL-1 and reduced PI3K and Akt phosphorylation, suggesting that inhibition of these survival pathways also contributed to the synergistic effect. Inhibition of NHE1 may substantially enhance venetoclax sensitivity in certain AML models, particularly in venetoclax-resistant THP-1 cells but not in U-937, highlighting biological diversity and the probable involvement of alternative survival pathways. Full article
Show Figures

Figure 1

Back to TopTop