Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (221)

Search Parameters:
Keywords = Aβ-fibrilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4660 KiB  
Article
Neuroprotective Evaluation of Murraya Carbazoles: In Vitro and Docking Insights into Their Anti-AChE and Anti-Aβ Activities
by Himadri Sharma, Niti Sharma and Seong Soo A. An
Molecules 2025, 30(15), 3138; https://doi.org/10.3390/molecules30153138 - 26 Jul 2025
Viewed by 166
Abstract
The present study investigated the neuroprotective potential of the Murraya carbazole derivatives murrayanol, mahanimbine, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde using in silico and in vitro assays. The pharmacokinetic properties and potential toxicity (ADME/T) of the carbazole derivatives were assessed to evaluate their prospects as [...] Read more.
The present study investigated the neuroprotective potential of the Murraya carbazole derivatives murrayanol, mahanimbine, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde using in silico and in vitro assays. The pharmacokinetic properties and potential toxicity (ADME/T) of the carbazole derivatives were assessed to evaluate their prospects as up-and-coming drug candidates. Molecular docking was used to investigate the interactions of the compounds with Aβ (PDB: 1IYT, 2BEG, and 8EZE) and AChE receptors (PDB: 4EY7 and 1C2B). The results from the in vitro assays were used to validate and support the findings from the in silico assays. The compounds demonstrated significant inhibition of acetylcholinesterase (AChE), a key target in neurodegenerative disorders. Murrayanol and mahanimbine presented superior inhibitory activity (IC50 ~0.2 μg/mL), outperforming the reference drug, galantamine. The inhibition mechanisms were competitive (murrayanol, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde) and non-competitive (mahanimbine), supported by low Ki values and strong docking affinities. The compounds also proved effective in reducing Aβ fibrillization (murrayanol: 40.83 ± 0.30%; murrayafoline A: 33.60 ± 0.55%, mahanimbine: 27.68 ± 2.71%). These findings highlight Murraya carbazoles as promising scaffolds for multifunctional agents in AD therapy. Further optimization and mechanistic studies are warranted to advance their development into clinically relevant neuroprotective agents. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Graphical abstract

14 pages, 2637 KiB  
Article
40 Improves Cerebrovascular Endothelial Function via NOX4-Dependent Hydrogen Peroxide Release
by Elizabeth Heller, Lindsey McGurran, Joseph K. Brown, Kathleen Love, Matthew Hobbs, Jeong Sook Kim-Han and Byung Hee Han
Int. J. Mol. Sci. 2025, 26(14), 6759; https://doi.org/10.3390/ijms26146759 - 15 Jul 2025
Viewed by 276
Abstract
Alzheimer’s disease (AD) is associated with an abnormal accumulation of amyloid β (Aβ) fibrils in the brain parenchyma and cerebrovasculature, which leads to cognitive impairment and cerebrovascular dysfunction. Cerebrovascular endothelial cells play a crucial role in regulating cerebral blood flow, vascular permeability, and [...] Read more.
Alzheimer’s disease (AD) is associated with an abnormal accumulation of amyloid β (Aβ) fibrils in the brain parenchyma and cerebrovasculature, which leads to cognitive impairment and cerebrovascular dysfunction. Cerebrovascular endothelial cells play a crucial role in regulating cerebral blood flow, vascular permeability, and neurovascular function. Reactive oxygen species (ROS), particularly those generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), contribute to vascular dysfunction and amyloid deposition in the Alzheimer’s disease (AD) brain. However, the role of the NOX4 isoform in AD pathogenesis remains to be examined. In the present study, we found that NOX4 among the NOX isoforms is predominantly expressed in bEnd.3 mouse brain endothelial cells. Treatment with Aβ40 significantly enhanced the release of H2O2 and NO, and increased the endothelial cell viability. To test the involvement of NOX4 in Aβ40-induced H2O2 production, we utilized pharmacological inhibitors of NOX isoforms. Aβ40-induced H2O2 production was attenuated in the presence of the pan-NOX inhibitor, apocynin, or the NOX1/4-selective inhibitors, setanaxib and GKT136901. Since only the NOX4 isoform is expressed in bEnd.3 cells, these results indicate that NOX4 is responsible for the release of H2O2 stimulated by Aβ40. Taken together, the present study demonstrated that Aβ40 peptide exerts beneficial effects in bEnd.3 endothelial cells via the NOX4-dependent mechanism. Full article
(This article belongs to the Special Issue Focus on Antioxidants and Human Diseases)
Show Figures

Figure 1

27 pages, 3139 KiB  
Article
Distinctive Effects of Fullerene C60 and Fullerenol C60(OH)24 Nanoparticles on Histological, Molecular and Behavioral Hallmarks of Alzheimer’s Disease in APPswe/PS1E9 Mice
by Sholpan Askarova, Kseniia Sitdikova, Aliya Kassenova, Kirill Chaprov, Evgeniy Svirin, Andrey Tsoy, Johannes de Munter, Anna Gorlova, Aleksandr Litavrin, Aleksei Deikin, Andrey Nedorubov, Nurbol Appazov, Allan Kalueff, Anton Chernopiatko and Tatyana Strekalova
Antioxidants 2025, 14(7), 834; https://doi.org/10.3390/antiox14070834 - 8 Jul 2025
Viewed by 579
Abstract
Fullerenes and fullerenols exhibit antioxidant and anti-inflammatory properties, making them promising candidates for Alzheimer’s disease (AD) therapy. Unlike conventional anti-inflammatory drugs, these compounds have multitargeted effects, including their ability to inhibit amyloid fibril formation. However, few studies have explored their efficacy in high-validity [...] Read more.
Fullerenes and fullerenols exhibit antioxidant and anti-inflammatory properties, making them promising candidates for Alzheimer’s disease (AD) therapy. Unlike conventional anti-inflammatory drugs, these compounds have multitargeted effects, including their ability to inhibit amyloid fibril formation. However, few studies have explored their efficacy in high-validity AD models. Female APPswe/PS1E9 (APP/PS1) mice and their wild-type (WT) littermates were orally administered with fullerene C60 (0.1 mg/kg/day) or fullerenol C60(OH)24 (0.15 mg/kg/day) for 10 months starting at 2 months of age. Behavioral assessments were performed at 12 months of age. Amyloid plaque density and size were analyzed in the brain regions using Congo red staining. The expression of genes related to inflammation and plasticity was examined, and an in vitro assay was used to test the toxicity of fullerenol and its effect on amyloid β peptide 42 (Aβ42)-induced reactive oxygen species (ROS) production. Fullerenol reduced the maximum plaque size in the cortex and hippocampus, decreased the small plaque density in the hippocampus and thalamus, and prevented an increase in glial fibrillary acidic protein (GFAP) positive cell density in the mutants. Both treatments improved cognitive and emotional behaviors and reduced Il1β and increased Sirt1 expression. In vitro, fullerenol was non-toxic across a range of concentrations and reduced Aβ42-induced ROS production in brain endothelial cells and astrocytes. Long-term administration of fullerene or fullerenol improved behavioral and molecular markers of AD in APP/PS1 mice, with fullerenol showing additional benefits in reducing amyloid burden. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

11 pages, 2361 KiB  
Communication
Inhibitory Effects of 3-(4-Hydroxy-3-methoxyphenyl) Propionic Acid on Amyloid β-Peptide Aggregation In Vitro
by Makoto Mori, Hiroto Nakano, Sadao Hikishima, Jota Minamikawa, Daiki Muramatsu, Yasuhiro Sakashita, Tokuhei Ikeda, Moeko Noguchi-Shinohara and Kenjiro Ono
Biomedicines 2025, 13(7), 1649; https://doi.org/10.3390/biomedicines13071649 - 6 Jul 2025
Viewed by 398
Abstract
Objectives: The compound 3-(4-Hydroxy-3-methoxyphenyl) propionic acid (HMPA) is a terminal metabolite derived from polyphenol compounds. It has been studied for its potential to support brain health indirectly through its anti-oxidant effects and ability to enhance the gut environment; however, its role in [...] Read more.
Objectives: The compound 3-(4-Hydroxy-3-methoxyphenyl) propionic acid (HMPA) is a terminal metabolite derived from polyphenol compounds. It has been studied for its potential to support brain health indirectly through its anti-oxidant effects and ability to enhance the gut environment; however, its role in dementia pathogenesis is unclear. Therefore, the aim of this study was to evaluate how HMPA inhibits Aβ42 aggregation in vitro. Methods: We examined the inhibitory effects of HMPA on amyloid-β protein (Aβ) aggregation using a thioflavin T (ThT) assay and electron microscopy (EM). Results: ThT assays demonstrated that HMPA inhibited both the nucleation and elongation phases of Aβ aggregation. Additionally, EM of low-molecular-weight (LMW) Aβ42 in the presence of HMPA demonstrated shorter fibrils compared to those formed without HMPA. The EC50 of HMPA in LMW Aβ42 was 5–6 mM. Conclusions: These findings indicate that, similar to several polyphenol compounds such as myricetin and rosmarinic acid, HMPA may inhibit Aβ pathogenesis, although it requires a fairly high concentration in vitro. These findings suggest the potential of HMPA as a lead compound for modulating Aβ-related neurodegeneration. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

20 pages, 1793 KiB  
Article
Anti-Amyloid Aggregation Effects of Gobaishi (Galla chinensis) and Its Active Constituents
by Sharmin Akter, Takayuki Tohge, Sahithya Hulimane Ananda, Masahiro Kuragano, Kiyotaka Tokuraku and Koji Uwai
Molecules 2025, 30(13), 2720; https://doi.org/10.3390/molecules30132720 - 24 Jun 2025
Viewed by 456
Abstract
Alzheimer′s disease (AD) is a chronic neurodegenerative disorder that leads to memory loss and changes in mental and behavioral functions in elderly individuals. A major pathological feature of AD is the aggregation of amyloid-beta (Aβ) peptides, along with oxidative stress, inducing neurocellular apoptosis [...] Read more.
Alzheimer′s disease (AD) is a chronic neurodegenerative disorder that leads to memory loss and changes in mental and behavioral functions in elderly individuals. A major pathological feature of AD is the aggregation of amyloid-beta (Aβ) peptides, along with oxidative stress, inducing neurocellular apoptosis in the brain. Gobaishi (Galla chinensis), a traditional herbal medicine, has gained considerable attention for its constituents and potent therapeutic properties, particularly its strong inhibitory activity against Aβ fibril formation. In this study, we investigated the anti-Aβ aggregation effects of Gobaishi and its active constituents. We isolated two compounds by employing Thioflavin T (ThT) assay-guided fractionation, which were identified through various spectroscopic methods as pentagalloyl glucose (PGG) and methyl gallate (MG). Evaluation of their anti-Aβ aggregation effects revealed that PGG and MG contribute 1.5% and 0.7% of the activity of Gobaishi, respectively. In addition, PGG demonstrated significantly stronger DPPH radical scavenging activity (EC50 = 1.16 µM) compared to MG (EC50 = 6.44 µM). At a concentration of 30 µM, PGG significantly reduced the Aβ-induced cytotoxicity in SH-SY5Y cell lines compared to MG. Based on these findings, both Gobaishi and its active compound PGG are proposed as promising candidates for further investigation as potent anti-amyloidogenic agents in AD management. Full article
Show Figures

Figure 1

14 pages, 1413 KiB  
Review
Advances in the Exploration of Coordination Complexes of Vanadium in the Realm of Alzheimer’s Disease: A Mini Review
by Jesús Antonio Cruz-Navarro, Luis Humberto Delgado-Rangel, Ricardo Malpica-Calderón, Arturo T. Sánchez-Mora, Hugo Ponce-Bolaños, Andrés Felipe González-Oñate, Jorge Alí-Torres, Raúl Colorado-Peralta, Daniel Canseco-Gonzalez, Viviana Reyes-Márquez and David Morales-Morales
Molecules 2025, 30(12), 2547; https://doi.org/10.3390/molecules30122547 - 11 Jun 2025
Viewed by 578
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss and limited therapeutic options. Metal-based drugs have emerged as promising alternatives in the search for effective treatments, and vanadium coordination complexes have shown significant potential due to their neuroprotective [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss and limited therapeutic options. Metal-based drugs have emerged as promising alternatives in the search for effective treatments, and vanadium coordination complexes have shown significant potential due to their neuroprotective and anti-aggregant properties. This review explores the advances in the development of vanadium-based metallodrugs for AD, focusing on their ability to modulate amyloid-beta (Aβ) aggregation, oxidative stress, and neuroinflammation. Recent in vitro and in vivo studies highlight the efficacy of oxovanadium (IV) and peroxovanadium (V) complexes in inhibiting Aβ fibril formation and reducing neuronal toxicity. Additionally, the interaction of vanadium complexes with key biological targets, such as peroxisome proliferator-activated receptor gamma (PPARγ) and protein-tyrosine phosphatase 1B (PTP1B), suggests a multifaceted therapeutic approach. While these findings underscore the potential of vanadium compounds as innovative treatments for AD, further research is needed to optimize their bioavailability, selectivity, and safety for clinical applications. Full article
Show Figures

Graphical abstract

32 pages, 10360 KiB  
Article
Development and In Vitro Characterization of [3H]GMC-058 as Radioligand for Imaging Parkinsonian-Related Proteinopathies
by Andrea Varrone, Vasco C. Sousa, Manolo Mugnaini, Sandra Biesinger, Gunnar Nordvall, Lee Kingston, Ileana Guzzetti, Charles S. Elmore, Dan Sunnemark, Dinahlee Saturnino Guarino, Sjoerd J. Finnema and Magnus Schou
Cells 2025, 14(12), 869; https://doi.org/10.3390/cells14120869 - 9 Jun 2025
Viewed by 774
Abstract
The molecular imaging of α-synuclein (α-syn) pathology in Parkinson’s disease (PD) and related movement disorders is a clinically unmet need. The aim of this study was to discover and characterize in vitro a radioligand for imaging α-syn pathology. A library of 78 small [...] Read more.
The molecular imaging of α-synuclein (α-syn) pathology in Parkinson’s disease (PD) and related movement disorders is a clinically unmet need. The aim of this study was to discover and characterize in vitro a radioligand for imaging α-syn pathology. A library of 78 small molecules was developed and screened using recombinant α-syn fibrils and brain homogenates from Alzheimer’s disease (AD) donors. The selection criteria were as follows: Kiα-syn < 30 nM, Kitau and KiA-β > 200 nM. Three compounds, GMC-073 (Kiα-syn: 8 nM), GMC-098 (Kiα-syn: 9.7 nM), and GMC-058 (Kiα-syn: 22.5 nM), fulfilled the criteria and were radiolabeled with 3H. [3H]GMC-058 was the only compound with negligible binding in controls, and was further evaluated using tissue microarrays, autoradiography on fresh-frozen brain slices, and in vitro saturation binding assay on brain homogenates. [3H]GMC-058 binding co-localized with α-syn inclusions in Parkinson’s disease (PD) and multiple-system atrophy (MSA), with dense A-β plaques in cerebral amyloid angiopathy and AD and with p-tau inclusions in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Specific binding was highest in PSP and CBD. In vitro KD was highest in AD (5.4 nM), followed by PSP (41 nM) and CBD (75 nM). The KD in MSA, PD, and controls was >100 nM. [3H]GMC-058 is a novel radioligand displaying a low affinity for aggregated α-syn in tissue, with an in vitro profile also suitable for detecting tau pathology in 4R tauopathies. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Figure 1

13 pages, 1648 KiB  
Review
Bridging Pancreatic Amyloidosis and Neurodegeneration: The Emerging Role of Amylin in Diabetic Dementia
by Gourav Shome, Ritwick Mondal, Shramana Deb, Jayanta Roy, Atin Kumar Mandal and Julián Benito-León
Int. J. Mol. Sci. 2025, 26(11), 5021; https://doi.org/10.3390/ijms26115021 - 23 May 2025
Viewed by 890
Abstract
A hallmark of type 2 diabetes mellitus (T2DM) is the presence of abundant amyloid deposits composed of amyloid polypeptide (amylin) within the pancreatic islets of Langerhans. Given its high prevalence among diabetic individuals, human amylin fibrillization has long been considered a key pathogenic [...] Read more.
A hallmark of type 2 diabetes mellitus (T2DM) is the presence of abundant amyloid deposits composed of amyloid polypeptide (amylin) within the pancreatic islets of Langerhans. Given its high prevalence among diabetic individuals, human amylin fibrillization has long been considered a key pathogenic factor in T2DM. Co-secreted with insulin, amylin can misfold and aggregate, inducing β-cell toxicity, impairing insulin secretion, and accelerating disease progression. Emerging evidence also indicates that amylin accumulates in the brains of patients with Alzheimer’s disease, where it may interact with amyloid-β (Aβ) to promote neurodegeneration. Although the underlying mechanisms remain under investigation, amylin aggregates have been shown to disrupt mitochondrial function, trigger endoplasmic reticulum stress, and activate the NLRP3 inflammasome. Additionally, T2DM-associated cerebrovascular alterations may compound cognitive decline. This review, based on a comprehensive literature search across major biomedical databases up to January 2025, synthesizes current evidence on amylin as a molecular link between metabolic and neurodegenerative disorders. We highlight pancreatic β-cell amylin aggregation as a potential early marker of dementia risk in T2DM and examine its relationship with proteostasis-associated proteins. Finally, we discuss emerging diagnostic and therapeutic strategies targeting amylin pathology, offering new perspectives on preventing or delaying neurodegeneration in individuals with T2DM. Full article
Show Figures

Figure 1

15 pages, 1993 KiB  
Article
Nanostructured Lipoxin A4: Understanding Its Biological Behavior and Impact on Alzheimer’s Disease (Proof of Concept)
by Natália Cristina Gomes-da-Silva, Isabelle Xavier-de-Britto, Marilia Amável Gomes Soares, Natalia Mayumi Andrade Yoshihara, Derya Ilem Özdemir, Eduardo Ricci-Junior, Pierre Basílio Almeida Fechine, Luciana Magalhães Rebelo Alencar, Maria das Graças Muller de Oliveira Henriques, Thereza Christina Barja-Fidalgo, Cristian Follmer and Ralph Santos-Oliveira
Pharmaceutics 2025, 17(5), 649; https://doi.org/10.3390/pharmaceutics17050649 - 15 May 2025
Viewed by 630
Abstract
Background/Objectives: Lipoxins, particularly Lipoxin A4 (LXA4), are endogenous lipid mediators with potent anti-inflammatory and pro-resolving properties, making them promising candidates for the treatment of inflammatory and neurodegenerative disorders. However, their therapeutic application is limited by poor stability and bioavailability. This study aimed [...] Read more.
Background/Objectives: Lipoxins, particularly Lipoxin A4 (LXA4), are endogenous lipid mediators with potent anti-inflammatory and pro-resolving properties, making them promising candidates for the treatment of inflammatory and neurodegenerative disorders. However, their therapeutic application is limited by poor stability and bioavailability. This study aimed to develop and characterize nanomicelles encapsulating LXA4 (nano-lipoxin A4) to improve its pharmacological efficacy against Alzheimer’s disease (AD), a neurodegenerative condition marked by chronic inflammation and beta-amyloid (Aβ) accumulation. Methods: Nano-lipoxin A4 was synthesized using Pluronic F-127 as a carrier and characterized in terms of morphology, physicochemical stability, and in vitro activity against Aβ fibrils. Dissociation of Aβ fibrils was assessed via Thioflavin-T fluorescence assays and transmission electron microscopy. In vivo biodistribution and pharmacokinetic profiles were evaluated using technetium-99m-labeled nano-lipoxin A4 in rodent models. Hepatic biochemical parameters were also measured to assess potential systemic effects. Results: In vitro studies demonstrated that nano-lipoxin A4 effectively dissociated Aβ fibrils at concentrations of 50 nM and 112 nM. Electron microscopy confirmed the disruption of fibrillar structures. In vivo imaging revealed predominant accumulation in the liver and spleen, consistent with reticuloendothelial system uptake. Pharmacokinetic analysis showed a prolonged half-life (63.95 h) and low clearance rate (0.001509 L/h), indicating sustained systemic presence. Biochemical assays revealed elevated liver enzyme levels, suggestive of increased hepatic metabolism or potential hepatotoxicity. Conclusions: Nano-lipoxin A4 exhibits significant therapeutic potential for Alzheimer’s disease through effective modulation of Aβ pathology and favorable pharmacokinetic characteristics. However, the elevation in liver enzymes necessitates further investigation into systemic safety to support clinical translation. Full article
Show Figures

Graphical abstract

17 pages, 2921 KiB  
Article
Coenzyme Q10 Enhances Resilience of Mitochondrial-like Membranes Against Amyloidogenic Peptides
by Raina Marie Seychell, Adam El Saghir, Gianluca Farrugia and Neville Vassallo
Membranes 2025, 15(5), 148; https://doi.org/10.3390/membranes15050148 - 13 May 2025
Viewed by 832
Abstract
Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide [...] Read more.
Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide aggregation and cytotoxicity. Therefore, we hypothesized that modifying the physicochemical properties of mitochondrial model membranes with a small molecule might act as a countermeasure against the formation of, and damage by, membrane-active amyloid peptides. To investigate this, we inserted the natural ubiquinone Coenzyme Q10 (CoQ10) in model mito-mimetic lipid vesicles, and studied how they interacted with Aβ42 and hIAPP peptide monomers and oligomers. Our results demonstrate that the membrane incorporation of CoQ10 significantly attenuated fibrillization of the peptides, whilst also making the membranes more resilient against peptide-induced permeabilization. Furthermore, these protective effects were linked with the ability of CoQ10 to enhance membrane packing in the inner acyl chain region, which increased the mechanical stability of the vesicle membranes. Based on our collective observations, we propose that mitochondrial resilience against toxic biomolecules implicit in protein misfolding disorders such as Alzheimer’s disease and type-2 diabetes, could potentially be enhanced by increasing CoQ10 levels within mitochondria. Full article
(This article belongs to the Special Issue Composition and Biophysical Properties of Lipid Membranes)
Show Figures

Figure 1

24 pages, 2232 KiB  
Review
Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications
by Chih Hung Lo, Lenny Yi Tong Cheong and Jialiu Zeng
Nanomaterials 2025, 15(10), 704; https://doi.org/10.3390/nano15100704 - 8 May 2025
Viewed by 969
Abstract
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). Misfolded IDPs are prone to aggregate [...] Read more.
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). Misfolded IDPs are prone to aggregate into oligomers and fibrils, exacerbating disease progression by disrupting cellular functions in the central nervous system, triggering neuroinflammation and neurodegeneration. Furthermore, aggregated IDPs exhibit prion-like behavior, acting as seeds that are released into the extracellular space, taken up by neighboring cells, and have a propagating pathology across different regions of the brain. Conventional inhibitors, such as small molecules, peptides, and antibodies, face challenges in stability and blood–brain barrier penetration, limiting their efficacy. In recent years, nanotechnology-based strategies, such as multifunctional nanoplatforms or nanoparticles, have emerged as promising tools to address these challenges. These nanoplatforms leverage tailored designs to prevent or remodel the aggregation of IDPs and reduce associated neurotoxicity. This review discusses recent advances in nanoplatforms designed to target tau, Aβ, and αSyn aggregation, with a focus on their roles in reducing neuroinflammation and neurodegeneration. We examine critical aspects of nanoplatform design, including the choice of material backbone and targeting moieties, which influence interactions with IDPs. We also highlight key mechanisms including the interaction between nanoplatforms and IDPs to inhibit their aggregation, redirect aggregation cascade towards nontoxic, off-pathway species, and disrupt fibrillar structures into soluble forms. We further outline future directions for enhancing IDP clearance, achieving spatiotemporal control, and improving cell-specific targeting. These nanomedicine strategies offer compelling paths forward for developing more effective and targeted therapies for neurodegenerative diseases. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

23 pages, 18738 KiB  
Article
Interaction Between Glucagon-like Peptide 1 and Its Analogs with Amyloid-β Peptide Affects Its Fibrillation and Cytotoxicity
by Ekaterina A. Litus, Marina P. Shevelyova, Alisa A. Vologzhannikova, Evgenia I. Deryusheva, Alina V. Chaplygina, Victoria A. Rastrygina, Andrey V. Machulin, Valeria D. Alikova, Aliya A. Nazipova, Maria E. Permyakova, Victor V. Dotsenko, Sergei E. Permyakov and Ekaterina L. Nemashkalova
Int. J. Mol. Sci. 2025, 26(9), 4095; https://doi.org/10.3390/ijms26094095 - 25 Apr 2025
Viewed by 922
Abstract
Clinical data as well as animal and cell studies indicate that certain antidiabetic drugs, including glucagon-like peptide 1 receptor agonists (GLP-1RAs), exert therapeutic effects in Alzheimer’s disease (AD) by modulating amyloid-β peptide (Aβ) metabolism. Meanwhile, the direct interactions between GLP-1RAs and Aβ and [...] Read more.
Clinical data as well as animal and cell studies indicate that certain antidiabetic drugs, including glucagon-like peptide 1 receptor agonists (GLP-1RAs), exert therapeutic effects in Alzheimer’s disease (AD) by modulating amyloid-β peptide (Aβ) metabolism. Meanwhile, the direct interactions between GLP-1RAs and Aβ and their functional consequences remain unexplored. In this study, the interactions between monomeric Aβ40/Aβ42 of GLP-1(7-37) and its several analogs (semaglutide (Sema), liraglutide (Lira), exenatide (Exen)) were studied using biolayer interferometry and surface plasmon resonance spectroscopy. The quaternary structure of GLP-1RAs was investigated using dynamic light scattering. The effects of GLP-1RAs on Aβ fibrillation were assessed using the thioflavin T assay and electron microscopy. The impact of GLP-1RAs on Aβ cytotoxicity was evaluated via the MTT assay. Monomeric Aβ40 and Aβ42 directly bind to GLP-1(7-37), Sema, Lira, and Exen, with the highest affinity for Lira (the lowest estimates of equilibrium dissociation constants were 42–60 nM). GLP-1RAs are prone to oligomerization, which may affect their binding to Aβ. GLP-1(7-37) and Exen inhibit Aβ40 fibrillation, whereas Sema promotes it. GLP-1 analogs decrease Aβ cytotoxicity toward SH-SY5Y cells, while GLP-1(7-37) enhances Aβ40 cytotoxicity without affecting the cytotoxic effect of Aβ42. Overall, GLP-1RAs interact with Aβ and differentially modulate its fibrillation and cytotoxicity, suggesting the need for further studies of our observed effects in vivo. Full article
Show Figures

Figure 1

14 pages, 3899 KiB  
Article
The Inhibition of Bromodomain and Extraterminal Domain (BET) Proteins Protects Against Microglia-Mediated Neuronal Loss In Vitro
by Marta Matuszewska, Anna Wilkaniec, Magdalena Cieślik, Marcin Strawski and Grzegorz A. Czapski
Biomolecules 2025, 15(4), 528; https://doi.org/10.3390/biom15040528 - 4 Apr 2025
Viewed by 700
Abstract
Neuroinflammation is a key feature of all neurodegenerative disorders, including Alzheimer’s disease, and is tightly regulated by epigenetic mechanisms. Among them, bromodomain and extraterminal domain (BET) proteins play a crucial role by recognizing acetylated histones and acting as transcriptional co-regulators to modulate gene [...] Read more.
Neuroinflammation is a key feature of all neurodegenerative disorders, including Alzheimer’s disease, and is tightly regulated by epigenetic mechanisms. Among them, bromodomain and extraterminal domain (BET) proteins play a crucial role by recognizing acetylated histones and acting as transcriptional co-regulators to modulate gene expression. This study investigates the potential of inhibiting BET proteins in preventing microglia-mediated neuronal damage in vitro. Murine BV2 microglial cells were exposed to lipopolysaccharide (LPS) or amyloid-β (Aβ) to induce an inflammatory response, and the subsequent effects on murine HT22 neuronal cells were examined. Among the BET proteins tested, only Brd4 was significantly upregulated in BV2 cells upon pro-inflammatory stimulation. JQ1, a potent pan-inhibitor of BET proteins, suppressed LPS-induced upregulation of pro-inflammatory cytokine mRNA levels, including Il1b, Il6, and Tnf, in BV2 microglia. Pre-treatment with JQ1 attenuated the cytotoxicity of LPS-activated BV2 cells toward neurons. Additionally, conditioned media from Aβ fibril-stimulated BV2 cells induced neuronal cell death, which was partially prevented by pre-treatment with JQ1. Co-culture assays further demonstrated the beneficial effect of BET inhibition. Our findings suggest that targeting BET proteins may offer a neuroprotective strategy by modulating microglial activation, potentially providing therapeutic benefits in neurodegenerative diseases. Full article
(This article belongs to the Special Issue Molecular and Genetic Basis of Neurodegenerative Diseases)
Show Figures

Figure 1

16 pages, 1885 KiB  
Article
Administration of Polyphenol-Rich Sugarcane Extract Alleviates Deficits Induced by Amyloid-Beta1–42 (Aβ1–42) in Transgenic C. elegans
by Deniz Heydarian, Matthew Flavel, Mihiri Munasinghe, Markandeya Jois and Jency Thomas
J. Ageing Longev. 2025, 5(2), 12; https://doi.org/10.3390/jal5020012 - 2 Apr 2025
Viewed by 424
Abstract
Polyphenol-Rich Sugarcane Extract (PRSE), derived from Saccharum officinarum, demonstrates significant neuroprotective effects against amyloid-beta (Aβ1–42)-induced deficits associated with Alzheimer’s disease (AD). This study utilized transgenic C. elegans expressing Aβ1–42 to investigate PRSE’s impact on lifespan, sensory behavior, learning, memory, [...] Read more.
Polyphenol-Rich Sugarcane Extract (PRSE), derived from Saccharum officinarum, demonstrates significant neuroprotective effects against amyloid-beta (Aβ1–42)-induced deficits associated with Alzheimer’s disease (AD). This study utilized transgenic C. elegans expressing Aβ1–42 to investigate PRSE’s impact on lifespan, sensory behavior, learning, memory, and amyloid fibril accumulation. Supplementation with 5 mg/mL of PRSE extended the mean lifespan of Aβ1–42 worms by 11% (17.78 ± 0.36 days) and reduced amyloid fibril levels by 34% in aged worms compared to untreated worms. PRSE also improved sensory behavior, with a 27% increase in naïve chemotaxis at day 8. Memory deficits were mitigated, with PRSE-treated worms showing 21% and 30% reductions in short-term associative memory loss after 1 h intervals on days 8 and 12, respectively. These improvements can be associated with the polyphenolic compounds in PRSE, which aid in reducing amyloid aggregation. The findings highlight PRSE’s potential as a dietary supplement to address AD-related symptoms and pathologies. Further studies are needed to understand its mechanisms and confirm its effectiveness in mammals, supporting its potential use as a natural preventative supplement for Alzheimer’s and related neurodegenerative diseases. Full article
Show Figures

Figure 1

14 pages, 2090 KiB  
Article
The Effect of Polyethylene Terephthalate Nanoplastics on Amyloid-β Peptide Fibrillation
by Narmin Bashirova, Franziska Schölzel, Dominik Hornig, Holger A. Scheidt, Martin Krueger, Georgeta Salvan, Daniel Huster, Joerg Matysik and A. Alia
Molecules 2025, 30(7), 1432; https://doi.org/10.3390/molecules30071432 - 24 Mar 2025
Viewed by 1057
Abstract
Exposure of organisms to nanoplastics (NPs) is inevitable given their global abundance and environmental persistence. Polyethylene terephthalate (PET) is a common plastic used in a wide range of products, including clothing and food and beverage packaging. Recent studies suggest that NPs can cross [...] Read more.
Exposure of organisms to nanoplastics (NPs) is inevitable given their global abundance and environmental persistence. Polyethylene terephthalate (PET) is a common plastic used in a wide range of products, including clothing and food and beverage packaging. Recent studies suggest that NPs can cross the blood-brain barrier and cause potential neurotoxicity. It is widely known that aggregation of amyloid beta (Aβ) peptides in the brain is a pathological hallmark of Alzheimer’s disease (AD). While the impact of nanoplastics such as polystyrene (PS) on amyloid aggregation has been studied, the effects of PET NPs remain unexplored. In this study, we examined the effect of PET NPs of different sizes (PET50nm and PET140nm) and concentrations (0, 10, 50, and 100 ppm) on the fibrillation of Aβ1-40. Our results showed that the presence of PET50nm as well as PET140nm decreased the lag phase of the fibrillation processes in a dose- and size-dependent manner from 6.7 ± 0.08 h for Aβ in the absence of PET (Aβcontrol) to 3.1 ± 0.03 h for PET50nm and 3.8 ± 0.06 h for PET140nm. CD spectroscopy showed that PET50nm significantly impacts the structural composition of Aβ aggregates. A significant rise in antiparallel β-sheet content and β-turn structure and a substantial reduction in other structures were observed in the presence of 100 ppm PET50nm. These changes indicate that higher concentrations (100 ppm) of PET50nm promote more rigid and uniform peptide aggregates. Although PET50nm NPs influence the kinetics of aggregation and secondary structure, the overall morphology of the resulting fibrils remains largely unaltered, as seen using transmission electron microscopy. Also, the local cross-β structure of the fibrils was not affected by the presence of PET50nm NPs during fibrillation, as confirmed using 13C solid-state NMR spectroscopy. Overall, these findings show that PET NPs accelerate amyloid fibril formation and alter the secondary structure of Aβ fibrils. These results also indicate that the accumulation of PET-NPs in the brain may facilitate the progression of various neurodegenerative diseases, including Alzheimer’s disease. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

Back to TopTop