Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (249)

Search Parameters:
Keywords = 4G/5G LTE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6280 KiB  
Article
Abundance Analysis of the Spectroscopic Binary α Equulei
by Anna Romanovskaya and Sergey Zvyagintsev
Galaxies 2025, 13(4), 88; https://doi.org/10.3390/galaxies13040088 - 6 Aug 2025
Abstract
We present the results of a detailed spectroscopic analysis of the double-lined spectroscopic binary system α Equulei. High-resolution spectra obtained with the SOPHIE spectrograph at various orbital phases were used to disentangle the composite spectra into individual components using the spectral line deconvolution [...] Read more.
We present the results of a detailed spectroscopic analysis of the double-lined spectroscopic binary system α Equulei. High-resolution spectra obtained with the SOPHIE spectrograph at various orbital phases were used to disentangle the composite spectra into individual components using the spectral line deconvolution (SLD) iterative technique. The atmospheric parameters of each component were refined with the SME (spectroscopy made easy) package and further validated by following methods: SED (spectral energy distribution), the independence of the abundance of individual Fe iii lines on the reduced equivalent width and ionisation potential, and fitting with the hydrogen line profiles. Our accurate abundance analysis uses a hybrid technique for spectrum synthesis. This is based on classical model atmospheres that are calculated under the assumption of local thermodynamic equilibrium (LTE), together with non-LTE (NLTE) line formation. This is used for 15 out of the 25 species from C to Nd that were investigated. The primary giant component (G7-type) exhibits a typical abundance pattern for normal stars, with elements from He to Fe matching solar values and neutron-capture elements showing overabundances up to 0.5 dex. In contrast, the secondary dwarf component displays characteristics of an early stage Am star. The observed abundance differences imply distinct diffusion processes in their atmospheres. Our results support the scenario in which chemical peculiarities in Am stars develop during the main sequence and may decrease as the stars evolve toward the subgiant branch. Full article
(This article belongs to the Special Issue Stellar Spectroscopy, Molecular Astronomy and Atomic Astronomy)
Show Figures

Figure 1

15 pages, 5625 KiB  
Article
Compact Frequency-Agile and Mode-Reconfigurable Antenna for C-Band, Sub-6-GHz-5G, and ISM Applications
by Esraa Mousa Ali, Wahaj Abbas Awan, Anees Abbas, Syed Mujahid Abbas and Heba G. Mohamed
Micromachines 2025, 16(6), 724; https://doi.org/10.3390/mi16060724 - 19 Jun 2025
Viewed by 628
Abstract
This article presents the design and evaluation of a compact-sized antenna targeting heterogenous applications working in the C-band, 5G-sub-6GHz, and the ISM band. The antenna offers frequency reconfigurability along with multi-operational modes ranging from wideband to dual-band and tri-band. A compact-sized antenna is [...] Read more.
This article presents the design and evaluation of a compact-sized antenna targeting heterogenous applications working in the C-band, 5G-sub-6GHz, and the ISM band. The antenna offers frequency reconfigurability along with multi-operational modes ranging from wideband to dual-band and tri-band. A compact-sized antenna is designed initially to cover a broad bandwidth that ranges from 4 GHz to 7 GHz. Afterwards, various multiband antennas are formed by loading various stubs. Finally, the wideband antenna along with multi-stub loaded antennas are combined to form a single antenna. Furthermore, PIN diodes are loaded between the main radiator and stubs to activate the stubs on demand, which consequently generates various operational modes. The last stage of the design is optimization, which helps in achieving the desired bandwidths. The optimized antenna works in the wideband mode covering the C-band, Wi-Fi 6E, and the ISM band. Meanwhile, the multiband modes offer the additional coverage of the LTE, LTE 4G, ISM lower band, and GSM band. The various performance parameters are studied and compared with measured results to show the performance stability of the proposed reconfigurable antenna. In addition, an in-depth literature review along with comparison with proposed antenna is performed to show its potential for targeted applications. The utilization of FR4 as a substrate of the antenna along with its compact size of 15 mm × 20 mm while having multiband and multi-mode frequency reconfigurability makes it a strong candidate for present as well as for future smart devices and electronics. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

14 pages, 2919 KiB  
Article
GPR Sensing and Visual Mapping Through 4G-LTE, 5G, Wi-Fi HaLow, and Wi-Fi Hotspots with Edge Computing and AR Representation
by Scott Tanch, Alireza Fath, Nicholas Hanna, Tian Xia and Dryver Huston
Appl. Sci. 2025, 15(12), 6552; https://doi.org/10.3390/app15126552 - 10 Jun 2025
Cited by 1 | Viewed by 487
Abstract
In this study, we demonstrate an application for 5G networks in mobile and remote GPR scanning situations to detect buried objects by experts while the operator is performing the scans. Using a GSSI SIR-30 system in conjunction with the RealSense camera for visual [...] Read more.
In this study, we demonstrate an application for 5G networks in mobile and remote GPR scanning situations to detect buried objects by experts while the operator is performing the scans. Using a GSSI SIR-30 system in conjunction with the RealSense camera for visual mapping of the surveyed area, subsurface GPR scans were created and transmitted for remote processing. Using mobile networks, the raw B-scan files were transmitted at a sufficient rate, a maximum of 0.034 ms mean latency, to enable near real-time edge processing. The performance of 5G networks in handling the data transmission for the GPR scans and edge computing was compared to the performance of 4G networks. In addition, long-range low-power devices, namely Wi-Fi HaLow and Wi-Fi hotspots, were compared as local alternatives to cellular networks. Augmented reality headset representation of the F-scans is proposed as a method of assisting the operator in using the edge-processed scans. These promising results bode well for the potential of remote processing of GPR data in augmented reality applications. Full article
(This article belongs to the Special Issue Robotics and Intelligent Systems: Technologies and Applications)
Show Figures

Figure 1

17 pages, 5570 KiB  
Article
Analysis and Design of Class-D Outphasing Power Amplifier with Non-Isolating Balun Combiner
by Jiyun Bae, Munsu Jeong, Sangjin Yoo, Ilku Nam and Ockgoo Lee
Electronics 2025, 14(11), 2196; https://doi.org/10.3390/electronics14112196 - 28 May 2025
Viewed by 359
Abstract
This paper presents a class-D outphasing power amplifier (PA) that incorporates a non-isolating balun combiner employing a 180° phase shift. Both isolating and non-isolating outphasing combiners are analyzed for signal restoration and combining efficiency. The proposed non-isolating balun combiner employing the 180° phase [...] Read more.
This paper presents a class-D outphasing power amplifier (PA) that incorporates a non-isolating balun combiner employing a 180° phase shift. Both isolating and non-isolating outphasing combiners are analyzed for signal restoration and combining efficiency. The proposed non-isolating balun combiner employing the 180° phase shift was experimentally evaluated and compared with a commercial isolating Wilkinson combiner. When two constant-envelope signals derived from a 10 MHz long-term evolution (LTE) signal are applied to the inputs of the outphasing combiners, both combiners demonstrate successful signal reconstruction. The measured adjacent channel leakage ratios (ACLRs) are −47 dBc for the Wilkinson combiner and −46 dBc for the proposed balun combiner. At 6 dB power back-off (PBO), the proposed balun combiner achieves a combining efficiency of 85.1%, representing an improvement of nearly 60% over the Wilkinson combiner. With a center frequency of 650 MHz, targeting 5G FR1 applications, a class-D outphasing PA was designed in a 28 nm CMOS process using the measured S-parameter data from both outphasing combiners. Simulation results show that the class-D outphasing PA incorporating the proposed balun combiner achieves a peak drain efficiency (DE) of 82.9% with an output power of 17.7 dBm. At 6 dB PBO, the DE reaches 61%, which is approximately 37% higher than that of the outphasing PA using the Wilkinson combiner. Moreover, the designed outphasing PA supports broadband operation over the 360–860 MHz range. Full article
Show Figures

Figure 1

18 pages, 17301 KiB  
Article
Threat Classification and Vulnerability Analysis on 5G Firmware Over-the-Air Updates for Mobile and Automotive Platforms
by Insu Oh, Mahdi Sahlabadi, Kangbin Yim and Sunyoung Lee
Electronics 2025, 14(10), 2034; https://doi.org/10.3390/electronics14102034 - 16 May 2025
Viewed by 1047
Abstract
The integration of 5G technology with existing LTE architectures has facilitated the widespread adoption of firmware over-the-air (FOTA) updates across Android-based devices, including mobile and automotive infotainment systems. While 5G enhances communication speed and convenience, vulnerabilities related to firmware tampering and Man-in-the-Middle (MitM) [...] Read more.
The integration of 5G technology with existing LTE architectures has facilitated the widespread adoption of firmware over-the-air (FOTA) updates across Android-based devices, including mobile and automotive infotainment systems. While 5G enhances communication speed and convenience, vulnerabilities related to firmware tampering and Man-in-the-Middle (MitM) attacks still present considerable risks. This study analyzes the security of the FOTA update process for six Android-based mobile manufacturers and one vehicle model, all of which utilize LTE architectures within 5G networks. Through comprehensive security testing, we explore the potential threats of certificate bypass, firmware tampering, and communication interception. Our proposed framework identifies critical security flaws in the FOTA implementation, recommending improvements in encryption protocols and integrity verification mechanisms to secure the firmware update process. Our findings underscore the urgent requirement for enhanced security measures in the deployment of FOTA updates to address vulnerabilities in Android-based IoT devices and automotive systems. Full article
Show Figures

Figure 1

22 pages, 6192 KiB  
Article
Advanced DFE, MLD, and RDE Equalization Techniques for Enhanced 5G mm-Wave A-RoF Performance at 60 GHz
by Umar Farooq and Amalia Miliou
Photonics 2025, 12(5), 496; https://doi.org/10.3390/photonics12050496 - 16 May 2025
Viewed by 714
Abstract
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality [...] Read more.
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality in several communication systems, including WiFi networks, cable modems, and long-term evolution (LTE) systems. Its capacity to mitigate inter-symbol interference (ISI) and rapidly adjust to channel variations renders it a flexible option for high-speed data transfer and wireless communications. Conversely, MLD is utilized in applications that require great precision and dependability, including multi-input–multi-output (MIMO) systems, satellite communications, and radar technology. The ability of MLD to optimize the probability of accurate symbol detection in complex, high-dimensional environments renders it crucial for systems where signal integrity and precision are critical. Lastly, RDE is implemented as an alternative algorithm to the CMA-based equalizer, utilizing the idea of adjusting the amplitude of the received distorted symbol so that its modulus is closer to the ideal value for that symbol. The algorithms are tested using a converged 5G mm-wave analog radio-over-fiber (A-RoF) system at 60 GHz. Their performance is measured regarding error vector magnitude (EVM) values before and after equalization for different optical fiber lengths and modulation formats (QPSK, 16-QAM, 64-QAM, and 128-QAM) and shows a clear performance improvement of the output signal. Moreover, the performance of the proposed algorithms is compared to three commonly used algorithms: the simple least mean square (LMS) algorithm, the constant modulus algorithm (CMA), and the adaptive median filtering (AMF), demonstrating superior results in both QPSK and 16-QAM and extending the transmission distance up to 120 km. DFE has a significant advantage over LMS and AMF in reducing the inter-symbol interference (ISI) in a dispersive channel by using previous decision feedback, resulting in quicker convergence and more precise equalization. MLD, on the other hand, is highly effective in improving detection accuracy by taking into account the probability of various symbol sequences achieving lower error rates and enhancing performance in advanced modulation schemes. RDE performs best for QPSK and 16-QAM constellations among all the other algorithms. Furthermore, DFE and MLD are particularly suitable for higher-order modulation formats like 64-QAM and 128-QAM, where accurate equalization and error detection are of utmost importance. The enhanced functionalities of DFE, RDE, and MLD in managing greater modulation orders and expanding transmission range highlight their efficacy in improving the performance and dependability of our system. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

10 pages, 1948 KiB  
Proceeding Paper
Exploitation of 5G, LTE, and Automatic Identification System Signals for Fallback Unmanned Aerial Vehicle Navigation
by Adrian Winter, Aiden Morrison, Oliver Hasler and Nadezda Sokolova
Eng. Proc. 2025, 88(1), 49; https://doi.org/10.3390/engproc2025088049 - 13 May 2025
Viewed by 286
Abstract
Reliable Position, Navigation, and Timing (PNT) is becoming more and more important, considering the proliferation of highly autonomous safety- and liability-critical systems. Due to their vulnerability to various threats such as deliberate Radio Frequency Interference (RFI), including jamming, spoofing, and others, there is [...] Read more.
Reliable Position, Navigation, and Timing (PNT) is becoming more and more important, considering the proliferation of highly autonomous safety- and liability-critical systems. Due to their vulnerability to various threats such as deliberate Radio Frequency Interference (RFI), including jamming, spoofing, and others, there is significant research into finding backup/fallback solutions that allow safe mission completion or termination. This work compares two such systems: one based on Angle of Arrival (AoA) measurement and one based on cellular (4G and 5G) signals. The results are generated using simulations, which are substantiated by real-world performance measurements. It is shown that both systems have the potential to serve as backup navigation solutions and that the cellular system outperforms the AoA-based solution, albeit at a much higher price and with higher computational requirements. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

25 pages, 4627 KiB  
Article
Laser-Based Characterization and Classification of Functional Alloy Materials (AlCuPbSiSnZn) Using Calibration-Free Laser-Induced Breakdown Spectroscopy and a Laser Ablation Time-of-Flight Mass Spectrometer for Electrotechnical Applications
by Amir Fayyaz, Muhammad Waqas, Kiran Fatima, Kashif Naseem, Haroon Asghar, Rizwan Ahmed, Zeshan Adeel Umar and Muhammad Aslam Baig
Materials 2025, 18(9), 2092; https://doi.org/10.3390/ma18092092 - 2 May 2025
Viewed by 783
Abstract
In this paper, we present the analysis of functional alloy samples containing metals aluminum (Al), copper (Cu), lead (Pb), silicon (Si), tin (Sn), and zinc (Zn) using a Q-switched Nd laser operating at a wavelength of 532 nm with a pulse duration of [...] Read more.
In this paper, we present the analysis of functional alloy samples containing metals aluminum (Al), copper (Cu), lead (Pb), silicon (Si), tin (Sn), and zinc (Zn) using a Q-switched Nd laser operating at a wavelength of 532 nm with a pulse duration of 5 ns. Nine pelletized alloy samples were prepared, each containing varying chemical concentrations (wt.%) of Al, Cu, Pb, Si, Sn, and Zn—elements commonly used in electrotechnical and thermal functional materials. The laser beam is focused on the target surface, and the resulting emission spectrum is captured within the temperature interval of 9.0×103 to 1.1×104 K using a set of compact Avantes spectrometers. Each spectrometer is equipped with a linear charged-coupled device (CCD) array set at a 2 μs gate delay for spectrum recording. The quantitative analysis was performed using calibration-free laser-induced breakdown spectroscopy (CF-LIBS) under the assumptions of optically thin plasma and self-absorption-free conditions, as well as local thermodynamic equilibrium (LTE). The net normalized integrated intensities of the selected emission lines were utilized for the analysis. The intensities were normalized by dividing the net integrated intensity of each line by that of the aluminum emission line (Al II) at 281.62 nm. The results obtained using CF-LIBS were compared with those from the laser ablation time-of-flight mass spectrometer (LA-TOF-MS), showing good agreement between the two techniques. Furthermore, a random forest technique (RFT) was employed using LIBS spectral data for sample classification. The RFT technique achieves the highest accuracy of ~98.89% using out-of-bag (OOB) estimation for grouping, while a 10-fold cross-validation technique, implemented for comparison, yields a mean accuracy of ~99.12%. The integrated use of LIBS, LA-TOF-MS, and machine learning (e.g., RFT) enables fast, preparation-free analysis and classification of functional metallic materials, highlighting the synergy between quantitative techniques and data-driven methods. Full article
Show Figures

Figure 1

13 pages, 9500 KiB  
Article
Resilience of LTE-A/5G-NR Links Against Transient Electromagnetic Interference
by Sharzeel Saleem and Mir Lodro
Magnetism 2025, 5(2), 10; https://doi.org/10.3390/magnetism5020010 - 22 Apr 2025
Viewed by 842
Abstract
This paper presents a comparative analysis of a long-term evolution advanced (LTE-A) and fifth-generation new radio (5G-NR), focusing on the effects of transient electromagnetic interference (EMI) caused by catenary–pantograph contact in a railway environment.A software-defined radio (SDR)-based prototype was developed to evaluate the [...] Read more.
This paper presents a comparative analysis of a long-term evolution advanced (LTE-A) and fifth-generation new radio (5G-NR), focusing on the effects of transient electromagnetic interference (EMI) caused by catenary–pantograph contact in a railway environment.A software-defined radio (SDR)-based prototype was developed to evaluate the performance of LTE-A and 5G-NR links under the influence of transient interference. The results show that both links experience considerable degradation due to interference at different centre frequencies. Performance degradation is proportional to the gain of interference. The measurement results show that both links experience considerable performance degradation in the presence of transient EMI. Full article
Show Figures

Figure 1

17 pages, 3364 KiB  
Article
Ultra-Wideband Antenna Design for 5G NR Using the Bezier Search Differential Evolution Algorithm
by Georgios Korompilis, Achilles D. Boursianis, Panagiotis Sarigiannidis, Zaharias D. Zaharis, Katherine Siakavara, Maria S. Papadopoulou, Mohammad Abdul Matin and Sotirios K. Goudos
Technologies 2025, 13(4), 133; https://doi.org/10.3390/technologies13040133 - 1 Apr 2025
Cited by 1 | Viewed by 483
Abstract
As the energy crisis is leading to energy shortages and constant increases in prices, green energy and renewable energy sources are trending as a viable solution to this problem. One of the most rapidly expanding green energy methods is RF (RadioFrequency) energy harvesting, [...] Read more.
As the energy crisis is leading to energy shortages and constant increases in prices, green energy and renewable energy sources are trending as a viable solution to this problem. One of the most rapidly expanding green energy methods is RF (RadioFrequency) energy harvesting, as RF energy and its corresponding technologies are constantly progressing, due to the introduction of 5G and high-speed telecommunications. The usual system for RF energy harvesting is called a rectenna, and one of its main components is an antenna, responsible for collecting ambient RF energy. In this paper, the optimization process of an ultra-wideband antenna for RF energy harvesting applications was studied, with the main goal of broadening the antenna’s operational bandwidth to include 5G New Radio. For this purpose, the Bezier Search Differential Evolution Algorithm (BeSD) was used along with a novel CST-Matlab API, to manipulate the degrees of freedom of the antenna, while searching for the optimal result, which would satisfy all the necessary dependencies to make it capable of harvesting RF energy in the target frequency band. The BeSD algorithm was first tested with benchmark functions and compared to other widely used algorithms, which it successfully outperformed, and hence, it was selected as the optimizer for this research. All in all, the optimization process was successful by producing an ultra-wideband optimal antenna operating from 1.4 GHz to 3.9 GHz, which includes all vastly used telecommunication technologies, like GSM (1.8 GHz), UMTS (2.1 GHz), Wi-Fi (2.4 GHz), LTE (2.6 GHz), and 5G NR (3.5 GHz). Its ultra-wideband properties and the rest of the characteristics that make this design suitable for RF energy harvesting are proven by its S11 response graph, its impedance response graph, its efficiency on the targeted technologies, and its omnidirectionality across its band of operation. Full article
Show Figures

Figure 1

18 pages, 708 KiB  
Article
Improved Connected-Mode Discontinuous Reception (C-DRX) Power Saving and Delay Reduction Using Ensemble-Based Traffic Prediction
by Ji-Hee Yu, Yoon-Ju Choi, Seung-Hwan Seo, Seong-Gyun Choi, Hye-Yoon Jeong, Ja-Eun Kim, Myung-Sun Baek, Young-Hwan You and Hyoung-Kyu Song
Mathematics 2025, 13(6), 974; https://doi.org/10.3390/math13060974 - 15 Mar 2025
Cited by 1 | Viewed by 896
Abstract
This paper proposes a traffic prediction-based connected-mode discontinuous reception (C-DRX) approach to enhance energy efficiency and reduce data transmission delay in mobile communication systems. Traditional C-DRX determines user equipment (UE) activation based on a fixed timer cycle, which may not align with actual [...] Read more.
This paper proposes a traffic prediction-based connected-mode discontinuous reception (C-DRX) approach to enhance energy efficiency and reduce data transmission delay in mobile communication systems. Traditional C-DRX determines user equipment (UE) activation based on a fixed timer cycle, which may not align with actual traffic occurrences, leading to unnecessary activation and increased energy consumption or delays in data reception. To address this issue, this paper presents an ensemble model combining random forest (RF) and a temporal convolutional network (TCN) to predict traffic occurrences and adjust C-DRX activation timing. RF extracts traffic features, while TCN captures temporal dependencies in traffic data. The predictions from both models are combined to determine C-DRX activation timing. Additionally, the extended activation approach is introduced to refine activation timing by extending the activation window around predicted traffic occurrences. The proposed method is evaluated using real-world Netflix traffic data, achieving a 20.9% decrease in unnecessary active time and a 70.7% reduction in mean delay compared to the conventional periodic C-DRX approach. Overall, the proposed method significantly enhances energy efficiency and quality of service (QoS) in LTE and 5G networks, making it a viable solution for future mobile communication systems. Full article
(This article belongs to the Special Issue Advances in Mobile Network and Intelligent Communication)
Show Figures

Figure 1

47 pages, 2260 KiB  
Review
Hand Gesture Recognition on Edge Devices: Sensor Technologies, Algorithms, and Processing Hardware
by Elfi Fertl, Encarnación Castillo, Georg Stettinger, Manuel P. Cuéllar and Diego P. Morales
Sensors 2025, 25(6), 1687; https://doi.org/10.3390/s25061687 - 8 Mar 2025
Cited by 3 | Viewed by 2193
Abstract
Hand gesture recognition (HGR) is a convenient and natural form of human–computer interaction. It is suitable for various applications. Much research has already focused on wearable device-based HGR. By contrast, this paper gives an overview focused on device-free HGR. That means we evaluate [...] Read more.
Hand gesture recognition (HGR) is a convenient and natural form of human–computer interaction. It is suitable for various applications. Much research has already focused on wearable device-based HGR. By contrast, this paper gives an overview focused on device-free HGR. That means we evaluate HGR systems that do not require the user to wear something like a data glove or hold a device. HGR systems are explored regarding technology, hardware, and algorithms. The interconnectedness of timing and power requirements with hardware, pre-processing algorithm, classification, and technology and how they permit more or less granularity, accuracy, and number of gestures is clearly demonstrated. Sensor modalities evaluated are WIFI, vision, radar, mobile networks, and ultrasound. The pre-processing technologies stereo vision, multiple-input multiple-output (MIMO), spectrogram, phased array, range-doppler-map, range-angle-map, doppler-angle-map, and multilateration are explored. Classification approaches with and without ML are studied. Among those with ML, assessed algorithms range from simple tree structures to transformers. All applications are evaluated taking into account their level of integration. This encompasses determining whether the application presented is suitable for edge integration, their real-time capability, whether continuous learning is implemented, which robustness was achieved, whether ML is applied, and the accuracy level. Our survey aims to provide a thorough understanding of the current state of the art in device-free HGR on edge devices and in general. Finally, on the basis of present-day challenges and opportunities in this field, we outline which further research we suggest for HGR improvement. Our goal is to promote the development of efficient and accurate gesture recognition systems. Full article
(This article belongs to the Special Issue Multimodal Sensing Technologies for IoT and AI-Enabled Systems)
Show Figures

Figure 1

16 pages, 3904 KiB  
Article
Co-Simulation of Interconnection Between Smart Power Grid and Smart Cities Platform via Massive Machine-Type Communication
by Luiz H. N. Rodrigues, Carlos F. M. Almeida, Nelson Kagan, Luiz H. L. Rosa and Milana L. dos Santos
Sensors 2025, 25(5), 1517; https://doi.org/10.3390/s25051517 - 1 Mar 2025
Cited by 1 | Viewed by 1256
Abstract
With the advent of Industry 5.0, the electrical sector has been endowed with intelligent devices that are propelling high penetration of distributed energy microgeneration, VPP, smart buildings, and smart plants and imposing new challenges on the sector. This new environment requires a smarter [...] Read more.
With the advent of Industry 5.0, the electrical sector has been endowed with intelligent devices that are propelling high penetration of distributed energy microgeneration, VPP, smart buildings, and smart plants and imposing new challenges on the sector. This new environment requires a smarter network, including transforming the simple electricity customer into a “smart customer” who values the quality of energy and its rational use. The SPG (smart power grid) is the perfect solution for meeting these needs. It is crucial to understand energy use to guarantee quality of service and meet data security requirements. The use of simulations to map the behavior of complex infrastructures is the best strategy because it overcomes the limitations of traditional analytical solutions. This article presents the ICT laboratory structure developed within the Department of Electrical Engineering of the Polytechnic School of the Universidade de São Paulo (USP). It is based on an architecture that utilizes LTE/EPC wireless technology (4G, 5G, and B5G) to enable machine-to-machine communication (mMTC) between SPG elements using edge computing (MEC) resources and those of smart city platforms. We evaluate this proposal through simulations using data from real and emulated equipment and co-simulations shared by SPG laboratories at POLI-USP. Finally, we present the preliminary results of integration of the power laboratory, network simulation (ns-3), and a smart city platform (InterSCity) for validation and testing of the architecture. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

29 pages, 9545 KiB  
Article
A Class of Perfectly Secret Autonomous Low-Bit-Rate Voice Communication Systems
by Jelica Radomirović, Milan Milosavljević, Sara Čubrilović, Zvezdana Kuzmanović, Miroslav Perić, Zoran Banjac and Dragana Perić
Symmetry 2025, 17(3), 365; https://doi.org/10.3390/sym17030365 - 27 Feb 2025
Cited by 1 | Viewed by 562
Abstract
This paper presents an autonomous perfectly secure low-bit-rate voice communication system (APS-VCS) based on the mixed-excitation linear prediction voice coder (MELPe), Vernam cipher, and sequential key distillation (SKD) protocol by public discussion. An authenticated public channel can be selected in a wide range, [...] Read more.
This paper presents an autonomous perfectly secure low-bit-rate voice communication system (APS-VCS) based on the mixed-excitation linear prediction voice coder (MELPe), Vernam cipher, and sequential key distillation (SKD) protocol by public discussion. An authenticated public channel can be selected in a wide range, from internet connections to specially leased radio channels. We found the source of common randomness between the locally synthesized speech signal at the transmitter and the reconstructed speech signal at the receiver side. To avoid information leakage about open input speech, the SKD protocol is not executed on the actual transmitted speech signal but on artificially synthesized speech obtained by random selection of the linear spectral pairs (LSP) parameters of the speech production model. Experimental verification of the proposed system was performed on the Vlatacom Personal Crypto Platform for Voice encryption (vPCP-V). Empirical measurements show that with an adequate selection of system parameters for voice transmission of 1.2 kb/s, a secret key rate (KR) of up to 8.8 kb/s can be achieved, with a negligible leakage rate (LR) and bit error rate (BER) of order 103 for various communications channels, including GSM 3G and GSM VoLTE networks. At the same time, by ensuring perfect secrecy within symmetric encryption systems, it further highlights the importance of the symmetry principle in the field of information-theoretic security. To our knowledge, this is the first autonomous, perfectly secret system for low-bit-rate voice communication that does not require explicit prior generation and distribution of secret keys. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Cryptography, Second Edition)
Show Figures

Figure 1

17 pages, 25856 KiB  
Article
An Independent UAV-Based Mobile Base Station
by Sung-Chan Choi and Sung-Yeon Kim
Sensors 2025, 25(5), 1349; https://doi.org/10.3390/s25051349 - 22 Feb 2025
Cited by 1 | Viewed by 1108
Abstract
In disaster scenarios, e.g., earthquakes, tsunamis, and wildfires, communication infrastructure often becomes severely damaged. To rapidly restore damaged communication systems, we propose a UAV-based mobile base station equipped with Public Safety LTE (PS-LTE) technology to provide standalone communication capabilities. The proposed system includes [...] Read more.
In disaster scenarios, e.g., earthquakes, tsunamis, and wildfires, communication infrastructure often becomes severely damaged. To rapidly restore damaged communication systems, we propose a UAV-based mobile base station equipped with Public Safety LTE (PS-LTE) technology to provide standalone communication capabilities. The proposed system includes PS-LTE functionalities, mission-critical push-to-talk, proximity-based services, and isolated E-UTRAN operation to ensure the reliable and secure communication for emergency services. We provide a simulation result to achieve the radio coverage of mobile base station. By using this radio coverage, we find an appropriate location of the end device for performing the outdoor experiments. We develop a prototype of a proposed mobile base station and test its operation in an outdoor environment. The experimental results provide a sufficient data rate to make an independent mobile base station to restore communication infrastructure in areas that experienced environmental disasters. This prototype and experimental results offer a significant step forward in creating agile and efficient communication solutions for emergency scenarios. Full article
Show Figures

Figure 1

Back to TopTop