Co-Simulation of Interconnection Between Smart Power Grid and Smart Cities Platform via Massive Machine-Type Communication
Abstract
:1. Introduction
2. Goals
3. Proposed Methodology
- Definition and execution of a series of benchmarks to evaluate the best experimental environment to perform simulations and emulations of LTE network communications in an SPG environment;
- Survey of architecture proposals previously found in the literature and evaluation of them in terms of refined monitoring of the electrical grid and services for SPG systems;
- Adaptation of the best architecture from the previous item so that it can support massive machine-to-machine communication expected in SPG environments;
- Modification of the previous version of the InterSCity platform to support SPG applications with QoS guarantees.
4. Related Works
4.1. Data Network Simulator
4.2. Electric Power Grid Simulators
4.3. Electric Power Grid and Data Communication Co-Simulations
5. Description of Co-Simulated Systems
5.1. Smart Power Grids (SPG) and NAPREI Laboratory
5.2. Communication Systems
5.3. Smart Cities Platform—InterSCity
6. Results
6.1. LTE/MEC Data Network Simulation
6.2. Integration of the InterSCity Platform Between SPG and Other Smart City Verticals
7. Conclusions and Future Works
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MDPI. Special Issue: Vertical iot Solutions and Their Applications in Smart Cities, Smart Agriculture, Smart Environment and Disaster Management. 2024. Available online: https://www.mdpi.com/ (accessed on 20 September 2024).
- Cisco. Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White Paper. Available online: https://www.cisco.com (accessed on 29 August 2024).
- Bahmanyar, A.; Jamali, S.; Estebsari, A.; Pons, E.; Bompard, E.; Patti, E.; Acquaviva, A. Emerging smart meters in electrical distribution systems: Opportunities and challenges. In Proceedings of the 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, Iran, 10–12 May 2016; pp. 1082–1087. [Google Scholar]
- Barbierato, L.; Estebsari, A.; Bottaccioli, L.; Macii, E.; Patti, E. A distributed multimodel cosimulation platform to assess general purpose services in smart grids. IEEE Trans. Ind. Appl. 2020, 56, 5613–5624. [Google Scholar] [CrossRef]
- Del Esposte, A.d.M.; Santana, E.F.Z.; Kanashiro, L.; Costa, F.M.; Braghetto, K.R.; Lago, N.; Kon, F. Design and evaluation of a scalable smart city software platform with large-scale simulations. Future Gener. Comput. Syst. 2019, 93, 427–441. [Google Scholar] [CrossRef]
- Abd El-atty, S.M.; Gharsseldien, Z.M. On performance of hetnet with coexisting small cell technology. In Proceedings of the 6th Joint IFIP Wireless and MobileNetworking Conference (WMNC), Dubai, United Arab Emirates, 23–25 April 2013; pp. 1–8. [Google Scholar]
- Leligou, H.C.; Zahariadis, T.; Sarakis, L.; Tsampasis, E.; Voulkidis, A.; Veliv-assaki, T.E. Smart grid: A demanding use case for 5g technologies. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Athens, Greece, 19–23 March 2018; pp. 215–220. [Google Scholar]
- Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing—A key technology towards 5g. ETSI White Pap. 2015, 11, 1–16. [Google Scholar]
- Rosa, L.H.L. Metodologia para Desenvolvimento e Aplicação de um Emulador de Redes Elétricas Inteligentes em Ambiente Controlado. Ph.D. Thesis, Universidade de Sâo Paulo, São Paulo, SP, Brazil, 2018. [Google Scholar]
- Rosa, L.H.L.; Kagan, N.; Almeida, C.F.M.; Labronici, J.; Duarte, S.X.; Morais, R.F.; Gouvea, M.R.; Mollica, D.; Dominice, A.; Zamboni, L.; et al. A laboratory infrastructure to support utilities in attaining power quality and smart grid goals. In Proceedings of the 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), Belo Horizonte, Brazil, 16–19 October 2016; pp. 312–317. [Google Scholar]
- Rossi, B.; Chren, S. Smart grids data analysis: A systematic mapping study. IEEE Trans. Ind. Inform. 2020, 16, 3619–3639. [Google Scholar] [CrossRef]
- Lopes, V.J.S.; Grimoni, J.A.B. Utilizando o Labview em uma Experiência de Mini-Sistemas de Energia Possibilitando Acesso Remoto. Experimentações Metodológicas. Available online: http://www.abenge.org.br/cobenge/legado/arquivos/14/artigos//SP-5-69336440144-1118345337845.PDF (accessed on 23 March 2024).
- Postigo, M.A.O.; Pellini, E.L.; Silva, J.R. Proposta de método sistêmico baseado em modelos para Smart Grid [Not available in English]. In Proceedings of the 2021 14th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brazil, 15–18 August 2021; pp. 1063–1070. [Google Scholar] [CrossRef]
- de Vasconcelos, F.M.; Rocha, C.H.S.; Almeida, C.F.M.; Pereira, D.d.S.; Rosa, L.H.L.; Kagan, N. Methodology for Inspection Scheduling in Power Distribution Networks Based on Power Quality Indexes. IEEE Trans. Power Deliv. 2021, 36, 1211–1221. [Google Scholar] [CrossRef]
- Mets, K.; Ojea, J.A.; Develder, C. Combining power and communication network simulation for cost-effective smart grid analysis. IEEE Commun. Surv. Tutor. 2014, 16, 1771–1796. [Google Scholar] [CrossRef]
- Omnetpp.org. Omnet++ Discrete Event Simulator. Available online: https://omnetpp.org/intro/ (accessed on 14 September 2024).
- Gavriluta, C.; Boudinet, C.; Kupzog, F.; Gomez-Exposito, A.; Caire, R. Cyber-physical framework for emulating distributed control systems in smart grids. Int. J. Electr. Power Energy Syst. 2020, 114, 1–11. [Google Scholar] [CrossRef]
- Mathworks. Available online: https://www.mathworks.com/products/matlab.html (accessed on 31 January 2024).
- Ding, Y.; Li, X.; Tian, Y.; Ledwich, G.; Mishra, Y.; Zhou, C. Generating scale-free topology for wireless neighborhood area networks in smart grid. IEEE Trans. Smart Grid 2019, 10, 4245–4252. [Google Scholar] [CrossRef]
- Bogodorova, T.; Sabate, M.; Leon, G.; Vanfretti, L.; Halat, M.; Heberger, J.B.; Panciatici, P. A modelica power system library for phasor time-domain simulation. In Proceedings of the IEEE PES ISGT Europe 2013, Lyngby, Denmark, 6–9 October 2013; pp. 1–5. [Google Scholar]
- Gu, Y.; Chen, Z.; Yang, J.; Qin, C. Simulation and evaluation of distributed energy system based on modelica. In Proceedings of the 2020 5th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 12–14 September 2020; pp. 199–202. [Google Scholar]
- Albagli, A.N.; de Rezende, J.F.; Falcão, D.M. Smart grid framework co-simulation using hla architecture. Electr. Power Syst. Res. 2016, 130, 22–33. [Google Scholar] [CrossRef]
- Gong, P.; Li, M.; Kong, J.; Li, P.; Kim, D.K. An interactive approach for qualnet-based network model evaluation and testing at real time. In Proceedings of the 16th International Conference on Advanced Communication Technology, Pyeong Chang, South Korea, 16–19 February 2014; pp. 978–982. [Google Scholar]
- SCALABLE Network Technology. Qualnet—Network Simulation Software. Available online: https://www.scalable-networks.com/products/qualnet-network-simulation-software-tool/ (accessed on 31 March 2022).
- Bian, D.; Kuzlu, M.; Pipattanasomporn, M.; Rahman, S.; Shi, D. Performance evaluation of communication technologies and network structure for smart grid applications. IET Commun. 2019, 13, 1025–1033. [Google Scholar] [CrossRef]
- Strasser, T.; Stifter, M.; Andrén, F.; Palensky, P. Co-simulation training platform for smart grids. IEEE Trans. Power Syst. 2014, 29, 1989–1997. [Google Scholar] [CrossRef]
- Duy Le, T.; Anwar, A.; Beuran, R.; Loke, S.W. Smart grid co-simulation tools: Review and cybersecurity case study. In Proceedings of the 2019 7th International Conference on Smart Grid (icSmartGrid), Newcastle, Australia, 9–11 December 2019; pp. 39–45. [Google Scholar]
- Sarbhai, A.; Merwe, J.V.d.; Kasera, S. Privacy-aware peak load reduction in smart homes. In Proceedings of the 2019 11th International Conference on Communication Systems Networks (COMSNETS), Bangalore, India, 7–11 January 2019; pp. 312–319. [Google Scholar]
- Kelley, B.M.; Top, P.; Smith, S.G.; Woodward, C.S.; Min, L. A federated simulation toolkit for electric power grid and communication network co-simulation. In Proceedings of the 2015 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), Seattle, WA, USA, 13 April 2015; pp. 1–6. [Google Scholar]
- Zhang, J.; Daily, J.; Mast, R.A.; Palmintier, B.; Krishnamurthy, D.; Elgindy, T.; Florita, A.; Hodge, B.M. Development of helics-based high-performance cyber-physical co-simulation framework for distributed energy resources applications. In Proceedings of the 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Virtual, 11–13 November 2020; pp. 1–5. [Google Scholar]
- de Souza, E.; Ardakanian, O.; Nikolaidis, I. A co-simulation platform for evaluating cyber security and control applications in the smart grid. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar]
- Venkataramanan, V.; Srivastava, A.; Hahn, A. Real-time co-simulation testbed for microgrid cyber-physical analysis. In Proceedings of the 2016 Workshop on Modeling and Simulation of Cyber- Physical Energy Systems (MSCPES), Vienna, Austria, 11 April 2016; pp. 1–6. [Google Scholar]
- Trajano, A.F.R.; de Sousa, A.A.M.; Rodrigues, E.B.; de Souza, J.N.; de Castro Callado, A.; Coutinho, E.F. Leveraging mobile edge computing on smart grids using lte cellular networks. In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 29 June–3 July 2019; pp. 1–7. [Google Scholar]
- Hopkinson, K.; Wang, X.; Giovanini, R.; Thorp, J.; Birman, K.; Coury, D. Epochs: A platform for agent-based electric power and communication simulation built from commercial off-the-shelf components. IEEE Trans. Power Syst. 2006, 21, 548–558. [Google Scholar] [CrossRef]
- Gaouda, A.M.; Abd-Rabou, A.; Dahir, A. Developing educational smart grid laboratory. In Proceedings of the 2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE), Bali, Indonesia, 26–29 August 2013; pp. 404–409. [Google Scholar]
- Kim, H.; Kim, K.; Park, S.; Kim, H.; Kim, H. Cosimulating communication networks and electrical system for performance evaluation in smart grid. Appl. Sci. 2018, 8, 85. [Google Scholar] [CrossRef]
- Mirz, M.; Razik, L.; Dinkelbach, J.; Tokel, H.A.; Alirezaei, G.; Mathar, R.; Monti, A. A cosimulation architecture for power system, communication, and market in the smart grid. Complexity 2018, 2018, 7154031. [Google Scholar] [CrossRef]
- Kagan, N. Redes Elétricas Inteligentes no Brasil: Análise de Custos e Benefícios de um Plano Nacional de Implantação; Synergia 1ª edição: Mumbai, Maharashtra, 2013; ISBN-10: 8561325879, ISBN-13: 978-8561325879. (In Portuguese) [Google Scholar]
- Maniatopoulos, M.; Lagos, D.; Kotsampopoulos, P.; Hatziargyriou, N. Combined control and power hardware in-the-loop simulation for testing smart grid control algorithms. IET Gener. Transm. Distrib. 2017, 11, 3009–3018. [Google Scholar] [CrossRef]
- Joint Research Centre. Smart Grid Laboratories Inventory. Available online: https://ses.jrc.ec.europa.eu/smart-grid-laboratories-inventory (accessed on 5 September 2022).
- Spinelli, F.; Mancuso, V. Toward enabled industrial verticals in 5g: Asurvey on mec-based approaches to provisioning and flexibility. IEEE Commun. Surv. Tutor. 2021, 23, 596–630. [Google Scholar] [CrossRef]
- Cardoso, A.; Rotondaro, B.; Penha, L.; Endler, M.; da Conceição, A.; da Silva e Silva, F. Gerenciamento Descentralizado de Identidades para Cidades Inteligentes Baseado na Tecnologia Blockchain. In Anais do XXII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais; SBC-OpenLib (SOL): Santa Maria, Brazil, 2022; pp. 57–70. [Google Scholar] [CrossRef]
- Chamoso, P.; González-Briones, A.; Rodríguez, S.; Corchado, J.M. Tendencies of technologies and platforms in smart cities: A state-of-the-art review. Wirel. Commun. Mob. Comput. 2018, 2018, 3086854. [Google Scholar] [CrossRef]
- Neves Rodrigues, L.H.; Frederico Meschini Almeida, C. Cossimulação de Interconexão entre Redes Elétricas Inteligentes e Plataforma de Cidades Inteligentes via Comunicação Massiva do Tipo Máquina-Máquina. In Proceedings of the 2023 XV Brazilian Conference on Quality of Power (CBQEE), São Luís, Brazil, 4–6 September 2023; pp. 1–7. [Google Scholar] [CrossRef]
- ITU-R. Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced; Tech.Rep. M.2135-1; International Telecommunication Union (ITU): Geneva, Switzerland, 2009; Available online: https://www.itu.int/dms_pub/itu-r/opb/rep/r-rep-m.2135-1-2009-pdf-e.pdf (accessed on 14 September 2024).
- Available online: https://www.ibge.gov.br/cidades-e-estados/sp/sao-paulo.html (accessed on 16 August 2024).
- IEC—Institute Electrotechnical Comission (IEC 61850-5). Available online: https://www.iec.ch/homepage (accessed on 29 August 2024).
- Kalalas, L.T.; Alonso-Zarate, J. Cellular Communications for Smart Grid Neighborhood Area Networks: A Survey. IEEE Access 2016, 4, 1469–1493. [Google Scholar] [CrossRef]
- Pau, M.; Patti, E.; Barbierato, L.; Estebsari, A.; Pons, E.; Ponci, F.; Monti, A. A cloud-based smart metering infrastructure for distribution grid services and automation. Sustain. Energy Grids Netw. 2018, 15, 14–25. [Google Scholar] [CrossRef]
- Orlando, M.; Estebsari, A.; Pons, E.; Pau, M.; Quer, S.; Poncino, M.; Bottaccioli, L.; Patti, E. A Smart Meter Infrastructure for Smart Grid IoT Applications. IEEE Internet Things J. 2022, 9, 12529–12541. [Google Scholar] [CrossRef]
- Viana, D.; de Oliveira Rosa, T.; Silva, F.; Durans, P.; Aragão, A.; Kon, F.; Goldman, A. Software engineering practices in the development of applications for smart cities: An experience report of teaching in a contemporary context. In SBES’19: Proceedings of the XXXIII Brazilian Symposium on Software Engineering; ACM: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Available online: https://github.com/Joaofelipe14/Sensor-de-Gas (accessed on 14 September 2024).
- Available online: https://github.com/DanielKGM/estacionamento_inteligente (accessed on 14 September 2024).
- Available online: https://github.com/batista-neto/Integra-o_HomeHub-Sistemas_Distribuidos (accessed on 14 September 2024).
- Available online: https://github.com/xp-ednac/monitoramento_de_temperatura/blob/main/connectInterscity.py (accessed on 14 September 2024).
- Available online: https://github.com/xp-ednac/monitoramento_de_temperatura (accessed on 14 September 2024).
- Available online: https://github.com/brennopacheco/Monitoramento_de_Nivel/tree/main (accessed on 14 September 2024).
- Available online: https://github.com/nervaljunior/Distributed-Systems (accessed on 14 September 2024).
- Available online: https://github.com/thalesgmendes/Sensor-de-Umidade-e-Temperatura-com-InsterSCity (accessed on 14 September 2024).
- Available online: https://github.com/luanc202/MQTT-data-collector (accessed on 14 September 2024).
- Available online: https://colab.research.google.com/drive/19YwALkKljvacalAPYsQ93TCMKG0GoEEj (accessed on 14 September 2024).
- Available online: https://colab.research.google.com/drive/1aAkH1qwRdsEgRD6JhbTYNsWYBVfcQub-?usp=sharing (accessed on 14 September 2024).
- Available online: https://colab.research.google.com/drive/18CA8IMxIe0Zz3uRP1KnH87BrSfGvf9tx?usp=sharing (accessed on 14 September 2024).
- Available online: https://drive.google.com/drive/u/0/folders/1tcSndnvPq7gjpI6M_0H2B9nRJ6PIJgsk (accessed on 14 September 2024).
- Available online: https://drive.google.com/drive/folders/1egmwAsoHOCsB1XZwgEAE6DEhjlW0iS0i (accessed on 14 September 2024).
- Edwigs. Available online: https://github.com/hedwig-project (accessed on 14 September 2024).
- Available online: https://colab.research.google.com/drive/1ztdIMDvVSyWk3VTKXAX7NL6ek7IUs6mc?usp=sharingColabEdwigs (accessed on 14 September 2024).
- Hayashi, V.T.; Arakaki, R.; Ruggiero, W.V. OKIoT: Trade Off Analysis of Smart Speaker Architecture on Open Knowledge IoT Project. Internet Things 2020, 12, 100310. [Google Scholar] [CrossRef]
- LabVIew—NATIONAL INSTRUMENTS. Available online: https://www.ni.com/pt-br/shop/labview.html (accessed on 31 January 2024).
Reference | Simulator | Net Simul | HIL | IoT | Smart City |
---|---|---|---|---|---|
[34] | PSCAD/EMTDC PSLF | ns-2 | No | No | No |
[35] | Hampden 180 | LAN | No | No | No |
[36] | OpenDSS | OPMET | No | No | No |
[37] | Python Modelica | ns-3 | No | No | No |
[4] | Python MATLAB Simulink | ns-3 Mininet Omnet++ | Yes | Yes | No |
[9,10] | NAPREI | 6LoWPAN | Yes | No | No |
Our Proposal | NAPREI InterSCity | ns-3 | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, L.H.N.; Almeida, C.F.M.; Kagan, N.; Rosa, L.H.L.; dos Santos, M.L. Co-Simulation of Interconnection Between Smart Power Grid and Smart Cities Platform via Massive Machine-Type Communication. Sensors 2025, 25, 1517. https://doi.org/10.3390/s25051517
Rodrigues LHN, Almeida CFM, Kagan N, Rosa LHL, dos Santos ML. Co-Simulation of Interconnection Between Smart Power Grid and Smart Cities Platform via Massive Machine-Type Communication. Sensors. 2025; 25(5):1517. https://doi.org/10.3390/s25051517
Chicago/Turabian StyleRodrigues, Luiz H. N., Carlos F. M. Almeida, Nelson Kagan, Luiz H. L. Rosa, and Milana L. dos Santos. 2025. "Co-Simulation of Interconnection Between Smart Power Grid and Smart Cities Platform via Massive Machine-Type Communication" Sensors 25, no. 5: 1517. https://doi.org/10.3390/s25051517
APA StyleRodrigues, L. H. N., Almeida, C. F. M., Kagan, N., Rosa, L. H. L., & dos Santos, M. L. (2025). Co-Simulation of Interconnection Between Smart Power Grid and Smart Cities Platform via Massive Machine-Type Communication. Sensors, 25(5), 1517. https://doi.org/10.3390/s25051517