Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (41,959)

Search Parameters:
Keywords = 3c model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1555 KB  
Article
Unlocking Antioxidant Potential: Interactions Between Cyanidin-3-Glucoside and Corbicula fluminea Protein
by Sifan Guo, Xuemei Liu, Fei Wang, Yong Jiang, Lili Chen, Meilan Yuan, Li Zhao and Chunqing Bai
Biology 2025, 14(10), 1392; https://doi.org/10.3390/biology14101392 (registering DOI) - 11 Oct 2025
Abstract
Corbicula fluminea protein (CFP) and cyanidin-3-O-glucoside (C3G) are natural nutrient fortifiers. During consumption or processing, they may interact with each other, inducing alternations in their structural and functional properties. However, nothing was known about the mechanism of their interaction and their synergistic antioxidant [...] Read more.
Corbicula fluminea protein (CFP) and cyanidin-3-O-glucoside (C3G) are natural nutrient fortifiers. During consumption or processing, they may interact with each other, inducing alternations in their structural and functional properties. However, nothing was known about the mechanism of their interaction and their synergistic antioxidant effect. In this research, C3G was physically mixed with CFP to simulate practical scenarios. The impact of the presence of C3G on the multispectral characteristics, antioxidant activity, and particle properties of CFP was examined and compared to chemically fabricated C3G-CFP covalent conjugates. The results indicate that C3G tended to spontaneously bind to CFP and formed compact non-covalent complex, with hydrophobic forces predominantly governing the interaction. This binding resulted in the statically quenched intrinsic fluorescence of CFP, accompanied by a dynamic model. Moreover, C3G preferentially induced Trp residue in CFP exposed to a more polar microenvironment, yet it exerted nearly no effects on CFP when analyzed using ultraviolet–visible (UV-Vis) spectroscopy and synchronous fluorescence spectroscopy (SFS). Additionally, although the formed non-covalent complex demonstrated strengthened antioxidant capacity, C3G displayed an antagonistic effect with CFP, whereas lower C3G concentrations led to synergistic effects in covalent conjugates. These findings provide new insights into the effective application of C3G and CFP as nutritional antioxidants. Full article
Show Figures

Graphical abstract

17 pages, 10849 KB  
Article
Isorhamnetin Exhibits Hypoglycemic Activity and Targets PI3K/AKT and COX-2 Pathways in Type 1 Diabetes
by Lijia Li, Jia Li, Jie Ren and Jengyuan Yao
Nutrients 2025, 17(20), 3201; https://doi.org/10.3390/nu17203201 (registering DOI) - 11 Oct 2025
Abstract
Background: Isorhamnetin (ISO), a dietary O-methylated flavonol, was evaluated for hypoglycemic activity and mechanism in a streptozotocin (STZ) model of type 1 diabetes. Methods: We conducted untargeted plasma metabolomics (ESI±), network integration and docking, and measured pancreatic PI3K, phosphorylated AKT, and COX-2; INS-1 [...] Read more.
Background: Isorhamnetin (ISO), a dietary O-methylated flavonol, was evaluated for hypoglycemic activity and mechanism in a streptozotocin (STZ) model of type 1 diabetes. Methods: We conducted untargeted plasma metabolomics (ESI±), network integration and docking, and measured pancreatic PI3K, phosphorylated AKT, and COX-2; INS-1 β cells challenged with the PI3K inhibitor LY294002 were used to assess viability, intracellular ROS, and PI3K phosphorylation. Results: ISO lowered fasting glycemia, increased circulating insulin, improved dyslipidemia by reducing low-density lipoprotein cholesterol (LDL-C), and preserved islet architecture. Untargeted plasma metabolomics (ESI±) indicated broad remodeling with enrichment of arachidonic-, linoleic-, starch/sucrose- and glycerophospholipid pathways. Network integration and docking prioritized targets converging on PI3K/AKT and COX-2/eicosanoid signaling. Consistently, in pancreatic tissue, ISO increased PI3K, phosphorylated AKT, and reduced COX-2. In INS-1 beta cells challenged with the PI3K inhibitor LY294002, ISO improved viability, decreased intracellular ROS, and partially restored PI3K phosphorylation at 4 µM. Conclusions: Together, these data indicate that ISO exerts hypoglycemic effects while supporting β-cell integrity through activation of PI3K/AKT and tempering of COX-2–linked lipid-mediator pathways. ISO therefore emerges as a food-derived adjunct candidate for autoimmune diabetes, and the work motivates targeted lipidomics and in vivo pathway interrogation in future studies. Full article
(This article belongs to the Special Issue Hypoglycemic Properties and Pathways of Natural Substances)
Show Figures

Figure 1

14 pages, 3341 KB  
Article
Model Construction and Prediction of Combined Toxicity of Arsenic(V) and Lead(II) on Chlamydomonas reinhardtii
by Zhongquan Jiang, Tianyi Wei, Chunhua Zhang, Xiaosheng Shen, Zhemin Shen, Tao Yuan and Ying Ge
Biology 2025, 14(10), 1395; https://doi.org/10.3390/biology14101395 (registering DOI) - 11 Oct 2025
Abstract
With the acceleration of industrialization, the impact of the toxic metalloid arsenic (As) and metal lead (Pb) on aquatic ecosystems has garnered widespread concern. However, the specific toxic effects of how these two metals jointly impact aquatic organisms are not yet fully understood. [...] Read more.
With the acceleration of industrialization, the impact of the toxic metalloid arsenic (As) and metal lead (Pb) on aquatic ecosystems has garnered widespread concern. However, the specific toxic effects of how these two metals jointly impact aquatic organisms are not yet fully understood. This study aims to investigate the toxic effects of As and Pb individually and in combination of the mixture on the growth of Chlamydomonas reinhardtii (C. reinhardtii) in a lab setup using the Concentration Addition (CA) model and the Independent Action (IA) model to predict the toxic effects at different concentrations. The results indicated that As and Pb had significant inhibitory effects on the growth of algae, and the toxicity of As was greater than that of Pb (As EC50 = 374.87 μg/L, Pb EC50 = 19988.75 μg/L), measured by Spectrophotometer. As the metal concentrations increased, both metals demonstrated classic sigmoidal concentration-effect curves. Furthermore, we discovered that in mixtures of As and Pb at varying concentration ratios, the combined toxic effect shifted from additive to synergistic with increasing As concentration, exhibiting a pronounced concentration ratio dependency. Utilizing nonlinear least squares regression, we successfully constructed concentration-response models for both As and Pb, employing Observation-based Confidence Intervals (OCIs) to reflect the uncertainty of the data. By comparing experimental data with model predictions, the EC50 was used as an index to compare the toxicity magnitude of As/Pb mixtures. The toxicity of As and Pb mixtures gradually increases with the increase in their concentration ratios. Scanning and transmission electron microscopic observations revealed that the combination of 200 μg/L As and 2000 μg/L Pb resulted in the greatest synergistic toxic effect, with severe breakage and indentation to C. reinhardtii cells. This study not only provided new insights into the environmental behavior and ecological risks of As and Pb but also held significant implications for effective water pollution management strategies by offering a validated model-based framework for predicting mixture toxicity across different concentration regimes. Full article
(This article belongs to the Section Toxicology)
15 pages, 4276 KB  
Article
Optimization of Lithium Recovery from Aluminosilicate Tailings via Sulfation Roasting and Leaching: Experimental Study and RSM Modeling
by Azamat Yessengaziyev, Zaure Karshyga, Albina Yersaiynova, Aisha Tastanova, Kenzhegali Smailov, Arailym Mukangaliyeva and Bauyrzhan Orynbayev
Metals 2025, 15(10), 1133; https://doi.org/10.3390/met15101133 (registering DOI) - 11 Oct 2025
Abstract
The growing global demand for lithium, driven by its pivotal role in battery production, highlights the need for alternative technologies to recover this metal from low-grade and anthropogenic raw materials. This study investigates lithium extraction from aluminosilicate tailings of rare-metal production by sulfate [...] Read more.
The growing global demand for lithium, driven by its pivotal role in battery production, highlights the need for alternative technologies to recover this metal from low-grade and anthropogenic raw materials. This study investigates lithium extraction from aluminosilicate tailings of rare-metal production by sulfate roasting with concentrated sulfuric acid, followed by aqueous and hydrochloric acid leaching. Mineralogical analysis confirmed lithium mainly in muscovite and biotite (isomorphic substitutions) and partly as spodumene within the aluminosilicate matrix. The optimal parameters of thermochemical treatment were determined as 300 °C for 1 h at a liquid-to-solid ratio of 1:6. Subsequent aqueous leaching (90 °C, 1 h, L/S = 6:1) achieved a lithium recovery of 82.3%, while HCl proved less effective. Using response surface methodology (RSM) and a central composite design (CCD), a regression model was developed predicting up to 93.4% lithium extraction at 90 °C, a liquid-to-solid ratio of 10:1, and a leaching duration of 75 min. The calculated values showed good agreement with experimental data obtained at 90 °C, L/S = 10:1, and 30 min leaching, yielding 91.92% lithium recovery. These results confirm the efficiency of the proposed thermochemical approach and provide a scientific foundation for its further development and industrial scale-up. Full article
(This article belongs to the Section Extractive Metallurgy)
24 pages, 5446 KB  
Article
Modeling of Residual Stress, Plastic Deformation, and Permanent Warpage Induced by the Resin Molding Process in SiC-Based Power Modules
by Giuseppe Mirone, Luca Corallo, Raffaele Barbagallo and Giuseppe Bua
Energies 2025, 18(20), 5364; https://doi.org/10.3390/en18205364 (registering DOI) - 11 Oct 2025
Abstract
A critical aspect in the design of power electronics packages is the prediction of their mechanical response under severe thermomechanical loads and the consequent structural damage. For this purpose, finite element (FE) simulations are used to estimate the mechanical performance and reliability under [...] Read more.
A critical aspect in the design of power electronics packages is the prediction of their mechanical response under severe thermomechanical loads and the consequent structural damage. For this purpose, finite element (FE) simulations are used to estimate the mechanical performance and reliability under operational conditions, typically alternate high voltages/currents resulting in thermal gradients. When simulations are performed, it is common practice to consider the as-received package to be in a stress-free state. Namely, residual stresses and plastic deformation induced by the manufacturing processes are neglected. In this study, an advanced FE modeling approach is proposed to assess the structural consequences of the encapsulating resin curing, typical in the production of silicon carbide (SiC)-based power electronics modules for electric vehicles. This work offers a general modeling framework that can be further employed to simulate the effects of thermal gradients induced by the production process on the effective shape and residual stresses of the as-received package for other manufacturing stages, such as metal brazing, soldering processes joining copper and SiC, and, to lower extents, the application of polyimide on top of passivation layers. The obtained results have been indirectly validated with experimental data from literature. Full article
15 pages, 3697 KB  
Article
Virus-like Particles Formed by the Coat Protein of the Single-Stranded RNA Phage PQ465 as a Carrier for Antigen Presentation
by Egor A. Vasyagin, Eugenia S. Mardanova and Nikolai V. Ravin
Molecules 2025, 30(20), 4056; https://doi.org/10.3390/molecules30204056 (registering DOI) - 11 Oct 2025
Abstract
Virus-like particles (VLPs) formed as a result of self-assembly of viral capsid proteins are widely used as a platform for antigen presentation in vaccine development. However, since the inclusion of a foreign peptide into the capsid protein can alter its spatial structure and [...] Read more.
Virus-like particles (VLPs) formed as a result of self-assembly of viral capsid proteins are widely used as a platform for antigen presentation in vaccine development. However, since the inclusion of a foreign peptide into the capsid protein can alter its spatial structure and interfere with VLP assembly, such insertions are usually limited to short peptides. In this study, we have demonstrated the potential of capsid protein (CP) of single-stranded RNA phage PQ465 to present long peptides using green fluorescent protein (GFP) as a model. GFP was genetically linked to either the N- or C-terminus of PQ465 CP. Hybrid proteins were expressed in Escherichia coli and Nicotiana benthamiana plants. Spherical virus-like particles (~35 nm according to transmission electron microscopy) were successfully formed by both N- and C-terminal fusions expressed in E. coli, and by plant-produced CP with GFP fused to the C-terminus. ELISA revealed that GFP in VLPs was accessible for specific antibodies suggesting that it is exposed on the surface of PQ465-GFP particles. VLPs carrying GFP were recognized by anti-CP antibodies with less efficiency than VLPs formed by empty CP, which indicates shielding of the CP core in PQ465-GFP particles. Therefore, PQ465 CP can be used as a chimeric VLP platform for the display of relatively large protein antigens, which can operate in bacterial and plant expression systems. Full article
(This article belongs to the Special Issue Recent Advances in Peptide Assembly and Bioactivity)
Show Figures

Figure 1

17 pages, 3861 KB  
Article
Substrate Temperature-Induced Crystalline Phase Evolution and Surface Morphology in Zirconium Thin Films Deposited by Pulsed Laser Ablation
by Berdimyrat Annamuradov, Zikrulloh Khuzhakulov, Mikhail Khenner, Jasminka Terzic, Danielle Gurgew and Ali Oguz Er
Coatings 2025, 15(10), 1198; https://doi.org/10.3390/coatings15101198 (registering DOI) - 11 Oct 2025
Abstract
Zirconium (Zr) thin films were deposited on silicon (Si) substrates via pulsed laser deposition (PLD) using a 248 nm excimer laser. The effects of substrate temperature on film morphology and crystallinity were systematically investigated. X-ray diffraction (XRD) revealed that the Zr(100) plane exhibited [...] Read more.
Zirconium (Zr) thin films were deposited on silicon (Si) substrates via pulsed laser deposition (PLD) using a 248 nm excimer laser. The effects of substrate temperature on film morphology and crystallinity were systematically investigated. X-ray diffraction (XRD) revealed that the Zr(100) plane exhibited the strongest orientation at 400 °C while Zr (002) was maximum at 500 °C. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses demonstrated an increase in surface roughness with temperature, with the smoothest surface observed at lower temperatures and significant island formation at 500 °C due to the transition to 3D growth. At 500 °C, interdiffusion effects led to the formation of zirconium silicide at the Zr/Si interface. To further interpret the experimental findings, computational modeling was employed to analyze the transition from 2D layer-by-layer growth to 3D island formation at elevated temperatures. Using a multi-parameter kinetics-free model based on free energy minimization, the critical film thickness for this transition was determined to be ~1–2 nm, aligning well with experimental observations. A separate kinetic model of island nucleation and growth predicts that this shift is driven by the kinetics of adatom surface diffusion. Additionally, the kinetic simulations revealed that, at 400 °C, adatom diffusivity optimally balances crystallization and surface energy minimization, yielding the highest film quality. At 500 °C, the rapid increase in diffusivity leads to the proliferation of 3D islands, consistent with the roughness trends observed in SEM and AFM data. These findings underscore the critical role of deposition parameters in tailoring Zr thin films for applications in advanced coatings and electronic devices. Full article
(This article belongs to the Collection Collection of Papers on Thin Film Deposition)
Show Figures

Figure 1

19 pages, 2344 KB  
Article
Predicting Metabolic Syndrome Using Supervised Machine Learning: A Multivariate Parameter Approach
by Rodolfo Iván Valdéz-Vega, Jacqueline Noboa-Velástegui, Ana Lilia Fletes-Rayas, Iñaki Álvarez, Martha Eloisa Ramos-Marquez, Sandra Luz Ruíz-Quezada, Nora Magdalena Torres-Carrillo and Rosa Elena Navarro-Hernández
Int. J. Mol. Sci. 2025, 26(20), 9897; https://doi.org/10.3390/ijms26209897 (registering DOI) - 11 Oct 2025
Abstract
Metabolic syndrome (MetS) is a complex condition characterized by a group of interconnected metabolic abnormalities. Due to its increasing prevalence, better predictive markers are needed. Therefore, this study aims to develop predictive models for MetS by integrating adipokines, metabolic and cardiovascular risk factors, [...] Read more.
Metabolic syndrome (MetS) is a complex condition characterized by a group of interconnected metabolic abnormalities. Due to its increasing prevalence, better predictive markers are needed. Therefore, this study aims to develop predictive models for MetS by integrating adipokines, metabolic and cardiovascular risk factors, and anthropometric indices. Data were collected from 381 subjects aged 20 to 59 years (242 women and 139 men) from Guadalajara, Jalisco, Mexico, who were classified as having MetS or non-MetS based on the ATP-III criteria. Four supervised machine learning models were developed—Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost)—and their performance was evaluated using the Area under the Curve (AUC), calibration curves, Decision Curve Analysis (DCA), and local interpretability analysis. The RF and XGBoost models achieved the highest AUCs (0.940 and 0.954). The RF and LR models were the best calibrated and showed the highest net benefit in DCA. Key variables included age, anthropometric indices (BRI and DAI), insulin resistance measures (HOMA-IR), lipid profiles (sdLDL-C and LDL-C), and high-molecular-weight adiponectin, used to classify the presence of MetS. The results highlight the usefulness of specific models and the importance of anthropometric variables, cardiovascular risk factors, metabolic profiles, and adiponectin as indicators of MetS. Full article
(This article belongs to the Special Issue Fat and Obesity: Molecular Mechanisms and Pathogenesis)
Show Figures

Figure 1

15 pages, 2964 KB  
Article
Optimizing Amendment Ratios for Sustainable Recovery of Aeolian Sandy Soils in Coal Mining Subsidence Areas: An Orthogonal Experiment on Medicago sativa
by Lijun Hao, Zhenqi Hu, Qi Bian, Xuyang Jiang, Yingjia Cao, Changjiang Li and Ruihao Cui
Sustainability 2025, 17(20), 9010; https://doi.org/10.3390/su17209010 (registering DOI) - 11 Oct 2025
Abstract
Coal mining in the aeolian sandy regions of western China has caused extensive land degradation. Traditional single-component soil amendments have proven inadequate for ecological restoration, underscoring the need for integrated and sustainable strategies to restore soil fertility and vegetation. A pot experiment using [...] Read more.
Coal mining in the aeolian sandy regions of western China has caused extensive land degradation. Traditional single-component soil amendments have proven inadequate for ecological restoration, underscoring the need for integrated and sustainable strategies to restore soil fertility and vegetation. A pot experiment using alfalfa (Medicago sativa L.) evaluated the effects of weathered coal, cow manure, and potassium polyacrylate combined in a three-factor three-level orthogonal design on plant growth, nutrient uptake, and soil properties. Results showed that compared with the control (C0O0P0), amendment treatments significantly increased alfalfa fresh weight (+47.57~107.38%), dry weight (+43.46~104.93%), plant height (+43.46~104.93%), and stem diameter (+12.62~31.52%), along with improved plant phosphorus and potassium concentrations (+15.41~46.65%). Soil fertility was also notably enhanced, with increases in soil organic matter, total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), and available potassium (AK) ranging from 4.25% to 777.78%. In contrast, soil pH and bulk density were significantly reduced. The optimal amendment combination was identified as 10 g·kg−1 weathered coal, 5 g·kg−1 cow manure, and 0.6 g·kg−1 potassium polyacrylate. Structural equation modeling revealed that the amendments promoted plant growth both directly by improving soil conditions and indirectly by enhancing nutrient uptake. However, high doses (30 g·kg−1) of weathered coal may inhibit plant growth, and the co-application of high-dose weathered coal or manure with potassium polyacrylate may lead to antagonistic effects. This study provides fundamental insights into soil–plant interactions and proposes a sustainable amendment strategy for improving aeolian sandy soils, which could support future ecological reclamation efforts in coal mining area. Full article
17 pages, 3635 KB  
Article
Evaluation of Medical-Grade Polycaprolactone for 3D Printing: Mechanical, Chemical, and Biodegradation Characteristics
by Eun Chae Kim, Jae-Seok Kim, Yun Jin Yu, Sang-Gi Yu, Dong Yeop Lee, Dong-Mok Lee, So-Jung Gwak, Kyoung Duck Seo and Seung-Jae Lee
Polymers 2025, 17(20), 2730; https://doi.org/10.3390/polym17202730 (registering DOI) - 11 Oct 2025
Abstract
Polycaprolactone (PCL) is one of the most widely used polymers in tissue engineering owing to its excellent biocompatibility, biodegradability, and processability. Nevertheless, most previous studies have primarily employed research-grade PCL, thereby limiting its clinical translation. In this study, four types of medical-grade PCL [...] Read more.
Polycaprolactone (PCL) is one of the most widely used polymers in tissue engineering owing to its excellent biocompatibility, biodegradability, and processability. Nevertheless, most previous studies have primarily employed research-grade PCL, thereby limiting its clinical translation. In this study, four types of medical-grade PCL (RESOMER® C203, C209, C212, and C217) were systematically evaluated for their applicability in three-dimensional (3D) printing, with respect to printability, mechanical characteristics, chemical stability, and biodegradation behavior. Among these, C209 and C212 exhibited superior printability and mechanical strength. FT-IR analysis showed that the chemical structure of PCL remained unchanged after both 3D printing and E-beam sterilization, while compressive testing demonstrated no significant differences in mechanical characteristics. In vitro degradation assessment revealed a time-dependent decrease in molecular weight. For kinetic analysis, both C209 and C212 were fitted using pseudo-first-order and pseudo-second-order models, which yielded comparable coefficients of determination (R2), suggesting that degradation may be governed by multiple factors rather than a single kinetic pathway. Taken together, these findings indicate that medical-grade PCL, particularly C209 and C212, is highly suitable for 3D printing. Furthermore, this study provides fundamental insights that may facilitate the clinical translation of PCL-based scaffolds for tissue engineering and biomedical implantation. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

17 pages, 1369 KB  
Article
Heme Oxygenase-1 Expression as a Prognostic Marker in Early-Stage HCC Undergoing Resection or Liver Transplantation
by Ramona Cadar, Alin Mihai Vasilescu, Ana Maria Trofin, Alexandru Grigorie Nastase, Mihai Zabara, Cristina Muzica, Corina Lupascu Ursulescu, Mihai Danciu, Andrei Pascu, Iulian Buzincu, Delia Ciobanu, Ianole Victor and Cristian Dumitru Lupascu
Life 2025, 15(10), 1589; https://doi.org/10.3390/life15101589 (registering DOI) - 11 Oct 2025
Abstract
Background: Hepatocellular carcinoma (HCC) is a prevalent malignancy with high mortality, often arising in the context of chronic liver diseases. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme degradation, has been implicated in both hepatoprotection and tumor progression. This study evaluates the [...] Read more.
Background: Hepatocellular carcinoma (HCC) is a prevalent malignancy with high mortality, often arising in the context of chronic liver diseases. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme degradation, has been implicated in both hepatoprotection and tumor progression. This study evaluates the expression of HO-1 in HCC and its association with clinicopathological features and patient survival. Materials and Methods: We retrospectively analyzed 58 HCC cases diagnosed between 2018 and 2023 at “Sf. Spiridon” Emergency County Hospital, Iasi. HO-1 expression was assessed immunohistochemically and quantified using a semi-quantitative immunoreactivity score (IRS). Statistical correlations between HO-1 expression and clinical, pathological, and survival parameters were evaluated using univariate analysis, ROC curves, and Kaplan–Meier survival models. Results: High HO-1 expression (IRS > 1) was significantly associated with hepatitis C virus etiology (p = 0.004, V = 0.381), vascular invasion (p = 0.019, V = 0.309) and perioperative anticoagulant therapy (p = 0.007, V = 0.352). However, HO-1 expression did not correlate with overall survival (OS). In contrast, solid growth pattern (p = 0.030) and serum α-fetoprotein levels of 10–99 ng/mL (p = 0.022) were negatively associated with OS. Conclusions: HO-1 expression in HCC was found to be associated with vascular invasion, but not with overall survival. While this may indicate a potential link to certain aggressive tumor features, the overall role of HO-1 in HCC biology remains unclear. These findings suggest that HO-1 should be considered an exploratory rather than definitive prognostic marker, and further research is warranted to clarify its function and potential utility, including investigation of its detectability in biological fluids for non-invasive monitoring. Full article
Show Figures

Figure 1

23 pages, 16680 KB  
Article
Interpretation of Dominant Features Governing Compressive Strength in One-Part Geopolymer
by Yiren Wang, Yihai Jia, Chuanxing Wang, Weifa He, Qile Ding, Fengyang Wang, Mingyu Wang and Kuizhen Fang
Buildings 2025, 15(20), 3661; https://doi.org/10.3390/buildings15203661 (registering DOI) - 11 Oct 2025
Abstract
One-part geopolymers (OPG) offer a low-carbon alternative to Portland cement, yet mix design remains largely empirical. This study couples machine learning with SHAP (Shapley Additive Explanations) to quantify how mix and curing factors govern performance in Ca-containing OPG. We trained six regressors—Random Forest, [...] Read more.
One-part geopolymers (OPG) offer a low-carbon alternative to Portland cement, yet mix design remains largely empirical. This study couples machine learning with SHAP (Shapley Additive Explanations) to quantify how mix and curing factors govern performance in Ca-containing OPG. We trained six regressors—Random Forest, ExtraTrees, SVR, Ridge, KNN, and XGBoost—on a compiled dataset and selected XGBoost as the primary model based on prediction accuracy. Models were built separately for four targets: compressive strength at 3, 7, 14, and 28 days. SHAP analysis reveals four dominant variables across targets—Slag, Na2O, Ms, and the water-to-binder ratio (w/b)—while the sand-to-binder ratio (s/b), temperature, and humidity are secondary within the tested ranges. Strength evolution follows a reaction–densification logic: at 3 days, Slag dominates as Ca accelerates C–(N)–A–S–H formation; at 7–14 days, Na2O leads as alkalinity/soluble silicate controls dissolution–gelation; by 28 days, Slag and Na2O jointly set the strength ceiling, with w/b continuously regulating porosity. Interactions are strongest for Slag × Na2O (Ca–alkalinity synergy). These results provide actionable guidance: prioritize Slag and Na2O while controlling w/b for strength. The XGBoost+SHAP workflow offers transparent, data-driven decision support for OPG mix optimization and can be extended with broader datasets and formal validation to enhance generalization. Full article
Show Figures

Figure 1

18 pages, 2578 KB  
Review
Thermodynamic Guidelines for Minimizing Chromium Losses in Electric Arc Furnace Steelmaking
by Anže Bajželj and Jaka Burja
Metals 2025, 15(10), 1129; https://doi.org/10.3390/met15101129 (registering DOI) - 11 Oct 2025
Abstract
In the production of stainless steel, chromium losses, particularly in the electric arc furnace (EAF) phase, pose a challenge. This study addresses these issues by reviewing and analyzing the thermodynamics of the Fe-Cr-C-O-(Si) system, highlighting discrepancies in existing literature regarding Gibbs free energies, [...] Read more.
In the production of stainless steel, chromium losses, particularly in the electric arc furnace (EAF) phase, pose a challenge. This study addresses these issues by reviewing and analyzing the thermodynamics of the Fe-Cr-C-O-(Si) system, highlighting discrepancies in existing literature regarding Gibbs free energies, interaction parameters, and other thermodynamic data. We developed a simple to use thermodynamic model to simulate the oxidation process using established data from scientific literature. The model calculates the equilibrium solubilities of chromium and carbon, showing how process variables like temperature, partial pressure of carbon monoxide, and silicon concentration influence chromium oxidation. The findings confirm that higher temperatures and the presence of silicon significantly reduce chromium loss by favoring carbon oxidation over chromium. The research concludes by providing practical guidelines for minimizing chromium losses in EAFs, such as protecting scrap with carbon, silicon, and aluminum; controlling oxygen intake; and ensuring a high melt temperature during decarburization. These guidelines aim to improve the economic efficiency and sustainability of stainless steel production. The paper is an expanded version of a prior conference paper. Full article
(This article belongs to the Special Issue Recent Developments and Research on Ironmaking and Steelmaking)
22 pages, 1901 KB  
Article
Relationship Between Insulin Resistance Indicators and Type 2 Diabetes Mellitus in Romania
by Adela-Gabriela Ştefan, Diana Clenciu, Ionela-Mihaela Vladu, Adina Mitrea, Diana-Cristina Protasiewicz-Timofticiuc, Maria-Magdalena Roşu, Theodora-Claudia Gheonea, Beatrice-Elena Vladu, Ion-Cristian Efrem, Delia-Viola Reurean Pintilei, Eugen Moţa and Maria Moţa
Int. J. Mol. Sci. 2025, 26(20), 9888; https://doi.org/10.3390/ijms26209888 (registering DOI) - 11 Oct 2025
Abstract
Diabetes mellitus (DM) is a complex chronic disease, with a prevalence that has reached alarming proportions in recent decades. In this study, we aimed to analyze the association of type 2 diabetes mellitus (T2DM) with certain insulin resistance (IR) indicators, according to the [...] Read more.
Diabetes mellitus (DM) is a complex chronic disease, with a prevalence that has reached alarming proportions in recent decades. In this study, we aimed to analyze the association of type 2 diabetes mellitus (T2DM) with certain insulin resistance (IR) indicators, according to the gender of the participants enrolled in the PREDATORR study. Biomarkers such as the triglyceride–glucose (TyG) index and its derivates, triglyceride-to-high-density lipoprotein cholesterol (TG/HDL-c), and metabolic score for insulin resistance (METS-IR), as well as recent indicators, like cholesterol, HDL, the glucose (CHG) index and its derivates, CHG–body mass index (CHG-BMI), and CHG–waist circumference (CHG-WC), as well as its newly proposed derivates, such as CHG–waist-to-height ratio (CHG-WHtR), CHG–neck circumference (CHG-NC), and CHG–neck-to-height ratio (NHtRs were analyzed in 2080 subjects, divided into two groups, according to gender). Univariate and multivariate logistic regression was used to identify the relationships between IR indicators and T2DM. Regardless of gender, all the analyzed indicators presented statistically significantly higher values in T2DM (+) compared to T2DM (−). For both studied groups, CHG–WHtR had the largest AUROC curve: in males, the AUROC curve was 0.809, the cut-off value being 3.22, with a 70.7% sensitivity and 75.3% specificity; in females, the AUROC curve was 0.840, the cut-off value was 3.20, with a 79.3% sensitivity and 75.5% specificity, respectively. Regardless of gender, the age-adjusted model for multivariate logistic regression analysis demonstrated that TyG and CHG were predictive factors for T2DM. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Treatments of Diabetes Mellitus: 2nd Edition)
17 pages, 16586 KB  
Article
Heat Extraction Performance Evaluation of Horizontal Wells in Hydrothermal Reservoirs and Multivariate Sensitivity Analysis Based on the XGBoost-SHAP Algorithm
by Shuaishuai Nie, Ke Liu, Bo Yang, Xiuping Zhong, Hua Guo, Jiangfei Li and Kangtai Xu
Processes 2025, 13(10), 3237; https://doi.org/10.3390/pr13103237 (registering DOI) - 11 Oct 2025
Abstract
The present study investigated the heat extraction behavior of the horizontal well closed-loop geothermal systems under multi-factor influences. Particularly, the numerical model was established based on the geological condition of the geothermal field in Xiong’an New Area, and the XGBoost-SHAP (eXtreme Gradient Boosting [...] Read more.
The present study investigated the heat extraction behavior of the horizontal well closed-loop geothermal systems under multi-factor influences. Particularly, the numerical model was established based on the geological condition of the geothermal field in Xiong’an New Area, and the XGBoost-SHAP (eXtreme Gradient Boosting and SHapley Additive exPlanations) algorithm was employed for multivariable analysis. The results indicated that the produced water temperature and thermal power of a 3000 m-long horizontal well were 2.61 and 4.23 times higher than those of the vertical well, respectively, demonstrating tantalizing heat extraction potential. The horizontal section length (SHAP values of 8.13 and 165.18) was the primary factor influencing production temperature and thermal power, followed by the injection rate (SHAP values of 1.96 and 64.35), while injection temperature (SHAP values of 1.27 and 21.42), geothermal gradient (SHAP values of 0.95 and 19.97), and rock heat conductivity (SHAP values of 0.334 and 17.054) had relatively limited effects. The optimal horizontal section length was 2375 m. Under this condition, the produced water temperature can be maintained higher than 40 °C, thereby meeting the heating demand. These findings provide important insights and guidance for the application of horizontal wells in hydrothermal reservoirs. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

Back to TopTop