Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,105)

Search Parameters:
Keywords = 3PB test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1554 KB  
Article
Impact of Soil Profile Mineralogy on the Elemental Composition of Chardonnay Grapes and Wines in the Anapa Region
by Zaual Temerdashev, Aleksey Abakumov, Mikhail Bolshov, Alexan Khalafyan, Evgeniy Gipich, Aleksey Lukyanov and Alexander Vasilev
Beverages 2026, 12(1), 1; https://doi.org/10.3390/beverages12010001 - 22 Dec 2025
Abstract
The aim of this work is to study the correlations of the elemental composition in the “soil–grape–wine” chain to determine the regional origin of Chardonnay grapes and wine. Soil samples (n = 40) from five vineyards in the Anapa region, Russia, taken [...] Read more.
The aim of this work is to study the correlations of the elemental composition in the “soil–grape–wine” chain to determine the regional origin of Chardonnay grapes and wine. Soil samples (n = 40) from five vineyards in the Anapa region, Russia, taken from eight different depths, grapes from these vineyards (n = 75), and wines obtained from these grapes (n = 5) were analyzed using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. The mineralogical composition of the soils was determined using thermal and X-ray phase analysis. The mineralogical composition of vineyard soils mainly consists of calcite, quartz, nontronite, vermiculite, and muscovite. According to spectrometric analysis, the distribution of both the total content and the mobile forms of elements in soil profiles turned out to be similar. The content of Na, Ca, and Sr increased with increasing sampling depth, while the content of Co, Cu, Fe, Ni, Mn, Pb, and Zn decreased. Regardless of the area of cultivation, the predominant elements in grapes are K, Ca, Na, and Mg. It is established that the elemental profiles of grapes and wine are correlated. At the same time, during the winemaking process, a decrease in the concentration of most elements (Al, Ba, Ca, Cu, K, Mg, Mn, Ni, Rb, Sr, Ti, and Zn) is observed. It has been shown that the vine is able to accumulate not only mobile but also less bioavailable forms of metals from the soil (Cu, Fe, K, Rb, Ti, and Zn), while the migration of Ca and Na remains low (<7%). Using discriminant analysis, a model of grape identification based on the concentrations of Al, Li, Mn, Na, Pb, and Rb was developed. This model demonstrated a high accuracy (100% for training and test datasets) in grape classification by region, confirming that the elemental “fingerprint” is a reliable marker of terroir. Full article
Show Figures

Graphical abstract

15 pages, 835 KB  
Article
Silane-Containing Self-Adhesive Resin Cement vs. Conventional Strategies in Fiber Post Application: A Push-Out Bond Strength and Failure Mode Study
by Zeynep Hale Keles, Vasfiye Isik, Rana Turunc and Soner Sismanoglu
Appl. Sci. 2026, 16(1), 57; https://doi.org/10.3390/app16010057 (registering DOI) - 20 Dec 2025
Viewed by 38
Abstract
This study evaluated the push-out bond strength (PBS) and failure modes of fiber posts cemented with silane-containing self-adhesive resin cement (SARC) compared with conventional SARC and universal adhesive strategies, considering the effects of root section and aging. Ninety single-rooted human premolars were equally [...] Read more.
This study evaluated the push-out bond strength (PBS) and failure modes of fiber posts cemented with silane-containing self-adhesive resin cement (SARC) compared with conventional SARC and universal adhesive strategies, considering the effects of root section and aging. Ninety single-rooted human premolars were equally assigned to three cementation protocols: silane-containing SARC (PANAVIA SA Cement Universal), conventional SARC (RelyX Universal), and universal adhesive plus SARC (Scotchbond Universal Plus + RelyX Universal). Each group was divided into two aging subgroups: 24 h water storage and thermal cycling (10,000 cycles between 5 °C and 55 °C, 30 s dwell time; n = 15). After root canal treatment and post space preparation, glass fiber posts were cemented, and each root was sectioned to obtain six slices. PBS was measured using a push-out test, and failure modes were examined under stereomicroscopy. Data were analyzed using three-way ANOVA, post hoc tests, Spearman’s correlation, and logistic regression (α = 0.05). Cement type, root section, and aging significantly influenced PBS (p < 0.001). PBS decreased from coronal to apical sections, and thermal cycling reduced PBS in all groups. The universal adhesive plus SARC achieved the highest PBS, while conventional SARC had the lowest PBS. Cementdentin adhesive failures (FM2) predominated overall, with proportions varying between 43% and 90%, and higher PBS values were associated with fewer FM2 failures. The combination of a universal adhesive with SARC provided superior bonding compared to simplified protocols. Although silane-containing SARC improved bonding relative to conventional SARC, durable adhesion to radicular dentin remains challenging, particularly in apical regions. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

31 pages, 3804 KB  
Article
Evidence Supporting the Hydrophobic-Mismatch Model for Cytochrome b6f-Driven State Transitions in the Cyanobacterium Synechocystis Species PCC 6803
by Terezia Kovacs, Laszlo Kovacs, Mihaly Kis, Michito Tsuyama, Sindhujaa Vajravel, Eva Herman, Nia Petrova, Anelia Dobrikova, Tomas Zakar, Svetla Todinova, Sashka Krumova, Zoltan Gombos and Radka Vladkova
Membranes 2025, 15(12), 383; https://doi.org/10.3390/membranes15120383 - 17 Dec 2025
Viewed by 112
Abstract
While there is a consensus that the cytochrome b6f complex (cytb6f) in algae and plants is involved in the regulatory mechanism of oxygenic photosynthesis known as light-induced state transitions (STs), no such consensus exists for cyanobacteria. Here, [...] Read more.
While there is a consensus that the cytochrome b6f complex (cytb6f) in algae and plants is involved in the regulatory mechanism of oxygenic photosynthesis known as light-induced state transitions (STs), no such consensus exists for cyanobacteria. Here, we provide the first direct functional evidence for cytb6f using single-point mutation data. We introduced a PetD-Phe124Ala substitution in the cyanobacterium Synechocystis sp. PCC 6803 to test the key predictions of the hydrophobic-mismatch (HMM) model for cytb6f-driven STs in all oxygenic photosynthetic species. These predictions concern the role of the Phe/Tyr124fg-loop-PetD and the extent and kinetic characteristics of STs. The effects of PetD-F124A mutation on STs were monitored using 77K and Pulse-Amplitude-Modulated (PAM) fluorescence. For comparison, we employed a phycobilisome (PBS)-less Synechocystis mutant and wild-type (WT) strain, as well as the stn7 mutant and WT of Arabidopsis plant. The PetD-F124A mutation reduced the extent of STs and selectively affected the two-exponential kinetics components of the transitions. Under State 1 conditions, the mutant exhibited ~60% less energetic decoupling of PBS from photosystem I (PSI) compared to the WT. It is explainable by the HMM model with the inability of the PetD-F124A mutant, during the induction phase of the State 2→State 1 transition to adopt the cytb6f conformation with minimal hydrophobic thickness. PAM-derived parameters indicated that PSII electron transport function is not inhibited, and no detectable effect on cyclic electron transport around PSI was observed under low-light conditions. Circular dichroism and differential scanning calorimetry confirmed that both the PSI trimer/monomer ratio and the structural integrity of the PBSs are preserved in the mutant. The compensatory response to the mutation includes decreased PSI content and an increase in PBS rod size. In conclusion, (1) cytb6f is involved in cyanobacterial STs; (2) evidence is provided supporting the HMM model; (3) the electron transfer and signal transduction functions of cytb6f are separated into distinct domains; and (4) the signaling pathway regulating STs and pigment-protein composition in Synechocystis involves PetD-Phe124. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

19 pages, 1880 KB  
Article
Distribution, Environmental Risks, and Source Apportionment of Heavy Metals in the Lake Sediments and Riparian Soils in Bangong Co Lake of the Qinghai–Tibet Plateau in China
by Yuxiang Shao, Buqing Yan, Kun Zhang, Bo Zhang, Yunshang Zhang, Bo Li, Yong Chen, Fan Xiang, Xufeng Zhuang and Shuai Guo
Sustainability 2025, 17(24), 11274; https://doi.org/10.3390/su172411274 - 16 Dec 2025
Viewed by 135
Abstract
The lake systems of the Qinghai–Tibet Plateau, while serving as vital hubs for socioeconomic development, have become critical zones of heavy metal contamination, posing severe threats to the fragile “Third Pole” ecosystem and regional environmental security. This study investigated the concentration, distribution, sources, [...] Read more.
The lake systems of the Qinghai–Tibet Plateau, while serving as vital hubs for socioeconomic development, have become critical zones of heavy metal contamination, posing severe threats to the fragile “Third Pole” ecosystem and regional environmental security. This study investigated the concentration, distribution, sources, and ecological risks of eight heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb, and Zn) in lake sediments and riparian soils of Bangong Co Lake, a remote alpine lake on the Qinghai–Tibet Plateau. Lake sediment and soil samples were collected and tested from various shoreline types, including natural and human-affected areas. The Pollution Load Index (PLI) was applied to assess contamination levels, and source apportionment was performed using principal component analysis (PCA) combined with the Absolute Principal Component Score–Multiple Linear Regression (APCS-MLR) receptor model. Results revealed that heavy metal concentrations were generally higher in soils than in sediments. Compared to regional background values, elevated levels of most heavy metals were observed in human-affected shores, while natural-type soils exhibited higher concentrations of Co, Cr, Ni, and As. In sediments, only Cd and As were notably elevated in human-affected areas. The PLI results indicated that most sampling sites were either uncontaminated or slightly contaminated, with higher pollution levels occurring primarily in human-affected shoreline zones. Source apportionment demonstrated that heavy metals in sediments were predominantly derived from natural sources such as rock weathering, with anthropogenic contributions being relatively limited. In contrast, soils exhibited significant anthropogenic influences, with industrial, transportation, and agricultural activities contributing substantially to Cu (53.27%), Pb (58.64%), Zn (57.98%), Cd (34.09%), and As (39.87%). The research underscores the differential impacts of human activities on heavy metal accumulation in sediments and soils of high-altitude lake systems. It offers valuable baseline data for monitoring and managing heavy metal pollution in ecologically sensitive alpine regions. Full article
Show Figures

Figure 1

8 pages, 1476 KB  
Article
Reducing the Degradation of CsFAMA Perovskite Solar Cells
by Aleksandr Degterev, Aleksandr Tarasov, Mariya Degtereva, Marina Pavlova, Nikita Khorshev, Yevgeniy Levin, Ivan Mikhailov, Dmitriy Testov, Ivan Lamkin and Sergey Tarasov
Colloids Interfaces 2025, 9(6), 88; https://doi.org/10.3390/colloids9060088 - 15 Dec 2025
Viewed by 152
Abstract
Triple-cation perovskite solar cells, such as Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 (hereinafter referred to as CsFAMA) have high efficiency (>26%), but their stability is limited by phase segregation and defects at grain boundaries. In [...] Read more.
Triple-cation perovskite solar cells, such as Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 (hereinafter referred to as CsFAMA) have high efficiency (>26%), but their stability is limited by phase segregation and defects at grain boundaries. In this work, the effect of formic acid (HCOOH) on suppressing the degradation of perovskite films is investigated. It is shown that the addition of HCOOH to the precursor solution reduces the size of colloidal particles by 90%, which contributes to the formation of highly homogeneous films with a photoluminescence intensity deviation of ≤3%. Structural analysis and dynamic light scattering measurements confirmed that HCOOH suppresses iodide oxidation and cation deprotonation, reducing the defect density. Aging tests (ISOS-D) demonstrated an increase in the T80 lifetime (time to 80% efficiency decline) from 158 to 320 days for the modified cells under ambient conditions at room temperature and 40% relative humidity. The obtained results indicate a key role of HCOOH in stabilizing CsFAMA perovskite by controlling colloidal dynamics and defect passivation, which opens up prospects for the creation of commercially viable PSCs. Full article
(This article belongs to the Topic New Research on Thin Films and Nanostructures)
Show Figures

Figure 1

15 pages, 5065 KB  
Article
Performance Evaluation of Field Concretes: Surface Hardener and Algal Growth Effect of Pyrite
by Zafer Kurt, Ilker Ustabas, Muhammet Emin Aydin, Kenan Mert Oksuz and Ceren Ilknur Ustabas
Buildings 2025, 15(24), 4494; https://doi.org/10.3390/buildings15244494 - 12 Dec 2025
Viewed by 198
Abstract
This study presents the effects of using pyrite aggregate in field concretes on the mechanical, surface performance, and algal growth tendency of concrete. The substitution of pyrite influences the process of hydration, as the gradual release of its iron- and sulfur-bearing components shifts [...] Read more.
This study presents the effects of using pyrite aggregate in field concretes on the mechanical, surface performance, and algal growth tendency of concrete. The substitution of pyrite influences the process of hydration, as the gradual release of its iron- and sulfur-bearing components shifts the reaction mechanism, leading to differences in phase formation and some modification in the pore structure of the cement matrix. Three different concrete mixes (PB0, PB2.5%, and PB7.5%) were designed by replacing 0%, 2.5%, and 7.5% of the total weight of sand and crushed sand with ground pyrite as a fine aggregate. Prismatic specimens of 80 × 100 × 200 mm were produced from these mixtures and mechanical properties such as flexural, splitting tensile, and abrasion were investigated after 28 days of curing. Then, to determine the effect of pyrite on concrete surface properties, pyrite was substituted on the surface of three concrete specimens produced in 50 × 240 × 500 mm dimensions at rates of 0, 1, and 3 kg/m2. These specimens were divided into two groups: one group was exposed to clean water drops at a constant flow rate in a closed environment, and the other group was exposed to dirty water in an open environment, and observed for 2 months. At the end of the process, sections of 50 × 80 × 200 cm3 were taken from the specimens and friction, abrasion and flexural tests were carried out. The results of the study demonstrate that a 7.5% pyrite substitution improves both flexural and shear strength by 38%. At the same time, pyrite substitution prevented algal growth on the surface of field concrete under clean water and delayed its formation in those under contaminated water. Finally, it was observed that pyrite, when used in concrete mix and surface applications, optimizes mechanical performance and environmental durability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 5663 KB  
Article
The Template-Jumping Editing Approach in F9-Associated Hemophilia B Gene Therapy
by Robert Sattarov, Alexey Kuznetsov, Valeriy Klimko, Elena Ignatyeva, Roman Ivanov, Alexander Karabelsky and Anastasia Fizikova
Int. J. Mol. Sci. 2025, 26(24), 11916; https://doi.org/10.3390/ijms262411916 - 10 Dec 2025
Viewed by 299
Abstract
Hemophilia B is a hereditary bleeding disorder caused by mutations localized throughout the F9 gene. Existing gene therapy products containing AAV vectors have significant limitations. Replacement therapy with coagulation factor FIX infusions is not an optimal way of treatment, as patients still have [...] Read more.
Hemophilia B is a hereditary bleeding disorder caused by mutations localized throughout the F9 gene. Existing gene therapy products containing AAV vectors have significant limitations. Replacement therapy with coagulation factor FIX infusions is not an optimal way of treatment, as patients still have periodic bleeding and require frequent transfusions. Moreover, approximately 5% of adult patients with hemophilia B develop inhibitory antibodies to recombinant forms of FIX. Therefore, it is important to develop universal CRISPR/Cas gene therapy approaches for F9 editing using non-viral delivery systems to enable gene reversion to a functional sequence at an early stage of disease development and establishment of the patients’ immune system. In this study, a unique approach of F9 prime-editing was tested for the first time. This method is estimated to edit 7.3% of pathogenic F9 mutation types. Specifically, it targets the gene region encoding amino acids 374 V to 408 Q, which accounts for approximately 9.35% of patients with hemophilia B. An advantage of this gene therapy approach is the absence of the need to change Primer Binding Site (PBS) or Reverse Transcriptase Template (RTT) sequences until going from preclinical to clinical trials, as well as the introduction of gain of function mutations in order to compensate for the low prime-editing frequencies and enhance the effect of treatment in vivo. Full article
Show Figures

Figure 1

17 pages, 1172 KB  
Article
Effects of Dual-Task Stroboscopic Visual Training on Balance, Functional Mobility, and Gait in Children Who Are Hard-of-Hearing: A Exploratory Randomized Controlled Study
by Hafiza Gözen, Serkan Usgu and Yavuz Yakut
J. Clin. Med. 2025, 14(24), 8736; https://doi.org/10.3390/jcm14248736 - 10 Dec 2025
Viewed by 191
Abstract
Objective: This study aimed to investigate the effects of dual-task stroboscopic visual training (DTSVT) on balance, functional mobility, and gait in children who are hard-of-hearing. Methods: This randomized controlled study included 31 children (17 girls, 14 boys) with congenital sensorineural hearing [...] Read more.
Objective: This study aimed to investigate the effects of dual-task stroboscopic visual training (DTSVT) on balance, functional mobility, and gait in children who are hard-of-hearing. Methods: This randomized controlled study included 31 children (17 girls, 14 boys) with congenital sensorineural hearing loss. Participants were assigned to one of three groups: control group, conventional balance training (CBT) group, and DTSVT group. The CBT and DTSVT groups participated in an exercise program for 16 weeks, twice weekly, for 40 min (a total of 24 sessions). Static balance was assessed using the Tandem Romberg test and Single-Leg Stance (SLS) test, while dynamic balance was evaluated using the Functional Reach Test (FRT), balance disc test, and the Four Square Step Test (FSST). The Pediatric Balance Scale (PBS) was used as a subjective balance assessment. Functional mobility was assessed using the Timed Up and Go (TUG) Test, Step Test, 10 m Walk Test (10 MWT), and Functional Gait Assessment (FGA). Postural sway parameters were recorded using the GyKo device, including Sway Area (EA, cm2), Distance Length (DL, cm), Length (anterior–posterior (AP)) (cm), Length (medial–lateral (ML)) (cm), Mean Distance (D) (cm), Mean Distance (AP) (cm), and Mean Distance (ML) (cm). Results: Significant between-group differences were primarily observed in favor of the DTSVT group post-treatment, particularly in PBS scores, GyKoDL values during the eyes-open SLS test, and TUG test completion times (p < 0.05). Some baseline differences were noted among groups in functional reach distance, FSST completion time, and eyes-closed duration on the Balance Disc test (p < 0.05). Within-group comparisons revealed significant improvements in FSST times in both intervention groups, reduced postural sway parameters during the FRT in the DTSVT and control groups, and increased eyes-closed Tandem Romberg duration in the CBT group (p < 0.05). Most other outcome measures did not demonstrate statistically significant changes either within or between groups (p > 0.05). Conclusions: Dual-task stroboscopic visual training was more effective than conventional balance training in improving specific aspects of balance and functional mobility in children who are hard-of-hearing. These findings highlight the potential of adding cognitively demanding and visually engaging balance tasks to rehabilitation programs for this population. Larger and more diverse samples in future studies are needed to enhance the generalizability of these results. Studies that assess balance and gait using standardized clinical or laboratory tests may be particularly valuable. Given the small sample size and multiple comparisons, the results should be considered preliminary and exploratory. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

18 pages, 2553 KB  
Article
Metallomic Aspects of Stroke and Recovery: ICP-MS Study with Chemometric Analysis
by Bartłomiej Rospond, Aleksander Matusiak, Elżbieta U. Stolarczyk, Joanna Piotrowska, Bartosz Pomierny, Weronika Krzyżanowska, Przemysław W. Szafrański and Przemysław Dorożyński
Molecules 2025, 30(24), 4672; https://doi.org/10.3390/molecules30244672 - 5 Dec 2025
Viewed by 264
Abstract
Stroke remains a leading cause of death and disability worldwide, yet the contribution of elemental imbalance to its pathogenesis is not fully understood. Experimental evidence suggests that disturbances in the concentrations of essential and toxic elements contribute to neuronal injury through excitotoxicity, oxidative [...] Read more.
Stroke remains a leading cause of death and disability worldwide, yet the contribution of elemental imbalance to its pathogenesis is not fully understood. Experimental evidence suggests that disturbances in the concentrations of essential and toxic elements contribute to neuronal injury through excitotoxicity, oxidative stress, and inflammation. In this study, we examined regional concentration in 15 elements (Na, K, Ca, Mg, P, Fe, Zn, Cu, Mn, Se, Cr, V, Pb, Al, B) in the subacute phase of ischemic stroke using the middle cerebral artery occlusion (MCAO) rat model. Male Sprague–Dawley rats underwent MCAO or sham surgery, after which the contralateral cortex, dorsal striatum, and hippocampus were collected seven days post-surgery. Elemental concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS) and analyzed by Student’s t-test, cluster analysis, and principal component analysis (PCA). The t-test revealed widespread changes in Ca, while Na was least affected. PCA identified three principal components that explained 81.63% of the variance, with Mn, Zn, Se, K, Mg, Fe, and P contributing most strongly. Cluster analysis distinguished MCAO from sham groups and revealed region-specific responses. Our findings demonstrate long-lasting, region-dependent elemental imbalance after stroke, suggesting a valuable role of elemental profiling. Future investigations should aim to identify elements whose concentrations exhibit alterations not only within central nervous system regions but also in peripheral compartments, such as blood serum, as these changes may hold significant diagnostic and prognostic value. Full article
Show Figures

Graphical abstract

8 pages, 1713 KB  
Communication
Design and Performance Evaluation of HEPS Data Center Network
by Shan Zeng, Tao Cui, Yanming Wang, Mengyao Qi and Fazhi Qi
Network 2025, 5(4), 53; https://doi.org/10.3390/network5040053 - 5 Dec 2025
Viewed by 218
Abstract
Among the 15 beamlines in the first phase of the High-Energy Photon Source (HEPS) in China, the maximum peak data generation volume can reach 1 PB per day, with the maximum peak data generation rate reaching 3.2 Tb/s. This poses significant challenges to [...] Read more.
Among the 15 beamlines in the first phase of the High-Energy Photon Source (HEPS) in China, the maximum peak data generation volume can reach 1 PB per day, with the maximum peak data generation rate reaching 3.2 Tb/s. This poses significant challenges to the underlying network system. To meet the storage, computing, and analysis needs of HEPS scientific data, this paper designed a high-performance and scalable network architecture based on RoCE (RDMA over Converged Ethernet). Test results demonstrate that the RoCE-based HEPS data center network system achieves high bandwidth and ultra-low latency, stably maintains reliable transmission performance during the interaction of scientific data storage, computing, and analysis, and exhibits excellent scalability to adapt to the future expansion of HEPS beamlines. Full article
(This article belongs to the Special Issue Advanced Technologies in Network and Service Management, 2nd Edition)
Show Figures

Figure 1

15 pages, 11792 KB  
Article
A Nanosatellite-Sized Detector for Sub-MeV Charged Cosmic Ray Fluxes in Low Earth Orbit: The Low-Energy Module (LEM) Onboard the NUSES Space Mission
by Riccardo Nicolaidis, Andrea Abba, Domenico Borrelli, Adriano Di Giovanni, Luigi Ferrentino, Giovanni Franchi, Francesco Nozzoli, Giancarlo Pepponi, Lorenzo Perillo, David Schledewitz and Enrico Verroi
Particles 2025, 8(4), 97; https://doi.org/10.3390/particles8040097 - 4 Dec 2025
Viewed by 192
Abstract
NUSES is a planned space mission aiming to test new observational and technological approaches related to the study of low-energy cosmic rays, gamma rays, and high-energy astrophysical neutrinos. Two scientific payloads will be hosted onboard the NUSES space mission: Terzina and Zirè. Terzina [...] Read more.
NUSES is a planned space mission aiming to test new observational and technological approaches related to the study of low-energy cosmic rays, gamma rays, and high-energy astrophysical neutrinos. Two scientific payloads will be hosted onboard the NUSES space mission: Terzina and Zirè. Terzina will be an optical telescope readout by SiPM arrays for the detection and study of Cerenkov light emitted by Extensive Air Showers (EASs) generated by high-energy cosmic rays and neutrinos in the atmosphere. Zirè will focus on the detection of protons and electrons up to a few hundred MeV and 0.1–30 MeV photons and will include the Low-Energy Module (LEM). The LEM will be a particle spectrometer devoted to the observation of fluxes of low-energy electrons in the 0.1–7-MeV range and protons in the 3–50 MeV range in low Earth orbit (LEO) followed by the hosting platform. The detection of Particle Bursts (PBs) in this physics channel of interest could provide insights into understanding complex phenomena such as possible correlations between seismic events or volcanic activity with the collective motion of particles in the plasma populating Van Allen belts. With its compact size and limited acceptance, the LEM will allow the exploration of hostile environments such as the South Atlantic Anomaly (SAA) and the inner Van Allen belt, in which the anticipated electron fluxes are on the order of 106 to 107 electrons per square centimeter per steradian per second. Concerning the vast literature on space-based particle spectrometers, the innovative aspect of the LEM resides in its compactness, within 10×10×10 cm3, and in its “active collimation” approach to dealing with the problem of multiple scattering at these low energies. In this work, the geometry of the detector, its detection concept, its operation modes, and the hardware adopted will be presented. Some preliminary results from a Monte Carlo simulation (Geant4) will be shown. Full article
Show Figures

Figure 1

18 pages, 10815 KB  
Article
Kinetic Simulation of Gas-Particle Injection into the Molten Lead
by Victor Hugo Gutiérrez Pérez, Seydy Lizbeth Olvera Vázquez, Alejandro Cruz Ramírez, Ricardo Gerardo Sánchez Alvarado, Jorge Enrique Rivera Salinas, Mario Cesar Ordoñez Gutiérrez and Mercedes Paulina Chávez Diaz
Metals 2025, 15(12), 1334; https://doi.org/10.3390/met15121334 - 3 Dec 2025
Viewed by 267
Abstract
Powder addition onto a molten-lead surface followed by stirring is widely used for desilvering during lead bullion refining operations. We model submerged zinc particle injection by coupling (i) a transient particle–metal reaction following Ohguchi with a time-dependent reaction efficiency E, (ii) a Stefan-type [...] Read more.
Powder addition onto a molten-lead surface followed by stirring is widely used for desilvering during lead bullion refining operations. We model submerged zinc particle injection by coupling (i) a transient particle–metal reaction following Ohguchi with a time-dependent reaction efficiency E, (ii) a Stefan-type estimate of the zinc melting time Tf, and (iii) hydrodynamic descriptors of residence (τres) and mixing (τmix) times. The model is validated against experiments under a benchmark condition (gas velocity U = 3.32 m/s, 70% submergence), achieving a mean absolute percentage error of 1.13% for the experimental desilvering curve. A parametric study over lance submergence (30–90% of bath depth), injection velocity (3.32–9.79 m/s), and geometric scalings of lance and kettle identifies conditions where the hydrodynamic residence time τres approaches the Stefan melting time, maximizing liquid-Zn contact with molten Pb. Specifically, the proposed optimum balances the competing effects of plume buoyancy at high velocities—which tends to reduce residence time—against the deeper injection depth, ensuring that particles remain submerged long enough to fully melt and react. Within 16 simulated scenarios, the pair “90% submergence + U = 9.79 m/s” provides the best multi-criteria performance (desilvering fraction, E, and residence time) under realistic constraints. A parametric sensitivity analysis ranks injection velocity and submergence as the dominant levers, with geometry playing a secondary role over the tested ranges. The coupled hydrodynamic–kinetic framework provides quantitative guidance for optimizing industrial desilvering by particle injection and is extensible to other powder-injection refining operations. Full article
(This article belongs to the Special Issue Metal Extraction and Smelting Technology)
Show Figures

Figure 1

21 pages, 3053 KB  
Article
From Seed to Young Plant: A Study on Germination and Morphological Characteristics of Crateva tapia L. (Capparaceae)
by Rosemere dos Santos Silva, Flávio Ricardo da Silva Cruz, Maria Lúcia Maurício da Silva, Maria das Graças Rodrigues do Nascimento, Edlânia Maria de Sousa, Joel Maciel Pereira Cordeiro, João Henrique Constantino Sales Silva and Edna Ursulino Alves
Biology 2025, 14(12), 1729; https://doi.org/10.3390/biology14121729 - 2 Dec 2025
Viewed by 390
Abstract
Crateva tapia L. is a native tree species of the Caatinga biome, with medicinal and allelopathic properties. This study aimed to characterize the biometric and morphological traits of fruits, seeds, seedlings, and young plants of C. tapia, as well as to evaluate [...] Read more.
Crateva tapia L. is a native tree species of the Caatinga biome, with medicinal and allelopathic properties. This study aimed to characterize the biometric and morphological traits of fruits, seeds, seedlings, and young plants of C. tapia, as well as to evaluate the germination pattern of its seeds under different temperatures, in order to understand the reproductive strategies and optimal conditions for its propagation. The results are intended to support conservation efforts, ecological restoration, and the sustainable use of the species within the Caatinga biome. The research was carried out at the Seed Analysis Laboratory of the Federal University of Paraíba, Campus II, Areia–PB, Brazil. The biometric data were obtained from 100 fruits and 100 seeds obtained from eight mother plants. The imbibition curve was determined from the weight of the seeds during 216 h at different temperatures, and the germination test was performed concomitantly. The fruits were morphologically described regarding the external and internal aspects of the pericarp. The seeds were described according to their consistency, color, texture, shape, hilum, and embryo. The fruits of C. tapia vary in size, fresh mass, and number of seeds, characterized as amphisarcidium, indehiscent, and polyspermic. The seeds are small, brown, reniform, and biting, with a cotyledonary embryo with a poorly differentiated hypocotyl–radicle axis, with a well-developed hilum and surrounded by a fleshy mesocarp. The germination of C. tapia seeds is epigeal-phanerocotyledonous; the seedlings have white axial roots containing absorbent hairs. Full article
(This article belongs to the Special Issue Advances in Tropical and Subtropical Plant Ecology and Physiology)
Show Figures

Figure 1

14 pages, 1220 KB  
Article
Environmental Exposure to Cadmium and Lead Exacerbates Kidney Function in People with Diabetes
by Soisungwan Satarug, David A. Vesey, Tanaporn Khamphaya, Donrawee Waeyeng and Supabhorn Yimthiang
J. Xenobiot. 2025, 15(6), 199; https://doi.org/10.3390/jox15060199 - 1 Dec 2025
Viewed by 325
Abstract
This study investigates the relationship between kidney function and exposure to low-level cadmium (Cd) and lead (Pb) in individuals with and without diabetes. Specifically, it tests the hypothesis that the nephrotoxicity of Cd and Pb reduces the tubular degradation of filtered proteins, namely [...] Read more.
This study investigates the relationship between kidney function and exposure to low-level cadmium (Cd) and lead (Pb) in individuals with and without diabetes. Specifically, it tests the hypothesis that the nephrotoxicity of Cd and Pb reduces the tubular degradation of filtered proteins, namely β2-microglobulin (β2M). Data were obtained from a Thai cohort of 137 people, of which 65 were diagnosed with diabetes. Blood Cd, blood Pb, and urinary excretion of Cd (ECd) were used as exposure indicators, while urinary N-acetylglucosaminidase (ENAG) and fractional tubular degradation of β2M (FrTDβ2M) reflected kidney tubular cell injury and the function of tubular cells, respectively. Spearman’s rank correlation revealed that FrTDβ2M varied directly with the estimated glomerular filtration rate (eGFR; r = 0.434), and inversely with fasting plasma glucose (r = −0.215), ECd (r = −0.527), ENAG (r = −0.536), and Cd/Pb exposure (r = −0.249). In a multiple regression model analysis adjusting for potential confounders, the association between FrTDβ2M and eGFR in those with diabetes was particularly strong (β = 0.476) compared to controls (β = 0.360), whereas an inverse association of FrTDβ2M and ECd (β = −0.295) was found only in those with diabetes, along with a positive association of ENAG with ECd (R2 = 0.071). A mediation analysis has revealed that tubular injury (ENAG) mediated 26% of the FrTDβ2M decrease associated with Cd/Pb exposure. These findings suggested that tubular protein degradation pathways may be compromised under combined metabolic and environmental stressors, Cd, and Pb. Full article
Show Figures

Graphical abstract

14 pages, 6774 KB  
Article
Fabrication and Electrical Characterization of MgZnO/ZTO Thin-Film Transistors
by Yunpeng Hao, Chao Wang, Liang Guo, Yu Sun, Meihua Jin, Linbo Xu, Ying Huang, Yi Zong, Xiwen Xu and Jingxuan Zeng
Nanomaterials 2025, 15(23), 1809; https://doi.org/10.3390/nano15231809 - 29 Nov 2025
Viewed by 308
Abstract
To enhance the electrical performance of MgZnO-TFTs, this study employed radio-frequency (RF) magnetron sputtering to fabricate MgZnO/ZTO thin films. Using these films as the channel layer, bottom-gate top-contact MgZnO/ZTO-TFT devices were constructed. The thin films were characterized using atomic force microscopy (AFM) and [...] Read more.
To enhance the electrical performance of MgZnO-TFTs, this study employed radio-frequency (RF) magnetron sputtering to fabricate MgZnO/ZTO thin films. Using these films as the channel layer, bottom-gate top-contact MgZnO/ZTO-TFT devices were constructed. The thin films were characterized using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). After optimization, the MgZnO/ZTO-TFT exhibited a high field-effect mobility of 16.80 cm2·V−1·s−1, high Ion/off of 7.63 × 108, threshold voltage of −1.60 V, and subthreshold swing as low as 0.74 V·dec−1. Bias stress stability tests were conducted under positive bias stress (PBS) and negative bias stress (NBS) conditions with a source-drain voltage of 20 V and gate bias stresses (VGS) of +10 V and −10 V, respectively, for a duration of 1000 s. The resulting threshold voltage shifts were only +0.58 V and −0.15 V, respectively, indicating excellent bias stability. These results suggest that the ZTO film, serving as the lower channel layer, effectively enhances carrier transport at the MgZnO/ZTO interface, thereby improving the field-effect mobility and on/off current ratio. Meanwhile, the MgZnO film as the upper channel layer adjusts the device’s threshold voltage and enhances its bias stability. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

Back to TopTop