Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (986)

Search Parameters:
Keywords = 3GPP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3015 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 (registering DOI) - 1 Aug 2025
Viewed by 70
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

28 pages, 4107 KiB  
Article
Channel Model for Estimating Received Power Variations at a Mobile Terminal in a Cellular Network
by Kevin Verdezoto Moreno, Pablo Lupera-Morillo, Roberto Chiguano, Robin Álvarez, Ricardo Llugsi and Gabriel Palma
Electronics 2025, 14(15), 3077; https://doi.org/10.3390/electronics14153077 (registering DOI) - 31 Jul 2025
Viewed by 144
Abstract
This paper introduces a theoretical large-scale radio channel model for the downlink in cellular systems, aimed at estimating variations in received signal power at the user terminal as a function of device mobility. This enables applications such as direction-of-arrival (DoA) estimation, estimating power [...] Read more.
This paper introduces a theoretical large-scale radio channel model for the downlink in cellular systems, aimed at estimating variations in received signal power at the user terminal as a function of device mobility. This enables applications such as direction-of-arrival (DoA) estimation, estimating power at subsequent points based on received power, and detection of coverage anomalies. The model is validated using real-world measurements from urban and suburban environments, achieving a maximum estimation error of 7.6%. In contrast to conventional models like Okumura–Hata, COST-231, Third Generation Partnership Project (3GPP) stochastic models, or ray-tracing techniques, which estimate average power under static conditions, the proposed model captures power fluctuations induced by terminal movement, a factor often neglected. Although advanced techniques such as wave-domain processing with intelligent metasurfaces can also estimate DoA, this model provides a simpler, geometry-driven approach based on empirical traces. While it does not incorporate infrastructure-specific characteristics or inter-cell interference, it remains a practical solution for scenarios with limited information or computational resources. Full article
Show Figures

Figure 1

21 pages, 14469 KiB  
Article
The Downscaled GOME-2 SIF Based on Machine Learning Enhances the Correlation with Ecosystem Productivity
by Chenyu Hu, Pinhua Xie, Zhaokun Hu, Ang Li and Haoxuan Feng
Remote Sens. 2025, 17(15), 2642; https://doi.org/10.3390/rs17152642 - 30 Jul 2025
Viewed by 198
Abstract
Sun-induced chlorophyll fluorescence (SIF) is an important indicator of vegetation photosynthesis. While remote sensing enables large-scale monitoring of SIF, existing products face the challenge of trade-offs between temporal and spatial resolutions, limiting their applications. To select the optimal model for SIF data downscaling, [...] Read more.
Sun-induced chlorophyll fluorescence (SIF) is an important indicator of vegetation photosynthesis. While remote sensing enables large-scale monitoring of SIF, existing products face the challenge of trade-offs between temporal and spatial resolutions, limiting their applications. To select the optimal model for SIF data downscaling, we used a consistent dataset combined with vegetation physiological and meteorological parameters to evaluate four different regression methods in this study. The XGBoost model demonstrated the best performance during cross-validation (R2 = 0.84, RMSE = 0.137 mW/m2/nm/sr) and was, therefore, selected to downscale GOME-2 SIF data. The resulting high-resolution SIF product (HRSIF) has a temporal resolution of 8 days and a spatial resolution of 0.05° × 0.05°. The downscaled product shows high fidelity to the original coarse SIF data when aggregated (correlation = 0.76). The reliability of the product was ensured through cross-validation with ground-based and satellite observations. Moreover, the finer spatial resolution of HRSIF better matches the footprint of eddy covariance flux towers, leading to a significant improvement in the correlation with tower-based gross primary productivity (GPP). Specifically, in the mixed forest vegetation type with the best performance, the R2 increased from 0.66 to 0.85, representing an increase of 28%. This higher-precision product will support more effective ecosystem monitoring and research. Full article
Show Figures

Figure 1

27 pages, 5886 KiB  
Article
Green Public Procurement and Its Influence on Urban Carbon Emission Intensity: Spatial Spillovers Across 285 Prefectural Cities in China
by Li Wang, Hongxuan Wu and Jian Zhang
Land 2025, 14(8), 1545; https://doi.org/10.3390/land14081545 - 27 Jul 2025
Viewed by 406
Abstract
Green public procurement (GPP) is a pivotal policy instrument for advancing urban low-carbon transitions. Using panel data from 285 Chinese cities (2015–2023), this study employs a panel fixed-effects model, mediation analysis, and spatial Durbin model to assess the impact, influencing mechanisms, and spatial [...] Read more.
Green public procurement (GPP) is a pivotal policy instrument for advancing urban low-carbon transitions. Using panel data from 285 Chinese cities (2015–2023), this study employs a panel fixed-effects model, mediation analysis, and spatial Durbin model to assess the impact, influencing mechanisms, and spatial spillover effects of GPP on urban carbon emissions intensity. The key findings reveal the following: (1) a 1% increase in GPP implementation is associated with a 1.360% reduction in local urban carbon emissions intensity. (2) GPP reduces urban carbon emissions intensity through urban green innovation, corporate sustainability performance, and public ecological awareness. (3) GPP exhibits significant cross-boundary spillovers, where a 1% reduction in local carbon emissions intensity induced by GPP leads to a 14.510% decline in that in neighboring cities. These results provide robust empirical evidence for integrating GPP into the urban climate governance framework. Furthermore, our findings offer practical insights for optimizing the implementation of GPP policies and strengthen regional cooperation in carbon reduction. Full article
Show Figures

Figure 1

31 pages, 3300 KiB  
Article
Economic Growth and Energy Consumption in Thailand: Evidence from the Energy Kuznets Curve Using Provincial-Level Data
by Thanakhom Srisaringkarn and Kentaka Aruga
Energies 2025, 18(15), 3980; https://doi.org/10.3390/en18153980 - 25 Jul 2025
Viewed by 350
Abstract
This study investigates the relationship between economic growth and energy consumption using the Energy Kuznets Curve (EKC) framework. Spatial econometric models, including the Spatial Panel Lag Model and the Spatial Dynamic Panel Lag IV Model, are employed to capture both spatial and dynamic [...] Read more.
This study investigates the relationship between economic growth and energy consumption using the Energy Kuznets Curve (EKC) framework. Spatial econometric models, including the Spatial Panel Lag Model and the Spatial Dynamic Panel Lag IV Model, are employed to capture both spatial and dynamic effects. The results indicate that energy consumption in Thailand is spatially clustered, with energy use tending to spill over into neighboring provinces and concentrating in specific regions. Key factors that positively influence energy consumption include gross provincial product (GPP) per capita, population density, and road density. Regions characterized by favorable climates, sufficient infrastructure, and high levels of economic activity exhibit higher per capita energy consumption. The EKC analysis reveals a U-shape relationship between GPP per capita and energy consumption in the BKK&VIC, CE, EA, WE, and NE regions. As many regions continue to experience rising energy consumption, the findings underscore the importance of Thailand adopting more efficient energy usage strategies in tandem with its economic development. Full article
(This article belongs to the Special Issue Environmental Sustainability and Energy Economy)
Show Figures

Figure 1

15 pages, 4183 KiB  
Article
Identification and Functional Characterization of a Geraniol Synthase UrGES from Uncaria rhynchophylla
by Xinghui Liu, Wenqiang Chen, Linxuan Li, Detian Mu, Iain W. Wilson, Xueshuang Huang, Yahui Xiang, Lina Zhu, Limei Pan, Deyou Qiu and Qi Tang
Plants 2025, 14(15), 2273; https://doi.org/10.3390/plants14152273 - 23 Jul 2025
Viewed by 383
Abstract
Uncaria rhynchophylla, a medicinal plant extensively used in traditional Chinese medicine, is an important plant source of terpenoid indole alkaloids (TIAs), but the mechanism of TIA biosynthesis at molecular level remains unclear. Geraniol synthase (GES) serves as a crucial enzyme in catalyzing [...] Read more.
Uncaria rhynchophylla, a medicinal plant extensively used in traditional Chinese medicine, is an important plant source of terpenoid indole alkaloids (TIAs), but the mechanism of TIA biosynthesis at molecular level remains unclear. Geraniol synthase (GES) serves as a crucial enzyme in catalyzing the formation of geraniol from geranyl pyrophosphate (GPP) in various plants, but the functional characterization of the GES gene in U. rhynchophylla has not been investigated. In this study, a GES was identified and characterized through genome mining and bioinformatic analysis. Functional validation was performed via a protein catalysis experiment, transient expression in Nicotiana benthamiana, and methyl jasmonate (MeJA) induction experiments. The full-length UrGES gene was 1761 bp, encoding a protein product of 586 amino acids with an estimated 67.5 kDa molecular weight. Multiple sequence alignments and phylogenetic analysis placed UrGES within the terpene synthase g (TPS-g) subfamily, showing high similarity to known GESs from other plants. Enzymatic assays confirmed that recombinant UrGES catalyzed GPP conversion to a single product of geraniol. The transient expression of UrGES resulted in geraniol accumulation in N. benthamiana, further confirming its function in vivo. UrGES expression was observed in leaves, stems, and roots, where leaves had the highest transcript levels. Moreover, MeJA treatment significantly upregulated UrGES expression, which positively correlated with an increase in alkaloid content. This study functionally characterizes UrGES as a geraniol synthase in U. rhynchophylla, contributing to the current knowledge of the TIA biosynthetic pathway. These findings may offer insights for future metabolic engineering aiming to enhance TIA yields for pharmaceutical and industrial applications. Full article
(This article belongs to the Special Issue Secondary Metabolite Biosynthesis in Plants)
Show Figures

Figure 1

23 pages, 5644 KiB  
Article
Exploring the Performance of Transparent 5G NTN Architectures Based on Operational Mega-Constellations
by Oscar Baselga, Anna Calveras and Joan Adrià Ruiz-de-Azua
Network 2025, 5(3), 25; https://doi.org/10.3390/network5030025 - 18 Jul 2025
Viewed by 283
Abstract
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between [...] Read more.
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between mobile network operators and satellite providers, allowing the former to leverage mature space infrastructure and the latter to integrate with terrestrial mobile standards. However, integrating these technologies presents significant architectural challenges. This study investigates 5G NTN architectures using satellite mega-constellations, focusing on transparent architectures where Starlink is employed to relay the backhaul, midhaul, and new radio (NR) links. The performance of these architectures is assessed through a testbed utilizing OpenAirInterface (OAI) and Open5GS, which collects key user-experience metrics such as round-trip time (RTT) and jitter when pinging the User Plane Function (UPF) in the 5G core (5GC). Results show that backhaul and midhaul relays maintain delays of 50–60 ms, while NR relays incur delays exceeding one second due to traffic overload introduced by the RFSimulator tool, which is indispensable to transmit the NR signal over Starlink. These findings suggest that while transparent architectures provide valuable insights and utility, regenerative architectures are essential for addressing current time issues and fully realizing the capabilities of space-based broadband services. Full article
Show Figures

Figure 1

36 pages, 3457 KiB  
Article
Evaluating CHIRPS and ERA5 for Long-Term Runoff Modelling with SWAT in Alpine Headwaters
by Damir Bekić and Karlo Leskovar
Water 2025, 17(14), 2116; https://doi.org/10.3390/w17142116 - 16 Jul 2025
Viewed by 413
Abstract
Reliable gridded precipitation products (GPPs) are essential for effective hydrological simulations, particularly in mountainous regions with limited ground-based observations. This study evaluates the performance of two widely used GPPs, CHIRPS and ERA5, in estimating precipitation and supporting runoff generation using the Soil and [...] Read more.
Reliable gridded precipitation products (GPPs) are essential for effective hydrological simulations, particularly in mountainous regions with limited ground-based observations. This study evaluates the performance of two widely used GPPs, CHIRPS and ERA5, in estimating precipitation and supporting runoff generation using the Soil and Water Assessment Tool (SWAT) across three headwater catchments (Sill, Drava and Isel) in the Austrian Alps from 1991 to 2018. The region’s complex topography and climatic variability present a rigorous test for GPP application. The evaluation methods combined point-to-point comparisons with gauge observations and assessments of generated runoff and runoff trends at annual, seasonal and monthly scales. CHIRPS showed a lower precipitation error (RMAE = 25%) and generated more consistent runoff results (RMAE = 12%), particularly in smaller catchments, whereas ERA5 showed higher spatial consistency but higher overall precipitation bias (RMAE = 37%). Although both datasets successfully reproduced the seasonal runoff regime, CHIRPS outperformed ERA5 in trend detection and monthly runoff estimates. Both GPPs systematically overestimate annual and seasonal precipitation amounts, especially at lower elevations and during the cold season. The results highlight the critical influence of GPP spatial resolution and its alignment with catchment morphology on model performance. While both products are viable alternatives to observed precipitation, CHIRPS is recommended for hydrological modelling in smaller, topographically complex alpine catchments due to its higher spatial resolution. Despite its higher precipitation bias, ERA5’s superior correlation with observations suggests strong potential for improved model performance if bias correction techniques are applied. The findings emphasize the importance of selecting GPPs based on the scale and geomorphological and climatic conditions of the study area. Full article
(This article belongs to the Special Issue Use of Remote Sensing Technologies for Water Resources Management)
Show Figures

Figure 1

18 pages, 2591 KiB  
Article
The Impact of Compound Drought and Heatwave Events on the Gross Primary Productivity of Rubber Plantations
by Qinggele Bao, Ziqin Wang and Zhongyi Sun
Forests 2025, 16(7), 1146; https://doi.org/10.3390/f16071146 - 11 Jul 2025
Viewed by 313
Abstract
Global climate change has increased the frequency of compound drought–heatwave events (CDHEs), seriously threatening tropical forest ecosystems. However, due to the complex structure of natural tropical forests, related research remains limited. To address this, we focused on rubber plantations on Hainan Island, which [...] Read more.
Global climate change has increased the frequency of compound drought–heatwave events (CDHEs), seriously threatening tropical forest ecosystems. However, due to the complex structure of natural tropical forests, related research remains limited. To address this, we focused on rubber plantations on Hainan Island, which have simpler structures, to explore the impacts of CDHEs on their primary productivity. We used Pearson and Spearman correlation analyses to select the optimal combination of drought and heatwave indices. Then, we constructed a Compound Drought–Heatwave Index (CDHI) using Copula functions to describe the temporal patterns of CDHEs. Finally, we applied a Bayes–Copula conditional probability model to estimate the probability of GPP loss under CDHE conditions. The main findings are as follows: (1) The Standardized Precipitation Evapotranspiration Index (SPEI-3) and Standardized Temperature Index (STI-1) formed the best index combination. (2) The CDHI successfully identified typical CDHEs in 2001, 2003–2005, 2010, 2015–2016, and 2020. (3) Temporally, CDHEs significantly increased the probability of GPP loss in April and May (0.58 and 0.64, respectively), while the rainy season showed a reverse trend due to water buffering (lowest in October, at 0.19). (4) Spatially, the northwest region showed higher GPP loss probabilities, likely due to topographic uplift. This study reveals how tropical plantations respond to compound climate extremes and provides theoretical support for the monitoring and management of tropical ecosystems. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

18 pages, 6269 KiB  
Article
Vapor Pressure Deficit Thresholds and Their Impacts on Gross Primary Productivity in Xinjiang Arid Grassland Ecosystems
by Yinan Bai, Changqing Jing, Ying Liu and Yuhui Wang
Sustainability 2025, 17(14), 6261; https://doi.org/10.3390/su17146261 - 8 Jul 2025
Viewed by 261
Abstract
Understanding vegetation responses to atmospheric drought is critical for arid ecosystem management under climate change. However, the threshold of the response mechanism of grassland in arid regions to atmospheric drought remains unclear. This study investigates how vapor pressure deficit (VPD) regulates grassland gross [...] Read more.
Understanding vegetation responses to atmospheric drought is critical for arid ecosystem management under climate change. However, the threshold of the response mechanism of grassland in arid regions to atmospheric drought remains unclear. This study investigates how vapor pressure deficit (VPD) regulates grassland gross primary productivity (GPP) in Xinjiang, China, using MODIS and other multi-source remote sensing data (2000–2020). The results show intensified atmospheric drought in central Tianshan Mountains and southern Junggar Basin, with VPD exhibiting a widespread increasing trend (significant increase: 15.75%, extremely significant increase: 4.68%). Intensified atmospheric drought occurred in the central Tianshan Mountains and southern Junggar Basin. Integrated analyses demonstrate that VPD has a dominant negative impact on GPP (path coefficient = −0.58, p < 0.05), primarily driven by atmospheric drought stress. A ridge regression-derived threshold was identified at 0.61 kPa, marking the point where VPD transitions from stimulating to suppressing productivity. Spatially, 58.75% of the total area showed a significant increase in GPP. These findings advance the mechanistic understanding of atmospheric drought impacts on arid ecosystems and inform adaptive grassland management strategies. Full article
Show Figures

Figure 1

16 pages, 5320 KiB  
Article
Response Mechanism of Carbon Fluxes in Restored and Natural Mangrove Ecosystems Under the Effects of Storm Surges
by Huimin Zou, Jianhua Zhu, Zhen Tian, Zhulin Chen, Zhiyong Xue and Weiwei Li
Forests 2025, 16(7), 1115; https://doi.org/10.3390/f16071115 - 5 Jul 2025
Viewed by 221
Abstract
As climate change intensifies the frequency and magnitude of extreme weather events, such as storm surges, understanding how extreme weather events alter mangrove carbon dynamics is critical for predicting the resilience of blue carbon ecosystems under climate change. Mangrove forests are generally recognized [...] Read more.
As climate change intensifies the frequency and magnitude of extreme weather events, such as storm surges, understanding how extreme weather events alter mangrove carbon dynamics is critical for predicting the resilience of blue carbon ecosystems under climate change. Mangrove forests are generally recognized for their resilience to natural disturbances, a characteristic largely attributed to the evolutionary development of species-specific functional traits. However, limited research has explored the impacts of storm surges on carbon flux dynamics in both natural and restored mangrove ecosystems. In this study, we analyzed short-term responses of storm surges on carbon dioxide flux and methane flux in natural and restored mangroves. The results revealed that following the storm surge, CO2 uptake decreased by 51% in natural mangrove forests and increased by 20% in restored mangroves, while CH4 emissions increased by 14% in natural mangroves and decreased by 22% in restored mangroves. GPP is mainly driven by PPFD and negatively affected by VPD and RH, while Reco and CH4 flux respond to a combination of temperature, humidity, and hydrological factors. NEE is primarily controlled by GPP and Reco, with environmental variables acting indirectly. These findings highlight the complex, site-specific pathways through which extreme events regulate carbon fluxes, underscoring the importance of incorporating ecological feedbacks into coastal carbon assessments under climate change. Full article
(This article belongs to the Special Issue Advances in Forest Carbon, Water Use and Growth Under Climate Change)
Show Figures

Figure 1

14 pages, 2756 KiB  
Article
Mechanistic Insights into the Bornyl Diphosphate Synthase from Lavandula angustifolia
by Dafeng Liu, Na Li, Feng Yu, Yanyan Du, Hongjun Song and Wenshuang Yao
Curr. Issues Mol. Biol. 2025, 47(7), 517; https://doi.org/10.3390/cimb47070517 - 4 Jul 2025
Viewed by 289
Abstract
Lavender species hold substantial economic importance due to their widespread cultivation for essential oils (EOs). Lavender EOs contain terpenes essential for industries such as cosmetics, personal care, and pharmaceuticals. In the biosynthetic pathway of EOs, Lavandula angustifolia bornyl diphosphate synthase (LaBPPS) catalyzes the [...] Read more.
Lavender species hold substantial economic importance due to their widespread cultivation for essential oils (EOs). Lavender EOs contain terpenes essential for industries such as cosmetics, personal care, and pharmaceuticals. In the biosynthetic pathway of EOs, Lavandula angustifolia bornyl diphosphate synthase (LaBPPS) catalyzes the conversion of geranyl diphosphate (GPP) to bornyl diphosphate (BPP). However, the functional mechanisms of LaBPPS remain poorly understood. Here, we conducted mutational experiments based on the molecular docking results, and found that mutations at positions D356A, D360A, R497A, D501A, or E508A led to a 50- to 100-fold reduction in the activity. Deletion of region 1–58 (∆1–58) did not affect activity compared to the wild-type (WT) protein, while deletions of regions 1–74 or 59–74 (∆1–74 or ∆59–74) significantly decreased the activity. Conversely, deletion of residues 578–602 (∆578–602) dramatically increased the activity. The LaBPPS gene showed dramatically higher expression levels in flowers compared to other tissues (stems, leaves and roots), peaking at 8:00. Our results provide valuable insights into EO biosynthesis in lavender and suggest potential strategies for genetic engineering aimed at improving EO quality. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

23 pages, 5627 KiB  
Article
Evaluation of Noah-MP Land Surface Model-Simulated Water and Carbon Fluxes Using the FLUXNET Dataset
by Bofeng Pan, Xiaolu Wu and Xitian Cai
Land 2025, 14(7), 1400; https://doi.org/10.3390/land14071400 - 3 Jul 2025
Viewed by 375
Abstract
Land surface models (LSMs) play a crucial role in climate prediction and carbon cycle assessment. To ensure their reliability, it is crucial to evaluate their performance in simulating key processes, such as evapotranspiration (ET) and gross primary productivity (GPP), across various temporal scales [...] Read more.
Land surface models (LSMs) play a crucial role in climate prediction and carbon cycle assessment. To ensure their reliability, it is crucial to evaluate their performance in simulating key processes, such as evapotranspiration (ET) and gross primary productivity (GPP), across various temporal scales and vegetation types. This study systematically evaluates the performance of the newly modernized Noah-MP LSM version 5.0 in simulating water and carbon fluxes, specifically ET and GPP, across temporal scales ranging from half-hourly (capturing diurnal cycles) to annual using observational data from 105 sites within the globally FLUXNET2015 dataset. The results reveal that Noah-MP effectively captured the overall variability of both ET and GPP, particularly at short temporal scales. The model successfully simulated the diurnal and seasonal cycles of both fluxes, though cumulative errors increased at the annual scale. Diurnally, the largest simulation biases typically occurred around noon; while, seasonally, biases were smallest in winter. Performance varied significantly across vegetation types. For ET, the simulations were most accurate for open shrublands and deciduous broadleaf forests, while showing the largest deviation for woody savannas. Conversely, GPP simulations were most accurate for wetlands and closed shrublands, showing the largest deviation for evergreen broadleaf forests. Furthermore, an in-depth analysis stratified by the climate background revealed that ET simulations failed to capture inter-annual variability in the temperate and continental zones, while GPP was severely overestimated in arid and temperate climates. This study identifies the strengths and weaknesses of Noah-MP in simulating water and carbon fluxes, providing valuable insights for future model improvements. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

32 pages, 1277 KiB  
Article
Distributed Prediction-Enhanced Beamforming Using LR/SVR Fusion and MUSIC Refinement in 5G O-RAN Systems
by Mustafa Mayyahi, Jordi Mongay Batalla, Jerzy Żurek and Piotr Krawiec
Appl. Sci. 2025, 15(13), 7428; https://doi.org/10.3390/app15137428 - 2 Jul 2025
Viewed by 375
Abstract
Low-latency and robust beamforming are vital for sustaining signal quality and spectral efficiency in emerging high-mobility 5G and future 6G wireless networks. Conventional beam management approaches, which rely on periodic Channel State Information feedback and static codebooks, as outlined in 3GPP standards, are [...] Read more.
Low-latency and robust beamforming are vital for sustaining signal quality and spectral efficiency in emerging high-mobility 5G and future 6G wireless networks. Conventional beam management approaches, which rely on periodic Channel State Information feedback and static codebooks, as outlined in 3GPP standards, are insufficient in rapidly varying propagation environments. In this work, we propose a Dominance-Enforced Adaptive Clustered Sliding Window Regression (DE-ACSW-R) framework for predictive beamforming in O-RAN Split 7-2x architectures. DE-ACSW-R leverages a sliding window of recent angle of arrival (AoA) estimates, applying in-window change-point detection to segment user trajectories and performing both Linear Regression (LR) and curvature-adaptive Support Vector Regression (SVR) for short-term and non-linear prediction. A confidence-weighted fusion mechanism adaptively blends LR and SVR outputs, incorporating robust outlier detection and a dominance-enforced selection regime to address strong disagreements. The Open Radio Unit (O-RU) autonomously triggers localised MUSIC scans when prediction confidence degrades, minimising unnecessary full-spectrum searches and saving delay. Simulation results demonstrate that the proposed DE-ACSW-R approach significantly enhances AoA tracking accuracy, beamforming gain, and adaptability under realistic high-mobility conditions, surpassing conventional LR/SVR baselines. This AI-native modular pipeline aligns with O-RAN architectural principles, enabling scalable and real-time beam management for next-generation wireless deployments. Full article
Show Figures

Figure 1

16 pages, 1262 KiB  
Article
Growth, Productivity, and Size Structure of Spirulina Strain Under Different Salinity Levels: Implications for Cultivation Optimization
by Imma Krissalina M. Lao and Brisneve Edullantes
Phycology 2025, 5(3), 31; https://doi.org/10.3390/phycology5030031 - 2 Jul 2025
Viewed by 439
Abstract
Salinity serves as a critical environmental factor influencing the physiological and morphological characteristics of Spirulina, a filamentous cyanobacterium used for food production and commercial purposes. This study examined a Spirulina strain’s responses to different salinity levels (10–45 ppt) through three independent laboratory [...] Read more.
Salinity serves as a critical environmental factor influencing the physiological and morphological characteristics of Spirulina, a filamentous cyanobacterium used for food production and commercial purposes. This study examined a Spirulina strain’s responses to different salinity levels (10–45 ppt) through three independent laboratory experiments that determined growth, productivity, and size structure. Growth across salinity treatments was assessed by monitoring optical density in 24-well microplates over 20 days and estimating specific growth rates using a logistic growth model. Primary productivity under different salinity and light conditions was measured using light and dark bottle experiments to calculate gross primary productivity (GPP) and to estimate photosynthetic efficiency through linear regression of GPP against light intensity. The size structure was assessed through tube-based experiments and image analysis, with organism sizes categorized and analyzed to identify salinity-induced patterns in filament structure. The study demonstrated that the Spirulina strain achieved its greatest growth at 10 ppt yet produced the highest photosynthetic efficiency between 27 and 45 ppt because it reallocated energy during salinity stress. The morphological analysis revealed that the Spirulina strain produced medium-sized filaments between 400 and 799 µm at elevated salinity levels, and our analysis confirmed substantial variations in size structure. The Spirulina strain demonstrates both physiological and morphological plasticity when exposed to salinity changes. The cultivation of the Spirulina strain at 27 ppt provides conditions that support moderate growth, enhanced productivity, and manageable morphological shifts while using its natural salinity tolerance to improve the efficiency and scalability of production for diverse biotechnological applications. Full article
Show Figures

Figure 1

Back to TopTop