Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,023)

Search Parameters:
Keywords = 36 °C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1954 KiB  
Article
Personalizing Patient Education for Pancreatic Cancer Patients Receiving Multidisciplinary Care with Integration of Novel Digital Tools
by Nicole Nardella, Matt Adams, Adrianna Oraiqat, Brian D. Gonzalez, Corinne Thomas, Sarah Goodchild, Sonia Adamson, Maria Sandoval, Jessica Frakes, Russell F. Palm, Carrie Stricker, Joe Herman, Pamela Hodul, Sarah Krüg and Sarah Hoffe
Healthcare 2025, 13(15), 1929; https://doi.org/10.3390/healthcare13151929 - 7 Aug 2025
Abstract
Background/Objectives: Pancreatic cancer (PC) is a diagnosis with a poor prognosis which can be associated with significant distress and may hinder a patient’s ability to understand treatment details. Educating patients based on their learning preferences (LPs) and emotions may allow for personalized, enhanced [...] Read more.
Background/Objectives: Pancreatic cancer (PC) is a diagnosis with a poor prognosis which can be associated with significant distress and may hinder a patient’s ability to understand treatment details. Educating patients based on their learning preferences (LPs) and emotions may allow for personalized, enhanced care. Methods: This prospective project enrolled patients with non-metastatic PC. Phase 1 utilized the Learning Preference Barometer (LPB) and Emotional Journey Barometer (EJB), which are digital instruments co-designed by CANCER101 (C101) and the Health Collaboratory, to assess patient LPs and emotional states. Phase 2 provided information prescriptions aligned with LPs through C101’s Prescription to Learn® (P2L) platform. Collected data included demographics, treatment, LPs (auditory, kinesthetic, linguistic, visual), patient engagement with P2L, and patient emotional states with qualitative verbal validation. Descriptive variables were used to report outcomes. Results: Primary LPs in the 47 participating patients were as follows: linguistic 45%, visual 34%, auditory 11%, and kinesthetic 9%, with secondary preferences in the majority (53%). Those patients (66%) who accessed P2L had linguistic and visual preferences; the majority accessed 1- 2 resources out of the 25 provided. Resources accessed aligned to 88% of patient LPs. The majority of patients (60%) initiated treatment prior to initial EJB, and 40% were treatment naive. Common baseline emotions were optimistic (47% vs. 36%, respectively), satisfied (11% vs. 25%), acceptance (11% vs. 11%), and overwhelmed (5% vs. 11%). Conclusions: Assessing LPs and emotional state allows for personalized patient education and clinical encounters for PC patients. Future work includes examining the effects of personalized approaches on patient satisfaction, decision-making, health outcomes, and the overall patient–clinician relationship. Full article
Show Figures

Figure A1

12 pages, 888 KiB  
Article
Identification of Candidate Genes for Endometriosis in a Three-Generation Family with Multiple Affected Members Using Whole-Exome Sequencing
by Carla Lintas, Alessia Azzarà, Vincenzo Panasiti and Fiorella Gurrieri
Biomedicines 2025, 13(8), 1922; https://doi.org/10.3390/biomedicines13081922 - 6 Aug 2025
Abstract
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its [...] Read more.
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its etiology. To this end, we performed whole-exome sequencing (WES) in a multi-affected family. Methods: A multigenerational family was studied, comprising three sisters, their mother, grandmother, and a daughter, all diagnosed with endometriosis. WES was conducted on the three sisters and their mother. We used the enGenome-Evai and Varelect software to perform our analysis, which mainly focused on rare, missense, frameshift, and stop variants. Results: Bioinformatic analysis identified 36 co-segregating rare variants. Six missense variants in genes associated with cancer growth were prioritized. The top candidates were c.3319G>A (p.Gly1107Arg) in the LAMB4 gene and c.1414G>A (p.Gly472Arg) in the EGFL6 gene. Variants in NAV3, ADAMTS18, SLIT1, and MLH1 may also contribute to disease onset through a synergistic and additive model. Conclusions: We identified novel candidate genes for endometriosis in a multigenerational affected family, supporting a polygenic model of the disease. Our study is an exploratory family-based WES study, and replication and functional studies are warranted to confirm these preliminary findings. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 914 KiB  
Article
Microvascular, Biochemical, and Clinical Impact of Hyperbaric Oxygen Therapy in Recalcitrant Diabetic Foot Ulcers
by Daniela Martins-Mendes, Raquel Costa, Ilda Rodrigues, Óscar Camacho, Pedro Barata Coelho, Vítor Paixão-Dias, Carla Luís, Ana Cláudia Pereira, Rúben Fernandes, Jorge Lima and Raquel Soares
Cells 2025, 14(15), 1196; https://doi.org/10.3390/cells14151196 - 4 Aug 2025
Viewed by 181
Abstract
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study [...] Read more.
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study aimed to evaluate the impact of HBOT on systemic biomarkers, local microvasculature, and clinical outcomes in patients with DFUs. Methods: In this non-randomized prospective study, 20 patients with ischemic DFUs were followed over a 36-month period. Fourteen received HBOT in addition to standard care, while six received standard care alone. Clinical outcomes—including DFU resolution, recurrence, lower extremity amputation (LEA), and mortality—were assessed alongside systemic inflammatory and angiogenic biomarkers and wound characteristics at baseline and at 3, 6, 12, and 36 months. CD31 immunostaining was performed on available tissue samples. Results: The two groups were comparable at baseline (mean age 62 ± 12 years; diabetes duration 18 ± 9 years). At 3 months, the HBOT group showed significant reductions in erythrocyte sedimentation rate and DFU size (p < 0.05), with downward trends observed in C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and an increase in stromal-derived factor-1 alpha (SDF1-α). No significant changes were observed in the control group. CD31+ microvessel density appeared to increase in HBOT-treated DFU tissue after one month, although the sample size was limited. Patients receiving HBOT had lower rates of LEA and mortality, improved wound healing, and sustained outcomes over three years. DFU recurrence rates were similar between groups. Conclusions: HBOT was associated with improved wound healing and favorable biomarker profiles in patients with treatment-resistant ischemic DFUs. While these findings are encouraging, the small sample size and non-randomized design limit their generalizability, highlighting the need for larger, controlled studies. Full article
Show Figures

Figure 1

13 pages, 2281 KiB  
Article
Amphipathic Alpha-Helical Peptides AH1 and AH3 Facilitate Immunogenicity of Enhanced Green Fluorescence Protein in Rainbow Trout (Oncorhynchus mykiss)
by Kuan Chieh Peng and Ten-Tsao Wong
J. Mar. Sci. Eng. 2025, 13(8), 1497; https://doi.org/10.3390/jmse13081497 - 4 Aug 2025
Viewed by 143
Abstract
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically [...] Read more.
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically produced in large quantities without growing many pathogens, as in inactivated or attenuated vaccine production. However, recombinant subunit vaccines are often weak or deficient in immunogenicity, resulting in inadequate defenses against infections. Technologies that can increase the immunogenicity of recombinant subunit vaccines are in desperate need. Enhanced green fluorescence protein (EGFP) has a low antigenicity and is susceptible to folding changes and losing fluorescence after fusing with other proteins. Using these valuable features of EGFP, we comprehend two amphipathic alpha-helical peptides, AH1 and AH3, derived from Hepatitis C virus and Influenza A virus, respectively, that can induce high immune responses of their fused EGFP in fish without affecting their folding. AH3-EGFP has the most elevated cell binding, significantly 62% and 36% higher than EGFP and AH1-EGFP, respectively. Immunizations with AH1-EGFP or AH3-EGFP significantly induced higher anti-EGFP antibody levels 300–500-fold higher than EGFP immunization after the boost injection in rainbow trout. Our results suggest that AH1 and AH3 effectively increase the immunogenicity of EGFP without influencing its structure. Further validation of their value in other recombinant proteins is necessary to demonstrate their broader utility in enhancing the immunogenicity of subunit vaccines. We also suggest that EGFP and its variants are promising candidates for initially screening proper immunogenicity-enhancing peptides or proteins to advance recombinant subunit vaccine development. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

17 pages, 10504 KiB  
Article
Green Synthesis and Characterization of Silver Nanoparticles Using Artemisia terrae-albae Extracts and Evaluation of Their Cytogenotoxic Effects
by Moldyr Dyusebaeva, Dmitriy Berillo, Zhansaya Yesbussinova, Nailya Ibragimova, Daniil Shepilov, Sandugash Sydykbayeva, Almagul Almabekova, Nurzhan Chinibayeva, Adewale Olufunsho Adeloye and Gulzat Berganayeva
Int. J. Mol. Sci. 2025, 26(15), 7499; https://doi.org/10.3390/ijms26157499 - 3 Aug 2025
Viewed by 178
Abstract
The development of non-toxic silver nanoparticles (AgNPs) for medical and other diverse applications is steadily increasing. However, this study specifically aims to determine the cytotoxic effects of AgNPs synthesized via a green chemistry approach using aqueous-ethanol and ethyl acetate extracts of Artemisia terrae-albae [...] Read more.
The development of non-toxic silver nanoparticles (AgNPs) for medical and other diverse applications is steadily increasing. However, this study specifically aims to determine the cytotoxic effects of AgNPs synthesized via a green chemistry approach using aqueous-ethanol and ethyl acetate extracts of Artemisia terrae-albae. The photophysical, morphological, and size distribution characteristics of the synthesized AgNPs are analyzed using UV-Vis spectroscopy and transmission electron microscopy (TEM). A modified Allium cepa assay is employed to evaluate biological responses, including root growth, root number, and mitotic index. In this assay, the cell cycles of onion bulbs are synchronized and pre-incubated at 4 °C for 72 h prior to treatment. This study reveals that the AgNPs synthesized from the ethanol extract exhibit notable stability and higher cytotoxicity activity, with a root length of 0.6 ± 0.13 cm, root number of 16 ± 6.88, and mitotic index of 25.0 ± 2.6. These values are significantly more cytogenotoxic than those observed for the ethyl-acetate-derived nanoparticles, which show a root length of 0.8 ± 0.17 cm, root number of 18 ± 6.27, and mitotic index of 36 ± 3.6. These findings highlight the potential of green-synthesized AgNPs as effective cytotoxic agents, especially those obtained from ethanol extract, possibly due to a greater influence of the quantity of diverse phenolic compounds present in the complex mixtures than in the ethyl acetate extract, which otherwise enhanced their morphology, shape, and size. These, overall, contributed to the biological activity. Full article
(This article belongs to the Special Issue Latest Advances in Nanoparticles for Modern Biomedicine (2nd Edition))
Show Figures

Graphical abstract

17 pages, 3105 KiB  
Article
Cell Viability of Wharton’s Jelly-Derived Mesenchymal Stem Cells (WJ-MSCs) on 3D-Printed Resins for Temporary Dental Restorations
by Mónica Antonio-Flores, Andrés Eliú Castell-Rodríguez, Gabriela Piñón-Zárate, Beatriz Hernández-Téllez, Abigailt Flores-Ledesma, Enrique Pérez-Martínez, Carolina Sámano-Valencia, Gerardo Quiroz-Petersen and Katia Jarquín-Yáñez
J. Compos. Sci. 2025, 9(8), 404; https://doi.org/10.3390/jcs9080404 - 1 Aug 2025
Viewed by 434
Abstract
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly [...] Read more.
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly used but clinically relevant cell line in dental biomaterials research. The aim of this study was to evaluate the cell viability of WJ-MSCs seeded on 3D-printed resins intended for temporary restorations. Resin discs of three commercial 3D-printing resins (NextDent C&B, Leaf Dental C&B, and UNIZ Temp) and a conventional self-curing acrylic resin (NicTone) were used. WJ-MSCs were cultured on the specimens for 1, 4, and 10 days. Cell viability was assessed using the PrestoBlue assay, Live/Dead immunofluorescence staining, and 7AAD/Annexin V staining. Cell adhesion was evaluated using scanning electron microscopy. Direct exposure to the 3D-printed resins and the self-curing acrylic caused slight reductions in cell viability compared to the control group in both microscopic analyses. 7AAD/Annexin V showed the highest percentage of viable WBCs for the conventional acrylic (34%), followed by UNIZ (35%), NextDent (42%), and Leaf Dental (36%) (ANOVA p < 0.05 Tukey’s post-hoc test p < 0.05). These findings suggest that 3D-printed resins could be considered safe for use in temporary restorations. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

9 pages, 7006 KiB  
Interesting Images
Coral Bleaching and Recovery on Urban Reefs off Jakarta, Indonesia, During the 2023–2024 Thermal Stress Event
by Tries B. Razak, Muhammad Irhas, Laura Nikita, Rindah Talitha Vida, Sera Maserati and Cut Aja Gita Alisa
Diversity 2025, 17(8), 540; https://doi.org/10.3390/d17080540 - 1 Aug 2025
Viewed by 255
Abstract
Urban coral reefs in Jakarta Bay and the Thousand Islands, Indonesia, are chronically exposed to land-based pollution and increasing thermal stress. These reefs—including the site of Indonesia’s first recorded coral bleaching event in 1983—remain highly vulnerable to climate-induced disturbances. During the fourth global [...] Read more.
Urban coral reefs in Jakarta Bay and the Thousand Islands, Indonesia, are chronically exposed to land-based pollution and increasing thermal stress. These reefs—including the site of Indonesia’s first recorded coral bleaching event in 1983—remain highly vulnerable to climate-induced disturbances. During the fourth global coral bleaching event (GCBE), we recorded selective bleaching in the region, associated with a Degree Heating Weeks (DHW) value of 4.8 °C-weeks. Surveys conducted in January 2024 across a shelf gradient at four representative islands revealed patchy bleaching, affecting various taxa at depths ranging from 3 to 13 m. A follow-up survey in May 2024, which tracked the fate of 42 tagged bleached colonies, found that 36% had fully recovered, 26% showed partial recovery, and 38% had died. Bleaching responses varied across taxa, depths, and microhabitats, often occurring in close proximity to unaffected colonies. While some corals demonstrated resilience, the overall findings underscore the continued vulnerability of urban reefs to escalating thermal stress. This highlights the urgent need for a comprehensive and coordinated national strategy—not only to monitor bleaching and assess reef responses, but also to strengthen protection measures and implement best-practice restoration. Such efforts are increasingly critical in the face of more frequent and severe bleaching events projected under future climate scenarios. Full article
(This article belongs to the Collection Interesting Images from the Sea)
Show Figures

Figure 1

12 pages, 380 KiB  
Article
The Impact of Parasitic Infections on Anaemia in Adolescent Athletes: A South American Perspective from Tacna, Peru, 2023
by Anthony Brayan Rivera Prado, Kelly Geraldine Yparraguirre Salcedo, Luis Lloja Lozano, Vicente Freddy Chambilla Quispe and Claudio Willbert Ramirez Atencio
Parasitologia 2025, 5(3), 39; https://doi.org/10.3390/parasitologia5030039 - 1 Aug 2025
Viewed by 125
Abstract
Background: Anaemia in adolescents can be influenced by parasitic infections, systemic inflammation, and nutritional status. Objective: To determine whether C-reactive protein (CRP), nutritional status, and infection with Ascaris lumbricoides, Giardia lamblia, or Trichuris trichiura are associated with anaemia in adolescent athletes [...] Read more.
Background: Anaemia in adolescents can be influenced by parasitic infections, systemic inflammation, and nutritional status. Objective: To determine whether C-reactive protein (CRP), nutritional status, and infection with Ascaris lumbricoides, Giardia lamblia, or Trichuris trichiura are associated with anaemia in adolescent athletes from Tacna compared to non-athletes. Methods: A cross-sectional study was conducted involving 250 male football players aged 13–18 years and 150 age-matched non-athletes. Haemoglobin, haematocrit, ferritin, serum iron, CRP, and parasitic status were measured; mean comparisons and logistic regression were applied. Results: Anaemia was more prevalent among athletes than non-athletes (30% vs. 18%; p < 0.001). Infected athletes showed lower haemoglobin (11.9 ± 1.1 g/dL) and higher CRP (5.0 ± 1.9 mg/L) levels compared to non-infected athletes (13.8 ± 1.0 g/dL and 2.2 ± 1.1 mg/L; p < 0.001). Logistic regression identified CRP as an independent predictor of anaemia (adjusted OR = 1.20; 95% CI: 1.08–1.38; p < 0.001), while parasitic infections showed no direct association after adjustment. Underweight status was associated with a higher prevalence of anaemia (36%). Conclusions: Systemic inflammation emerged as the main factor associated with anaemia in this population, with parasitic infections contributing indirectly by increasing inflammation. Periodic deworming, iron supplementation, and CRP monitoring are recommended to reduce the burden of anaemia in adolescent athletes from endemic regions. Full article
Show Figures

Figure 1

16 pages, 1291 KiB  
Article
Biotechnological Potential of Weizmannia ginsengihumi in the Conversion of Xylose into Lactic Acid: A Sustainable Strategy
by Larissa Provasi Santos, Ingrid Yoshimura, Fernanda Batista de Andrade and Jonas Contiero
Fermentation 2025, 11(8), 447; https://doi.org/10.3390/fermentation11080447 - 31 Jul 2025
Viewed by 258
Abstract
The aim of this study was to isolate Weizmannia spp. that produce lactic acid from xylose and use an experimental design to optimize the production of the metabolite. After isolation, the experiments were conducted in xylose-yeast extract-peptone medium. The identification of isolates was [...] Read more.
The aim of this study was to isolate Weizmannia spp. that produce lactic acid from xylose and use an experimental design to optimize the production of the metabolite. After isolation, the experiments were conducted in xylose-yeast extract-peptone medium. The identification of isolates was performed using the 16S rDNA PCR technique, followed by sequencing. A central composite rotatable design (CCRD) was used to optimize the concentrations of the carbon source (xylose), nitrogen source (yeast extract and peptone), and sodium acetate. Two strains were considered promising for lactic acid production, with W. coagulans BLMI achieving greater lactic acid production under anaerobic conditions (21.93 ± 0.9 g.L−1) and a yield of 69.18 %, while the strain W. ginsengihumi BMI was able to produce 19.79 ± 0.8 g.L−1, with a yield of 70.46 %. CCRD was used with the W. ginsengihumi strain due to the lack of records in the literature on its use for lactic acid production. The carbon and nitrogen sources influenced the response, but the interactions of the variables were nonsignificant (p < 0.05). The response surface analysis indicated that the optimal concentrations of carbon and nitrogen sources were 32.5 and 3.0 g.L−1, respectively, without the need to add sodium acetate to the culture medium, leading to the production of 20.02 ± 0.19 g.L−1, productivity of 0.55 g/L/h after 36 hours of fermentation, and a residual sugar concentration of 12.59 ± 0.51 g.L−1. These results demonstrate the potential of W. ginsengihumi BMI for the production of lactic acid by xylose fermentation since it is carried out at 50 °C, indicating a path for future studies Full article
16 pages, 1047 KiB  
Article
The Post-Harvest Application of UV-C Rays: Effects on the Shelf Life and Antioxidants of Fresh Green Asparagus (Asparagus officinalis L.)
by Valeria Menga, Romina Beleggia, Domenico Pio Prencipe, Mario Russo and Clara Fares
Appl. Sci. 2025, 15(15), 8533; https://doi.org/10.3390/app15158533 - 31 Jul 2025
Viewed by 112
Abstract
UV-C irradiation is an innovative postharvest technique for increasing the safety of fruits and vegetables. This study investigated the effect of UV-C rays (UV-C1 = 0.26 KJ/m2; UV-C2 = 0.40 KJ/m2; UV-C3 = 0.67 KJ/m2; and UV-C4 [...] Read more.
UV-C irradiation is an innovative postharvest technique for increasing the safety of fruits and vegetables. This study investigated the effect of UV-C rays (UV-C1 = 0.26 KJ/m2; UV-C2 = 0.40 KJ/m2; UV-C3 = 0.67 KJ/m2; and UV-C4 = 1.34 KJ/m2) on the preservation of the antioxidants, hardness, and color of fresh green asparagus during storage. UV-C1 and UV-C2 significantly maintained higher total phenolic content (10.6%), total flavonoid content (36%), rutin (14.3%), quercetin (27.03%), kaempferol-3-O-rutinoside (21.25%), and antioxidant activity (DPPH 7.5%). Over three weeks of storage, quercetin, ferulic acid, and kaempferol 3-O-rutinoside increased, while rutin and caffeic acid decreased. Storage caused a significant change in the color and hardness of the control sample, but UV-C4 counteracted hardening for up to three weeks, and UV-C3 was the best dose for stabilizing color during storage. This study indicates that the choice of UV-C dose can be modulated based on the characteristics that are intended to be preserved in green asparagus, maintaining a balance between nutraceutical and hedonic characteristics. To maintain the maximum level of nutraceutical compounds over time, UV-C2 can be adopted, while to preserve texture and color, UV-C3 and UV-C4 are a better choice. Full article
Show Figures

Figure 1

19 pages, 17315 KiB  
Article
Development and Mechanical Characterization of Environmentally Friendly PLA/Crop Waste Green Composites
by Karolina Ewelina Mazur, Tomasz Wacław Witko, Alicja Kośmider and Stanisław Tadeusz Kuciel
Materials 2025, 18(15), 3608; https://doi.org/10.3390/ma18153608 - 31 Jul 2025
Viewed by 250
Abstract
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with [...] Read more.
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with a compatibilizer to improve interfacial adhesion. Mechanical properties (tensile, flexural, and impact strength), morphological characteristics (via SEM), and hydrolytic aging behavior were evaluated. Among the tested systems, PLA reinforced with seashells (PLA15S) and coffee grounds (PLA15C) demonstrated the most balanced mechanical performance, with PLA15S achieving a tensile strength increase of 72% compared to neat PLA. Notably, PLA15C exhibited the highest stability after 28 days of hydrothermal aging, retaining ~36% of its initial tensile strength, outperforming other systems. In contrast, walnut-shell-filled composites showed the most severe degradation, losing over 98% of their mechanical strength after aging. The results indicate that both the physicochemical nature and morphology of the biofiller play critical roles in determining mechanical reinforcement and degradation resistance. This research underlines the feasibility of valorizing agri-food residues into biodegradable, semi-structural PLA composites for potential use in sustainable packaging or non-load-bearing structural applications. Full article
Show Figures

Graphical abstract

20 pages, 3941 KiB  
Article
MicroRNA Expression Analysis and Biological Pathways in Chemoresistant Non-Small Cell Lung Cancer
by Chara Papadaki, Maria Mortoglou, Aristeidis E. Boukouris, Krystallia Gourlia, Maria Markaki, Eleni Lagoudaki, Anastasios Koutsopoulos, Ioannis Tsamardinos, Dimitrios Mavroudis and Sofia Agelaki
Cancers 2025, 17(15), 2504; https://doi.org/10.3390/cancers17152504 - 29 Jul 2025
Viewed by 236
Abstract
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). [...] Read more.
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). In this study, by using a bioinformatics approach, we identified six miRNAs, which were differentially expressed (DE) between NSCLC patients characterized as responders and non-responders to platinum-based CT. We further validated the differential expression of the selected miRNAs on tumor and matched normal tissues from patients with resected NSCLC. Methods: Two miRNA microarray expression datasets were retrieved from the Gene Expression Omnibus (GEO) repository, comprising a total of 69 NSCLC patients (N = 69) treated with CT and annotated data from their response to treatment. Differential expression analysis was performed using the Linear Models for Microarray Analysis (Limma) package in R to identify DE miRNAs between responders (N = 33) and non-responders (N = 36). Quantitative real-time PCR (qRT-PCR) was used to assess miRNA expression levels in clinical tissue samples (N = 20). Results: Analysis with the Limma package revealed 112 DE miRNAs between responders and non-responders. A random-effects meta-analysis further identified 24 miRNAs that were consistently up- or downregulated in at least two studies. Survival analysis using the Kaplan–Meier plotter (KM plotter) indicated that 22 of these miRNAs showed significant associations with prognosis in NSCLC. Functional and pathway enrichment analysis revealed that several of the identified miRNAs were linked to key pathways implicated in DNA damage repair, including the p53, Hippo, PI3K and TGF-β signaling pathways. We finally distinguished a six-miRNA signature consisting of miR-26a, miR-29c, miR-34a, miR-30e-5p, miR-30e-3p and miR-497, which were downregulated in non-responders and are involved in at least three DNA damage repair pathways. Comparative expression analysis on tumor and matched normal tissues from surgically treated NSCLC patients confirmed their differential expression in clinical samples. Conclusions: In summary, we identified a signature of six miRNAs that are suppressed in NSCLC and may serve as a predictor of cisplatin response in NSCLC. Full article
Show Figures

Figure 1

11 pages, 671 KiB  
Article
Genetic Factors of Elite Wrestling Status: A Multi-Ethnic Comparative Study
by Ayumu Kozuma, Celal Bulgay, Hirofumi Zempo, Mika Saito, Minoru Deguchi, Hiroki Homma, Shingo Matsumoto, Ryutaro Matsumoto, Anıl Kasakolu, Hasan H. Kazan, Türker Bıyıklı, Seyran Koncagul, Giyasettin Baydaş, Mehmet A. Ergun, Attila Szabo, Ekaterina A. Semenova, Andrey K. Larin, Nikolay A. Kulemin, Edward V. Generozov, Takanobu Okamoto, Koichi Nakazato, Ildus I. Ahmetov and Naoki Kikuchiadd Show full author list remove Hide full author list
Genes 2025, 16(8), 906; https://doi.org/10.3390/genes16080906 - 29 Jul 2025
Viewed by 293
Abstract
Background: In recent years, comprehensive analyses using a genome-wide association study (GWAS) have been conducted to identify genetic factors related to athletic performance. In this study, we investigated the association between genetic variants and elite wrestling status across multiple ethnic groups using a [...] Read more.
Background: In recent years, comprehensive analyses using a genome-wide association study (GWAS) have been conducted to identify genetic factors related to athletic performance. In this study, we investigated the association between genetic variants and elite wrestling status across multiple ethnic groups using a genome-wide genotyping approach. Methods: This study included 168 elite wrestlers (64 Japanese, 67 Turkish, and 36 Russian), all of whom had competed in international tournaments, including the Olympic Games. Control groups consisted of 306 Japanese, 137 Turkish, and 173 Russian individuals without elite athletic backgrounds. We performed a GWAS comparing allele frequencies of single-nucleotide polymorphisms (SNPs) between elite wrestlers and controls in each ethnic cohort. Cross-population analysis comprised (1) identifying SNPs with nominal significance (p < 0.05) in all three groups, then (2) meta-analyzing overlapped SNPs to assess effect consistency and combined significance. Finally, we investigated whether the most significant SNPs were associated with gene expression in skeletal muscle in 23 physically active men. Results: The GWAS identified 328,388 (Japanese), 23,932 (Turkish), and 30,385 (Russian) SNPs reaching nominal significance. Meta-analysis revealed that the ATP2A3 rs6502758 and UNC5C rs265061 polymorphisms were associated (p < 0.0001) with elite wrestling status across all three populations. Both variants are located in intronic regions and influence the expression of their respective genes in skeletal muscle. Conclusions: This is the first study to investigate gene polymorphisms associated with elite wrestling status in a multi-ethnic cohort. ATP2A3 rs6502758 and UNC5C rs265061 polymorphisms may represent important genetic factors associated with achieving an elite status in wrestling, irrespective of ethnicity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1743 KiB  
Article
Development of Bioresponsive Poloxamer-Based Self-Nanoemulsifying System for Enhanced Febuxostat Bioavailability: Solidification Strategy Using I-Optimal Approach
by Abdelrahman Y. Sherif and Ehab M. Elzayat
Pharmaceutics 2025, 17(8), 975; https://doi.org/10.3390/pharmaceutics17080975 - 28 Jul 2025
Viewed by 248
Abstract
Background/Objectives: The major limitations of self-nanoemulsifying systems include complex processing and expensive instrumentation required for solidification approaches. In this study, smart poloxamer-based solidification strategies were used to develop and optimize febuxostat-loaded formulations. Methods: A self-nanoemulsifying drug delivery system (SNEDDS) component was selected based [...] Read more.
Background/Objectives: The major limitations of self-nanoemulsifying systems include complex processing and expensive instrumentation required for solidification approaches. In this study, smart poloxamer-based solidification strategies were used to develop and optimize febuxostat-loaded formulations. Methods: A self-nanoemulsifying drug delivery system (SNEDDS) component was selected based on solubility and emulsification tests. The influence of poloxamer molecular weight (low or high) and its concentration (2–10% w/w) on formulation performance was assessed through the design of experiments. Finally, in-vitro melting assessment and a comparative dissolution test were performed on the optimized SNEDDS formulation. Results: Imwitor 988 and Tween 20 were selected to prepare the formulations. Increasing the molecular weight and concentration of the poloxamer significantly increased the temperature and time required for the melting of the SNEDDS formulation. The optimized SNEDDS formulation comprised 3.98% w/w poloxamer 188, which melts at 36 °C within 111 s. In-vitro melting showed that the formulation completely converted to a liquid state upon exposure to body temperature. Finally, the optimized SNEDDS formulation exhibited superior dissolution efficiency (96.66 ± 0.28%) compared to raw febuxostat (72.09 ± 4.33%) and marketed tablets (82.23 ± 3.10%). Conclusions: The poloxamer-based approach successfully addressed the limitations associated with conventional solidification while maintaining superior dissolution performance. Therefore, it emerges as a promising alternative approach for enhancing the bioavailability of poorly water-soluble drugs. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

15 pages, 798 KiB  
Article
Associations Between Serum Gut-Derived Tryptophan Metabolites and Cardiovascular Health Markers in Adolescents with Obesity
by Jeny E. Rivera, Renny Lan, Mario G. Ferruzzi, Elisabet Børsheim, Emir Tas and Eva C. Diaz
Nutrients 2025, 17(15), 2430; https://doi.org/10.3390/nu17152430 - 25 Jul 2025
Viewed by 304
Abstract
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating [...] Read more.
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating gut-derived Trp metabolites and markers of cardiometabolic, vascular, and platelet health in adolescents with obesity. Methods: Data were analyzed from 28 adolescents (ages 13–18; mean BMI = 36 ± 6.4 kg/m2). Fasting blood was collected to assess lipid profiles using a clinical analyzer and insulin resistance using the homeostatic model assessment for insulin resistance (HOMA-IR). Gut-derived Trp metabolites were measured by UPLC–mass spectrometry, peak oxygen uptake (VO2 peak) by gas exchange during an incremental cycle ergometer test, and body composition by dual-energy X-ray absorptiometry. Platelet spare respiratory capacity (SRC), endothelial function, and liver fat were measured using high-resolution respirometry, flow-mediated dilation (FMD) of the brachial artery, and magnetic resonance imaging respectively. Results: Indole-3-propionic acid was inversely associated with diastolic blood pressure (rho = −0.39, p = 0.047), total cholesterol (rho = −0.55, p = 0.002), and LDL-C (rho = −0.57, p = 0.0014), independent of sex and obesity severity. Indoxyl sulfate was positively correlated with fasting glucose (rho = 0.47, p = 0.012), and adolescents with impaired fasting glucose had 1.6-fold higher IS levels. Indole-3-acetaldehyde declined with age (rho = −0.50, p = 0.007), and Indole-3-acetic acid and indole were higher in Hispanics vs. non-Hispanics. No significant associations were observed between Trp metabolites and FMD, VO2 peak, or SRC. Conclusions: Gut-derived Trp metabolites, particularly indole-3-propionic and indoxyl sulfate, are associated with markers of cardiometabolic risk in adolescents with obesity. These findings support their potential relevance in early-onset cardiovascular disease risk. Full article
Show Figures

Figure 1

Back to TopTop