Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,033)

Search Parameters:
Keywords = 30-meter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 15264 KiB  
Article
Effect of Auxiliary Air-Suction Seed-Filling Structure on Seed Discharge Performance of Peanut High-Speed Seed-Metering Machine
by Peng Guo, Bin Sun, Shuqi Shang, Jialin Hou, Dongwei Wang, Zhuang Zhao, Ahmed Elshafie, Xiaoshuai Zheng and Farid Eltoum
Agriculture 2025, 15(15), 1678; https://doi.org/10.3390/agriculture15151678 (registering DOI) - 2 Aug 2025
Abstract
Aiming to resolve the problem of the poor peanut seed-filling effect under high-speed operation when developing high-speed peanut sowing with precision, a peanut precision seed-metering machine with an auxiliary air-suction seed-filling device was designed. Focusing on the force analysis of peanuts in the [...] Read more.
Aiming to resolve the problem of the poor peanut seed-filling effect under high-speed operation when developing high-speed peanut sowing with precision, a peanut precision seed-metering machine with an auxiliary air-suction seed-filling device was designed. Focusing on the force analysis of peanuts in the seed chamber, the peanut seed disturbance principle in the seed-metering machine for the blowing structure of an auxiliary air-suction seed-filling device was clarified. The seed-filling process was analyzed via DEM-CFD coupled simulation, and three factors affecting the seed-filling effect were identified, namely the seed-filling chamber ‘V’ angle γ, the bottom blow-air-hole cross-sectional area S, and the bottom blow-air-hole airflow velocity vq, and the ranges of values of the three factors were determined. The Box–Behnken test was conducted using the seed-filling index and leakage index as the indexes. The results show that the seed-filling chamber ‘V’ angle γ is 56.59°, the bottom blowhole cross-sectional area S is 1088.4 mm2, and the blowhole air velocity vq is 12.11 m·s−1. At this point, the peanut seed suction qualification index and leakage index are optimal, the seed suction qualification index is 96.33%, and the seed leakage index is 2.59%. At the same time, the field test shows that a sowing operation speed of 8–12 km·h−1, a qualified index > 93%, and a leakage index < 4.5% are required to meet the agronomic requirements of peanut precision sowing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 3301 KiB  
Article
Parameter Identification of Distribution Zone Transformers Under Three-Phase Asymmetric Conditions
by Panrun Jin, Wenqin Song and Yankui Zhang
Eng 2025, 6(8), 181; https://doi.org/10.3390/eng6080181 (registering DOI) - 2 Aug 2025
Abstract
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing [...] Read more.
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing system operation. However, existing identification methods typically require synchronized high- and low-voltage data and are limited to symmetric three-phase conditions, which limits their application in practical distribution systems. To address these challenges, this paper proposes a parameter identification method for DZTs under three-phase unbalanced conditions. Firstly, based on the transformer’s T-equivalent circuit considering the load, the power flow equations are derived without involving the synchronization issue of high-voltage and low-voltage side data, and the sum of the impedances on both sides is treated as an independent parameter. Then, a novel power flow equation under three-phase unbalanced conditions is established, and an adaptive recursive least squares (ARLS) solution method is constructed using the measurement data sequence provided by the smart meter of the intelligent transformer terminal unit (TTU) to achieve online identification of the transformer winding parameters. The effectiveness and robustness of the method are verified through practical case studies. Full article
Show Figures

Figure 1

23 pages, 13529 KiB  
Article
A Self-Supervised Contrastive Framework for Specific Emitter Identification with Limited Labeled Data
by Jiaqi Wang, Lishu Guo, Pengfei Liu, Peng Shang, Xiaochun Lu and Hang Zhao
Remote Sens. 2025, 17(15), 2659; https://doi.org/10.3390/rs17152659 (registering DOI) - 1 Aug 2025
Viewed by 61
Abstract
Specific Emitter Identification (SEI) is a specialized technique for identifying different emitters by analyzing the unique characteristics embedded in received signals, known as Radio Frequency Fingerprints (RFFs), and SEI plays a crucial role in civilian applications. Recently, various SEI methods based on deep [...] Read more.
Specific Emitter Identification (SEI) is a specialized technique for identifying different emitters by analyzing the unique characteristics embedded in received signals, known as Radio Frequency Fingerprints (RFFs), and SEI plays a crucial role in civilian applications. Recently, various SEI methods based on deep learning have been proposed. However, in real-world scenarios, the scarcity of accurately labeled data poses a significant challenge to these methods, which typically rely on large-scale supervised training. To address this issue, we propose a novel SEI framework based on self-supervised contrastive learning. Our approach comprises two stages: an unsupervised pretraining phase that uses contrastive loss to learn discriminative RFF representations from unlabeled data, and a supervised fine-tuning stage regularized through virtual adversarial training (VAT) to improve generalization under limited labels. This framework enables effective feature learning while mitigating overfitting. To validate the effectiveness of the proposed method, we collected real-world satellite navigation signals using a 40-meter antenna and conducted extensive experiments. The results demonstrate that our approach achieves outstanding SEI performance, significantly outperforming several mainstream SEI methods, thereby highlighting the practical potential of contrastive self-supervised learning in satellite transmitter identification. Full article
Show Figures

Figure 1

22 pages, 13481 KiB  
Article
Design and Experiment of Air-Suction Roller-Type Minituber Seed-Metering Device Based on CFD-DEM
by Jicheng Li, Haiqin Ma, Yuxuan Chen, Xiaoxin Zhu, Yu Qi, Qiang Gao and Jinqing Lyu
Agriculture 2025, 15(15), 1652; https://doi.org/10.3390/agriculture15151652 (registering DOI) - 31 Jul 2025
Viewed by 82
Abstract
Aiming at the problems of the high multiple- and missed-seeding index and low operation efficiency of current mechanical potato seed-meters in minituber sowing, this study designed an air-suction roller-type minituber seed-metering device for minitubers (mass between 2 and 4 g) in accordance with [...] Read more.
Aiming at the problems of the high multiple- and missed-seeding index and low operation efficiency of current mechanical potato seed-meters in minituber sowing, this study designed an air-suction roller-type minituber seed-metering device for minitubers (mass between 2 and 4 g) in accordance with the agronomic standards for potato cultivation in the single-cropping area of northern China. An account of the device’s structure and operational principle was made, its working process was theoretically analysed, and the three main factors affecting the airflow suction were determined: the seed roller speed, the suction seeding hole diameter, and the air inlet negative pressure. This study adopted the fluid dynamics simulation method and determined that the ideal location of the air inlet was 30° for horizontal inclination and 60° for vertical inclination. Then, based on the CFD-DEM fluid-structure coupling simulation method, the impact of a range of factors on the functionality of the seed-metering device under different conditions was studied and verification tests were carried out. Design-Expert was used to analyse test results. The results showed that when the pressure at the air inlet was −7000 Pa, the speed of the seeding roller was 40.2 r·min−1, the suction seeding hole diameter was 10.37 mm, and the performance was optimal: the qualified index was 92.95%, the multiple-seeding index was 4.16%, and the missed-seeding index was 2.89%. The research results show that the seed-metering device developed under this scheme exhibited satisfactory seeding performance during operation and was able to meet the demands of minituber sowing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 3593 KiB  
Article
A Feature Engineering Framework for Smart Meter Group Failure Rate Prediction
by Yihong Li, Xia Xiao, Zhengbo Zhang and Wenao Liu
Mathematics 2025, 13(15), 2472; https://doi.org/10.3390/math13152472 - 31 Jul 2025
Viewed by 162
Abstract
Smart meters play a significant role in power systems, but their condition assessment faces challenges such as inconsistent evaluation criteria and inaccurate assessment results. This paper proposes feature engineering including feature construction and feature selection for smart meter group failure rate prediction. First, [...] Read more.
Smart meters play a significant role in power systems, but their condition assessment faces challenges such as inconsistent evaluation criteria and inaccurate assessment results. This paper proposes feature engineering including feature construction and feature selection for smart meter group failure rate prediction. First, the basic structure and common fault types of smart meters are introduced. Smart meters are grouped by batch and distribution area. Next, 25 condition features are constructed based on failure mechanisms and technical specifications. Then, an evolutionary multi-objective feature selection algorithm combining NSGA-II, Jaccard similarity, and XGBoost is developed, where feature subsets are encoded as binary individuals optimized for three objectives: MSE, 1 − R2, and the number of features. The experimental results demonstrate that the proposed method not only reduces the number of features (25→7) but also improves the prediction accuracy (MSE: 0.0049 → 0.0042, R2: 0.6638 → 0.7228) of smart meter group failure rates. Comparative studies with other feature selection methods further confirm the superiority of our approach. The optimized features enhance interpretability and computational efficiency, providing a practical solution for large-scale smart meter condition assessment in power systems. Full article
(This article belongs to the Special Issue Evolutionary Algorithms and Applications)
Show Figures

Figure 1

24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 (registering DOI) - 31 Jul 2025
Viewed by 72
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

18 pages, 2111 KiB  
Article
Modelling Renewable Energy and Resource Interactions Using CLEWs to Support Thailand’s 2050 Carbon Neutrality Goal
by Nat Nakkorn, Surasak Janchai, Suparatchai Vorarat and Prayuth Rittidatch
Sustainability 2025, 17(15), 6909; https://doi.org/10.3390/su17156909 - 30 Jul 2025
Viewed by 277
Abstract
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate [...] Read more.
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate the long-term trade-offs among energy, water, and land systems. Data were sourced from esteemed international organisations (e.g., the IEA, FAO, and OECD) and national agencies and organised into a tailored OSeMOSYS Starter Data Kit for Thailand, comprising a baseline and a carbon neutral trajectory. The baseline scenario, primarily reliant on fossil fuels, is projected to generate annual CO2 emissions exceeding 400 million tons and water consumption surpassing 85 billion cubic meters by 2025. By the mid-century, the carbon neutral scenario will have approximately 40% lower water use and a 90% reduction in power sector emissions. Under the carbon neutral path, renewable energy takes the front stage; the share of renewable electricity goes from under 20% in the baseline scenario to almost 80% by 2050. This transition and large reforestation initiatives call for consistent investment in solar energy (solar energy expenditures exceeding 20 billion USD annually by 2025). Still, it provides notable co-benefits, including greater resource sustainability and better alignment with international climate targets. The results provide strategic insights aligned with Thailand’s National Energy Plan (NEP) and offer modelling evidence toward achieving international climate goals under COP29. Full article
Show Figures

Graphical abstract

19 pages, 1555 KiB  
Article
Influence of Playing Position on the Match Running Performance of Elite U19 Soccer Players in a 1-4-3-3 System
by Yiannis Michailidis, Andreas Stafylidis, Lazaros Vardakis, Angelos E. Kyranoudis, Vasilios Mittas, Vasileios Bilis, Athanasios Mandroukas, Ioannis Metaxas and Thomas I. Metaxas
Appl. Sci. 2025, 15(15), 8430; https://doi.org/10.3390/app15158430 - 29 Jul 2025
Viewed by 431
Abstract
The development of Global Positioning System (GPS) technology has contributed in various ways to improving the physical condition of modern football players by enabling the quantification of physical load. Previous studies have reported that the running demands of matches vary depending on playing [...] Read more.
The development of Global Positioning System (GPS) technology has contributed in various ways to improving the physical condition of modern football players by enabling the quantification of physical load. Previous studies have reported that the running demands of matches vary depending on playing position and formation. Over the past decade, despite the widespread use of GPS technology, studies that have investigated the running performance of young football players within the 1-4-3-3 formation are particularly limited. Therefore, the aim of the present study was to create the match running profile of playing positions in the 1-4-3-3 formation among high-level youth football players. An additional objective of the study was to compare the running performance of players between the two halves of a match. This study involved 25 football players (Under-19, U19) from the academy of a professional football club. Data were collected from 18 league matches in which the team used the 1-4-3-3 formation. Positions were categorized as Central Defenders (CDs), Side Defenders (SDs), Central Midfielders (CMs), Side Midfielders (SMs), and Forwards (Fs). The players’ movement patterns were monitored using GPS devices and categorized into six speed zones: Zone 1 (0.1–6 km/h), Zone 2 (6.1–12 km/h), Zone 3 (12.1–18 km/h), Zone 4 (18.1–21 km/h), Zone 5 (21.1–24 km/h), and Zone 6 (above 24.1 km/h). The results showed that midfielders covered the greatest total distance (p = 0.001), while SDs covered the most meters at high and maximal speeds (Zones 5 and 6) (p = 0.001). In contrast, CDs covered the least distance at high speeds (p = 0.001), which is attributed to the specific tactical role of their position. A comparison of the two halves revealed a progressive decrease in the distance covered by the players at high speed: distance in Zone 3 decreased from 1139 m to 944 m (p = 0.001), Zone 4 from 251 m to 193 m (p = 0.001), Zone 5 from 144 m to 110 m (p = 0.001), and maximal sprinting (Zone 6) dropped from 104 m to 78 m (p = 0.01). Despite this reduction, the total distance remained relatively stable (first half: 5237 m; second half: 5046 m, p = 0.16), indicating a consistent overall workload but a reduced number of high-speed efforts in the latter stages. The results clearly show that the tactical role of each playing position in the 1-4-3-3 formation, as well as the area of the pitch in which each position operates, significantly affects the running performance profile. This information should be utilized by fitness coaches to tailor physical loads based on playing position. More specifically, players who cover greater distances at high speeds during matches should be prepared for this scenario within the microcycle by performing similar distances during training. It can also be used for better preparing younger players (U17) before transitioning to the U19 level. Knowing the running profile of the next age category, the fitness coach can prepare the players so that by the end of the season, they are approaching the running performance levels of the next group, with the goal of ensuring a smoother transition. Finally, regarding the two halves of the game, it is evident that fitness coaches should train players during the microcycle to maintain high movement intensities even under fatigue. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

20 pages, 7127 KiB  
Article
Design Method of Array-Type Coupler for UAV Wireless Power Transmission System Based on the Deep Neural Network
by Mingyang Li, Jiacheng Li, Wei Xiao, Jingyi Li and Chenyue Zhou
Drones 2025, 9(8), 532; https://doi.org/10.3390/drones9080532 - 29 Jul 2025
Viewed by 179
Abstract
Unmanned aerial vehicles (UAVs) are commonly used in various fields and industries, but their limited battery life has become a key constraint for their development. Wireless Power Transmission (WPT) technology, with its convenience, durability, intelligence, and unmanned features, significantly enhances UAVs’ battery life [...] Read more.
Unmanned aerial vehicles (UAVs) are commonly used in various fields and industries, but their limited battery life has become a key constraint for their development. Wireless Power Transmission (WPT) technology, with its convenience, durability, intelligence, and unmanned features, significantly enhances UAVs’ battery life and operational range. However, the variety of UAV models and different sizes pose challenges for designing couplers in the WPT system. This paper presents a design method for an array-type coupler in a UAV WPT system that uses a deep neural network. By establishing an electromagnetic 3D structure of the array-type coupler using electromagnetic simulation software, the dimensions of the transmitting and receiving coils are modified to assess how changes in the aperture of the transmitting coil and the length of the receiving coil affect the mutual inductance of the coupler. Furthermore, deep learning methods are utilized to train a high-precision model using the calculated data as the training and testing sets. Finally, taking the FAIRSER-X model UAV as an example, the transmitting and receiving coils are wound, and the feasibility and accuracy of the proposed method are verified through an LCR meter, which notably enhances the design efficiency of UAV WPT systems. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

22 pages, 3267 KiB  
Article
Identifying Deformation Drivers in Dam Segments Using Combined X- and C-Band PS Time Series
by Jonas Ziemer, Jannik Jänichen, Gideon Stein, Natascha Liedel, Carolin Wicker, Katja Last, Joachim Denzler, Christiane Schmullius, Maha Shadaydeh and Clémence Dubois
Remote Sens. 2025, 17(15), 2629; https://doi.org/10.3390/rs17152629 - 29 Jul 2025
Viewed by 216
Abstract
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that [...] Read more.
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that offer either high spatial or temporal resolution. Persistent Scatterer Interferometry (PSI) addresses these limitations, enabling high-resolution monitoring in both domains. Sensors such as TerraSAR-X (TSX) and Sentinel-1 (S-1) have proven effective for deformation analysis with millimeter accuracy. Combining TSX and S-1 datasets enhances monitoring capabilities by leveraging the high spatial resolution of TSX with the broad coverage of S-1. This improves monitoring by increasing PS point density, reducing revisit intervals, and facilitating the detection of environmental deformation drivers. This study aims to investigate two objectives: first, we evaluate the benefits of a spatially and temporally densified PS time series derived from TSX and S-1 data for detecting radial deformations in individual dam segments. To support this, we developed the TSX2StaMPS toolbox, integrated into the updated snap2stamps workflow for generating single-master interferogram stacks using TSX data. Second, we identify deformation drivers using water level and temperature as exogenous variables. The five-year study period (2017–2022) was conducted on a gravity dam in North Rhine-Westphalia, Germany, which was divided into logically connected segments. The results were compared to in situ data obtained from pendulum measurements. Linear models demonstrated a fair agreement between the combined time series and the pendulum data (R2 = 0.5; MAE = 2.3 mm). Temperature was identified as the primary long-term driver of periodic deformations of the gravity dam. Following the filling of the reservoir, the variance in the PS data increased from 0.9 mm to 3.9 mm in RMSE, suggesting that water level changes are more responsible for short-term variations in the SAR signal. Upon full impoundment, the mean deformation amplitude decreased by approximately 1.7 mm toward the downstream side of the dam, which was attributed to the higher water pressure. The last five meters of water level rise resulted in higher feature importance due to interaction effects with temperature. The study concludes that integrating multiple PS datasets for dam monitoring is beneficial particularly for dams where few PS points can be identified using one sensor or where pendulum systems are not installed. Identifying the drivers of deformation is feasible and can be incorporated into existing monitoring frameworks. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

16 pages, 14336 KiB  
Article
Three-Dimensional Binary Marker: A Novel Underwater Marker Applicable for Long-Term Deployment Scenarios
by Alaaeddine Chaarani, Patryk Cieslak, Joan Esteba, Ivan Eichhardt and Pere Ridao
J. Mar. Sci. Eng. 2025, 13(8), 1442; https://doi.org/10.3390/jmse13081442 - 28 Jul 2025
Viewed by 254
Abstract
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the [...] Read more.
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the 2D-markers limitation through a 3D design that enhances resilience and maintains contrast for computer vision detection over extended periods. The proposed solution has been validated through simulation, water tank testing, and long-term sea trials for 5 months. In each stage, the marker was compared based on detection per visible frame and the detection distance. In conclusion, the design demonstrated superior performance compared to standard 2D markers. The proposed Three-Dimensional Binary Marker provides compatibility with widely used fiducial markers, such as ArUco and AprilTag, allowing quick adaptation for users. In terms of fabrication, the Three-Dimensional Binary Marker uses additive manufacturing, offering a low-cost and scalable solution for underwater localization tasks. The proposed marker improved the deployment time of fiducial markers from a couple of days to sixty days and with a range up to seven meters, providing robustness and reliability. As the marker survivability and detection range depend on its size, it is still a valuable innovation for Autonomous Underwater Vehicles, as well as for inspection, maintenance, and monitoring tasks in marine robotics and offshore infrastructure applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 5215 KiB  
Article
Evaluation of Seismicity Induced by Geothermal Development Based on Artificial Neural Network
by Kun Shan, Yanhao Zheng, Wanqiang Cheng, Zhigang Shan and Yanjun Zhang
Energies 2025, 18(15), 4004; https://doi.org/10.3390/en18154004 - 28 Jul 2025
Viewed by 241
Abstract
The process of geothermal energy development may cause induced seismic activities, posing a potential threat to the sustainable utilization and safety of geothermal energy. To effectively evaluate the danger of induced seismic activities, this paper establishes an artificial neural network model and selects [...] Read more.
The process of geothermal energy development may cause induced seismic activities, posing a potential threat to the sustainable utilization and safety of geothermal energy. To effectively evaluate the danger of induced seismic activities, this paper establishes an artificial neural network model and selects nine influencing factors as the input parameters of the neurons. Based on the results of induced seismic activity under different parameter conditions, a sensitivity analysis is conducted for each parameter, and the influence degree of each parameter on the magnitude of induced seismic activity is ranked from largest to smallest as follows: in situ stress state, fault presence or absence, depth, degree of fracture aggregation, maximum in situ stress, distance to fault, injection volume, fracture dip angle, angle between fracture, and fault. Then, the weights of each parameter in the model are modified to improve the accuracy of the model. Finally, through data collection and the literature review, the Pohang EGS project in South Korea is analyzed, and the induced seismic activity influencing factors of the Pohang EGS site are analyzed and evaluated using the induced seismic activity evaluation model. The results show that the induced seismicity are all located below 3.7 km (drilling depth). As the depth increases, the seismicity magnitude also shows a gradually increasing trend. An increase in injection volume and a shortening of the distance from faults will also lead to an increase in the seismicity magnitude. When the injection volume approaches 10,000 cubic meters, the intensity of the seismic activity sharply increases, and the maximum magnitude reaches 5.34, which is consistent with the actual situation. This model can be used for the induced seismic evaluation of future EGS projects and provide a reference for project site selection and induced seismic risk warning. Full article
Show Figures

Figure 1

21 pages, 4095 KiB  
Article
GNSS-Based Multi-Target RDM Simulation and Detection Performance Analysis
by Jinxing Li, Qi Wang, Meng Wang, Youcheng Wang and Min Zhang
Remote Sens. 2025, 17(15), 2607; https://doi.org/10.3390/rs17152607 - 27 Jul 2025
Viewed by 341
Abstract
This paper proposes a novel Global Navigation Satellite System (GNSS)-based remote sensing method for simulating Radar Doppler Map (RDM) features through joint electromagnetic scattering modeling and signal processing, enabling characteristic parameter extraction for both point and ship targets in multi-satellite scenarios. Simulations demonstrate [...] Read more.
This paper proposes a novel Global Navigation Satellite System (GNSS)-based remote sensing method for simulating Radar Doppler Map (RDM) features through joint electromagnetic scattering modeling and signal processing, enabling characteristic parameter extraction for both point and ship targets in multi-satellite scenarios. Simulations demonstrate that the B3I signal achieves a significantly enhanced range resolution (tens of meters) compared to the B1I signal (hundreds of meters), attributable to its wider bandwidth. Furthermore, we introduce an Unscented Particle Filter (UPF) algorithm for dynamic target tracking and state estimation. Experimental results show that four-satellite configurations outperform three-satellite setups, achieving <10 m position error for uniform motion and <18 m for maneuvering targets, with velocity errors within ±2 m/s using four satellites. The joint detection framework for multi-satellite, multi-target scenarios demonstrates an improved detection accuracy and robust localization performance. Full article
Show Figures

Figure 1

10 pages, 6510 KiB  
Proceeding Paper
Energy Consumption Forecasting for Renewable Energy Communities: A Case Study of Loureiro, Portugal
by Muhammad Akram, Chiara Martone, Ilenia Perugini and Emmanuele Maria Petruzziello
Eng. Proc. 2025, 101(1), 7; https://doi.org/10.3390/engproc2025101007 - 25 Jul 2025
Viewed by 586
Abstract
Intensive energy consumption in the building sector remains one of the primary contributors to climate change and global warming. Within Renewable Energy Communities (RECs), improving energy management is essential for promoting sustainability and reducing environmental impact. Accurate forecasting of energy consumption at the [...] Read more.
Intensive energy consumption in the building sector remains one of the primary contributors to climate change and global warming. Within Renewable Energy Communities (RECs), improving energy management is essential for promoting sustainability and reducing environmental impact. Accurate forecasting of energy consumption at the community level is a key tool in this effort. Traditionally, engineering-based methods grounded in thermodynamic principles have been employed, offering high accuracy under controlled conditions. However, their reliance on exhaustive building-level data and high computational costs limits their scalability in dynamic REC settings. In contrast, Artificial Intelligence (AI)-driven methods provide flexible and scalable alternatives by learning patterns from historical consumption and environmental data. This study investigates three Machine Learning (ML) models, Decision Tree (DT), Random Forest (RF), and CatBoost, and one Deep Learning (DL) model, Convolutional Neural Network (CNN), to forecast community electricity consumption using real smart meter data and local meteorological variables. The study focuses on a REC in Loureiro, Portugal, consisting of 172 residential users from whom 16 months of 15 min interval electricity consumption data were collected. Temporal features (hour of the day, day of the week, month) were combined with lag-based usage patterns, including features representing energy consumption at the corresponding time in the previous hour and on the previous day, to enhance model accuracy by leveraging short-term dependencies and daily repetition in usage behavior. Models were evaluated using Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and the Coefficient of Determination R2. Among all models, CatBoost achieved the best performance, with an MSE of 0.1262, MAPE of 4.77%, and an R2 of 0.9018. These results highlight the potential of ensemble learning approaches for improving energy demand forecasting in RECs, supporting smarter energy management and contributing to energy and environmental performance. Full article
Show Figures

Figure 1

23 pages, 3210 KiB  
Article
Design and Optimization of Intelligent High-Altitude Operation Safety System Based on Sensor Fusion
by Bohan Liu, Tao Gong, Tianhua Lei, Yuxin Zhu, Yijun Huang, Kai Tang and Qingsong Zhou
Sensors 2025, 25(15), 4626; https://doi.org/10.3390/s25154626 - 25 Jul 2025
Viewed by 214
Abstract
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time [...] Read more.
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time monitoring of the safety status of the operators and is prone to serious consequences due to human negligence. This paper designs a new type of high-altitude operation safety device based on the STM32F103 microcontroller. This device integrates ultra-wideband (UWB) ranging technology, thin-film piezoresistive stress sensors, Beidou positioning, intelligent voice alarm, and intelligent safety lock. By fusing five modes, it realizes the functions of safety status detection and precise positioning. It can provide precise geographical coordinate positioning and vertical ground distance for the workers, ensuring the safety and standardization of the operation process. This safety device adopts multi-modal fusion high-altitude operation safety monitoring technology. The UWB module adopts a bidirectional ranging algorithm to achieve centimeter-level ranging accuracy. It can accurately determine dangerous heights of 2 m or more even in non-line-of-sight environments. The vertical ranging upper limit can reach 50 m, which can meet the maintenance height requirements of most transmission and distribution line towers. It uses a silicon carbide MEMS piezoresistive sensor innovatively, which is sensitive to stress detection and resistant to high temperatures and radiation. It builds a Beidou and Bluetooth cooperative positioning system, which can achieve centimeter-level positioning accuracy and an identification accuracy rate of over 99%. It can maintain meter-level positioning accuracy of geographical coordinates in complex environments. The development of this safety device can build a comprehensive and intelligent safety protection barrier for workers engaged in high-altitude operations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop