Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (300)

Search Parameters:
Keywords = 3-dipolar cycloadditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 1119 KB  
Short Note
4’-Ethyl 1,2-dimethyl 1’,5-dibenzyl-4,4-dicyano-2’-oxo-5’-phenyl-1’,2’,4a,5-tetrahydro-4H-spiro[benzo[4,5]imidazo[1,2-a]pyridine-3,3’-pyrrole]-1,2,4’-tricarboxylate
by Anna A. Moroz, Maksim V. Dmitriev and Andrey N. Maslivets
Molbank 2026, 2026(1), M2118; https://doi.org/10.3390/M2118 - 4 Jan 2026
Viewed by 112
Abstract
The 1,4-dipolar cycloaddition of the ylidene derivative of 1H-pyrrole-2,3-dione to a dipole generated in situ from 1-benzylbenzimidazole and dimethyl acetylenedicarboxylate proceeds via the exocyclic multiple bond of the ylidene derivative and affords a mixture of diastereomeric spiro[benzo[4,5]imidazo[1,2-a]pyridine-3,3’-pyrroles], which slowly [...] Read more.
The 1,4-dipolar cycloaddition of the ylidene derivative of 1H-pyrrole-2,3-dione to a dipole generated in situ from 1-benzylbenzimidazole and dimethyl acetylenedicarboxylate proceeds via the exocyclic multiple bond of the ylidene derivative and affords a mixture of diastereomeric spiro[benzo[4,5]imidazo[1,2-a]pyridine-3,3’-pyrroles], which slowly epimerized in a solution. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Figure 1

16 pages, 1010 KB  
Article
Synthesis of Trifluoromethylated Spiroisoxazolones via a [3+2] Cycloaddition of Nitrile Imines and Unsaturated Isoxazolones
by Wei Zhang and Da-Ming Du
Molecules 2026, 31(1), 73; https://doi.org/10.3390/molecules31010073 - 24 Dec 2025
Viewed by 284
Abstract
A strategy for constructing trifluoromethylated spiroisoxazolones has been developed. This approach relies on the 1,3-dipolar cycloaddition of CF3-substituted nitrile imines, generated in situ from trifluoroacetyl hydrazonoyl bromides and K2CO3, with the exocyclic double bond of 4-benzylidene-3-methylisoxazol-5(4H [...] Read more.
A strategy for constructing trifluoromethylated spiroisoxazolones has been developed. This approach relies on the 1,3-dipolar cycloaddition of CF3-substituted nitrile imines, generated in situ from trifluoroacetyl hydrazonoyl bromides and K2CO3, with the exocyclic double bond of 4-benzylidene-3-methylisoxazol-5(4H)-ones. The reaction provides a series of trifluoromethylated spiro(isoxazolone-pyrazoline) derivatives in moderate to high yields (up to 93%). The protocol exhibits broad substrate compatibility with respect to aromatic substituents on both reaction partners. To the best of our knowledge, the introduction of a trifluoromethyl group at the 3-position of the pyrazoline ring via nitrile imine cycloaddition chemistry has not been previously reported. The resulting products incorporate a valuable CF3-substituted pyrazoline pharmacophore spiro-fused to an isoxazolone core and may be of interest for medicinal chemistry programs. Full article
(This article belongs to the Special Issue Advances in Heterocyclic Synthesis, 2nd Edition)
Show Figures

Figure 1

9 pages, 1543 KB  
Proceeding Paper
Functionalization and Characterization of New Chitosan Derivatives Obtained by 1,3-Dipolar Cycloaddition Reaction (CuAAC)
by Johana Gutierrez-Guzmán, Christian David Alcívar-León, Verónica Jeanneth Taco-Taco, Ronny Flores and Pablo M. Bonilla-Valladares
Chem. Proc. 2025, 18(1), 34; https://doi.org/10.3390/ecsoc-29-26927 - 13 Nov 2025
Viewed by 185
Abstract
Chitosan is a biopolymer with excellent properties such as biodegradability, biocompatibility, bioactivity, and non-toxicity, making it an attractive material for various applications. In this study, to enhance these properties particularly for the development of food coatings chitosan derivatives (1,2,3-triazoles) were synthesized via microwave-assisted [...] Read more.
Chitosan is a biopolymer with excellent properties such as biodegradability, biocompatibility, bioactivity, and non-toxicity, making it an attractive material for various applications. In this study, to enhance these properties particularly for the development of food coatings chitosan derivatives (1,2,3-triazoles) were synthesized via microwave-assisted 1,3-dipolar cycloaddition (CuAAC) using different terminal alkynes. The resulting compounds were obtained in high yields 79.7–88.0% and characterized by vibrational (IR) and electronic (UV–Visible) spectroscopy. Films were formed by combining the derivatives with PVA and characterized using differential scanning calorimetry (DSC), tensile strength testing, and water vapor permeability analysis. The resulting films exhibited improved mechanical properties, homogeneous thicknesses, low-porosity surfaces, and favorable barrier properties, highlighting their potential applicability as food coating materials. Full article
Show Figures

Figure 1

8 pages, 874 KB  
Communication
Straightforward Synthesis of Thiophene Bioisosteres of the Pyrrolo[3,2-c]quinoline Framework from Martinelline Alkaloids
by Tamer S. Saleh and Abdullah S. Al-Bogami
Molbank 2025, 2025(4), M2084; https://doi.org/10.3390/M2084 - 4 Nov 2025
Viewed by 468
Abstract
We report the first green and diastereoselective synthesis of novel thiophene bioisosteres designed to mimic the privileged pyrrolo[3,2-c]quinoline core of martinelline alkaloids. The key step features an intramolecular 1,3-dipolar cycloaddition of in situ generated non-stabilized azomethine ylides from sarcosine, which proceeds with excellent [...] Read more.
We report the first green and diastereoselective synthesis of novel thiophene bioisosteres designed to mimic the privileged pyrrolo[3,2-c]quinoline core of martinelline alkaloids. The key step features an intramolecular 1,3-dipolar cycloaddition of in situ generated non-stabilized azomethine ylides from sarcosine, which proceeds with excellent yield and diastereoselectivity. This sustainable protocol, leveraging ultrasonic irradiation, recyclable hydrotalcite catalysts, and the green solvent cyclopentyl methyl ether (CPME), efficiently constructs the complex tricyclic framework. The structure and stereochemistry of the novel bioisostere were unambiguously confirmed by X-ray crystallography. This method offers a valuable, eco-friendly approach for diversifying natural product-inspired libraries in medicinal chemistry. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

20 pages, 3491 KB  
Review
2-Azidobenzaldehyde-Enabled Construction of Quinazoline Derivatives: A Review
by Weiqi Qiu, Desheng Zhan, Xiaoming Ma and Xiaofeng Zhang
Int. J. Mol. Sci. 2025, 26(18), 8955; https://doi.org/10.3390/ijms26188955 - 14 Sep 2025
Viewed by 1251
Abstract
Quinazoline is a privileged heterocyclic scaffold commonly found in numerous pharmaceuticals and bioactive natural products, known for its diverse biological activities. The pursuit of efficient and versatile synthetic methods to produce quinazoline derivatives remains a central focus for organic and medicinal chemists, owing [...] Read more.
Quinazoline is a privileged heterocyclic scaffold commonly found in numerous pharmaceuticals and bioactive natural products, known for its diverse biological activities. The pursuit of efficient and versatile synthetic methods to produce quinazoline derivatives remains a central focus for organic and medicinal chemists, owing to the therapeutic potential of these compounds. This paper reviews the innovative use of 2-azidobenzaldehyde-enabled annulation strategies for the synthesis of quinazoline derivatives, including quinazolin-4(3H)-one, 2,3-dihydroquinazolin-4(1H)-one, 3,4-dihydroquinazoline, 3,4-dihydroquinazoline-2(1H)-thione, and 1,2,3,4-tetrahydroquinazoline. Emphasizing both the mechanistic insights and practical advantages, this review highlights the efficacy and applicability of these methods in the domain of heterocyclic chemistry, providing an invaluable framework for future drug discovery and development efforts. Full article
Show Figures

Figure 1

12 pages, 2417 KB  
Article
Synthesis and Characterization of Cholesterol-Based Liquid Crystals Linked with Perfluorinated Alkyl Chains
by Austin Che, Carson O. Zellmann-Parrotta, Homayoun Ghaseminezhad, Jessica Duong, Vance E. Williams and Chang-Chun Ling
Molecules 2025, 30(18), 3731; https://doi.org/10.3390/molecules30183731 - 13 Sep 2025
Cited by 1 | Viewed by 973
Abstract
Two cholesterol-based liquid crystalline materials were synthesized by incorporating perfluorinated acyl chains of different lengths with the help of epichlorohydrin and copper(I)-mediated azide-alkyne 2+3 dipolar cycloaddition chemistries. These materials were characterized by differential scanning calorimetry, cross-polarized optical microscopy and powder X-ray diffraction. The [...] Read more.
Two cholesterol-based liquid crystalline materials were synthesized by incorporating perfluorinated acyl chains of different lengths with the help of epichlorohydrin and copper(I)-mediated azide-alkyne 2+3 dipolar cycloaddition chemistries. These materials were characterized by differential scanning calorimetry, cross-polarized optical microscopy and powder X-ray diffraction. The compound with the longer perfluorinated chain exhibited a smectic A (SmA) phase as confirmed by XRD and POM, while the shorter-chain derivative exhibited diffraction peaks suggestive of both simple SmA* ordering as well as lamellar solid phase exhibiting multilayer ordering. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

21 pages, 4814 KB  
Article
Study of 1,3-Dipolar Cycloaddition Between 4-Acyl-1H-pyrrole-2,3-diones Fused at the [e]-Side with a Heterocyclic Moiety and Diphenylnitrone: A Comprehensive MEDT, Docking Approach and MD Simulation
by Soukaina Ameur, Agnieszka Kącka-Zych, Ziad Moussa, Reem I. Alsantali, Abdellah Zeroual, Mustafa S. Alluhaibi, Abdulrahman A. Alsimaree and Saleh A. Ahmed
Molecules 2025, 30(18), 3718; https://doi.org/10.3390/molecules30183718 - 12 Sep 2025
Cited by 2 | Viewed by 735
Abstract
In this article, the 1,3-dipolar cycloaddition (1,3-DC) reactions between 4-acyl-1H-pyrrole-2,3-diones fused at the [e]-side with a heterocyclic moiety (FPDs) and diphenylnitrone are studied using Molecular Electron Density Theory (MEDT) at different computational levels. An analysis of the global reactivity descriptors has determined the [...] Read more.
In this article, the 1,3-dipolar cycloaddition (1,3-DC) reactions between 4-acyl-1H-pyrrole-2,3-diones fused at the [e]-side with a heterocyclic moiety (FPDs) and diphenylnitrone are studied using Molecular Electron Density Theory (MEDT) at different computational levels. An analysis of the global reactivity descriptors has determined the role of the reagents. FPDs will act as electrophiles, while diphenylnitrone will be a nucleophile. It was found that the reactions proceed according to a one-step but asynchronous mechanism. Additionally, based on the Bonding Evolution Theory (BET) analysis of the model 1,3-DC reaction between FPDs 1b and diphenylnitrone 2, we can distinguish eight different phases. The formation of the first C1-O5 single bond takes place in phase VII through the disappearance of the V(C1) monosynaptic basin and the depopulation of the V″(O5) monosynaptic basin, while the formation of the second C2-C3 single bond begins at the last phase of the reaction through the connection of two V(C2) and V(C3) monosynaptic basins. Based on this, we can classify this reaction as a “one-step two-stage” process. Furthermore, molecular dynamics (MD) simulation analysis up to 100 ns demonstrated the stability of both the 2P3B–Ligand1 and 2P3B–Zidovudine complexes. An enhancer of shape compression was generated for ligand1, whereas Zidovudine generated a more packed and stable hydrogen bond network that would allow a better occupancy of the active site. Full article
(This article belongs to the Special Issue Synthesis, Modification and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

25 pages, 6231 KB  
Review
1,3-Dipolar Cycloaddition of Nitrile Imines and Nitrile Oxides to Exocyclic C=N Bonds—An Approach to Spiro-N-Heterocycles
by Juliana V. Petrova, Maxim E. Kukushkin and Elena K. Beloglazkina
Int. J. Mol. Sci. 2025, 26(17), 8673; https://doi.org/10.3390/ijms26178673 - 5 Sep 2025
Cited by 1 | Viewed by 2200
Abstract
Nitrile imines and nitrile oxides are capable of undergoing (3+2)-cycloaddition reactions at double and triple carbon–carbon, carbon-heteroatom, or heteroatom–heteroatom bonds of various dipolarophiles, forming five-membered heterocyclic compounds. When cyclic dipolarophiles bearing an exocyclic carbon–nitrogen double bond (exo-C=N) are introduced into the reaction with [...] Read more.
Nitrile imines and nitrile oxides are capable of undergoing (3+2)-cycloaddition reactions at double and triple carbon–carbon, carbon-heteroatom, or heteroatom–heteroatom bonds of various dipolarophiles, forming five-membered heterocyclic compounds. When cyclic dipolarophiles bearing an exocyclic carbon–nitrogen double bond (exo-C=N) are introduced into the reaction with these dipoles, spiro-fused 1,2,4-triazoline or 1,2,4-oxadiazoline cycles are formed. Such reactions can provide efficient synthetic approaches to spiro-heterocyclic compounds with enhanced biological activity. This review comprehensively summarizes the literature data on the 1,3-dipolar cycloaddition of nitrile imines and nitrile oxides to exo-C=N bonds for spiro compound synthesis. The research area covers reactions of both saturated and unsaturated dipolarophiles, monocyclic and polycyclic molecules, as well as compounds containing one to three heteroatoms, with special emphasis on systems containing biologically significant heterocyclic pharmacophores. Recent advances in reaction techniques, such as microwave and ultrasonic activation, as well as one-pot and diffusion protocols, are also mentioned. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

24 pages, 2706 KB  
Article
Functionalized Indolizines as Potential Anticancer Agents: Synthetic, Biological and In Silico Investigations
by Roxana Ciorteanu, Catalina Ionica Ciobanu, Narcis Cibotariu, Sergiu Shova, Vasilichia Antoci, Ionel I. Mangalagiu and Ramona Danac
Int. J. Mol. Sci. 2025, 26(17), 8368; https://doi.org/10.3390/ijms26178368 - 28 Aug 2025
Viewed by 1243
Abstract
Three new series of indolizines (5af, 6af and 7ag), functionalized with bromine or ethyl ester substituents on the pyridine ring, were designed and synthesized as promising anticancer agents. The synthesis of indolizine derivatives was [...] Read more.
Three new series of indolizines (5af, 6af and 7ag), functionalized with bromine or ethyl ester substituents on the pyridine ring, were designed and synthesized as promising anticancer agents. The synthesis of indolizine derivatives was carried out using the 1,3-dipolar cycloaddition of pyridinium N-ylides to ethyl propiolate as a key step. Spectral characterization (using NMR, FT-IR, HRMS and X-ray diffraction) showed that two types of cycloadducts 5af and 6af were obtained when the ylides generated by the 3-bromopyridinium salts were used as 1,3-dipoles in Huisgen cycloaddition reactions to ethyl propiolate. The anticancer effect of selected compounds was in vitro assessed against the National Cancer Institute (NCI) panel of 60 human tumor cells, at 10 μM concentration, with three compounds (5c, 6c and 7g) showing promising inhibitory activity on the growth of several cell lines including lung, brain, renal cancer and melanoma, as well as a cytotoxic effect against HOP-62 non-small cell lung cells (34% for compound 5c and 15% for compound 7g) and SNB-75 glioblastoma cells (15% for compound 5c and 14% for derivative 7c). Molecular docking revealed favorable binding affinities for 5c, 6c and 7g (–9.22 to –9.88 kcal/mol) at the colchicine-binding site of tubulin with key interactions involving βASN-258, βALA-317, and βLYS-352 residues for 5c, βASN-258 in case of 6c, and αVAL-181 and βLYS-254 for derivative 7g. According to the in silico ADMET analysis, the active compounds are predicted to exhibit good oral bioavailability, promising drug-like qualities and low toxicity risks. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

7 pages, 1218 KB  
Communication
Synthesis of Novel Spiro-Isoxazolidine Derivatives of 9α-Hydroxyparthenolide
by Mohamed Zaki, Mohammed Loubidi and Sabine Berteina-Raboin
Molbank 2025, 2025(3), M2054; https://doi.org/10.3390/M2054 - 28 Aug 2025
Viewed by 834
Abstract
The 1,3-dipolar cycloaddition reaction was applied to 9α-hydroxyparthenolide, an important sesquiterpene component of Anvillea radiata that was extracted directly from plant material collected in Morocco. Several new spiro-isoxazolidine derivatives were generated on the B-ring of 9α-hydroxyparthenolide (α-methylene-γ-butyrolactone (1)) by 1,3-dipolar cycloaddition [...] Read more.
The 1,3-dipolar cycloaddition reaction was applied to 9α-hydroxyparthenolide, an important sesquiterpene component of Anvillea radiata that was extracted directly from plant material collected in Morocco. Several new spiro-isoxazolidine derivatives were generated on the B-ring of 9α-hydroxyparthenolide (α-methylene-γ-butyrolactone (1)) by 1,3-dipolar cycloaddition of its exocyclic double bond with various nitrones. These compounds were fully characterized by spectroscopic methods. Full article
Show Figures

Figure 1

30 pages, 6753 KB  
Article
Regioselective Synthesis of 5-Substituted 3-(β-d-Glycopyranosyl)isoxazoles and -isoxazolines by 1,3-Dipolar Cycloaddition as Potential Anticancer Agents and Glycogen Phosphorylase Inhibitors
by Tímea Kaszás, Bence Szakács, Márta Bertalan, Tekla Blága, Faria Hameed, Ákos Lengyel, Samreen Saifi, Éva Juhász-Tóth, Luca A. Varga, Tibor Docsa, Adrienn Sipos, Péter Bai, Anita Ábrahám, Attila Kiss-Szikszai, Sándor Kun, György Attila Kiss, János József, László Juhász and Marietta Tóth
Int. J. Mol. Sci. 2025, 26(17), 8167; https://doi.org/10.3390/ijms26178167 - 22 Aug 2025
Viewed by 1362
Abstract
Anhydro-aldose oximes were employed to generate in situ nitrile oxides via a halogenation/base-induced elimination sequence in the presence of NCS and Et3N, which were then used in 1,3-dipolar cycloadditions with alkenes and alkynes to afford 5-substituted 3-(β-d-glycopyranosyl)isoxazole and -isoxazoline [...] Read more.
Anhydro-aldose oximes were employed to generate in situ nitrile oxides via a halogenation/base-induced elimination sequence in the presence of NCS and Et3N, which were then used in 1,3-dipolar cycloadditions with alkenes and alkynes to afford 5-substituted 3-(β-d-glycopyranosyl)isoxazole and -isoxazoline derivatives exclusively. These newly synthesized glycomimetics were evaluated for their potential to act as antagonists of A2780 ovarian cancer cells and as inhibitors of glycogen phosphorylase; however, they exhibited no significant activity. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1414 KB  
Article
Metal-Free A2/B2-Type Azide–Alkyne Polyaddition: Effect of Azides Structure on Their Reactivity and Properties of Polymerization Products
by Andrey Galukhin, Roman Aleshin, Alexander Gerasimov, Alexander Klimovitskii, Roman Nosov, Liana Zubaidullina and Sergey Vyazovkin
Polymers 2025, 17(14), 1909; https://doi.org/10.3390/polym17141909 - 10 Jul 2025
Viewed by 895
Abstract
Non-isothermal calorimetry is performed to study the kinetics of metal-free A2/B2-type azide–alkyne polyaddition between the dipropargyl ether of bisphenol A with different organic diazides. The diazide structure is varied to probe the effect of the nature of a hydrocarbon [...] Read more.
Non-isothermal calorimetry is performed to study the kinetics of metal-free A2/B2-type azide–alkyne polyaddition between the dipropargyl ether of bisphenol A with different organic diazides. The diazide structure is varied to probe the effect of the nature of a hydrocarbon spacer between the azide groups on their reactivity. Isoconversional analysis demonstrates that the polymerization processes are characterized by the same activation energy of 84 kJ mol−1 for all studied diazides. It is found that diazides with aromatic spacers demonstrate ~1.6 times higher reactivity than that of diazides with the alkyl spacer. The difference in the reactivity is explained by the difference in the electronic effects of the hydrocarbon spacers on the azide groups as well as by the difference in their steric availability. The veracity of the obtained kinetic parameters is validated by a polymerization test at the time–temperature conditions predicted from the obtained kinetic data followed by independent assessment of the monomer conversion using FTIR. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

24 pages, 1892 KB  
Article
Construction of 1,2,3-Triazole-Embedded Polyheterocyclic Compounds via CuAAC and C–H Activation Strategies
by Antonia Iazzetti, Dario Allevi, Giancarlo Fabrizi, Yuri Gazzilli, Antonella Goggiamani, Federico Marrone, Francesco Stipa, Karim Ullah and Roberta Zoppoli
Molecules 2025, 30(12), 2588; https://doi.org/10.3390/molecules30122588 - 13 Jun 2025
Viewed by 921
Abstract
Over the past two decades, the copper(I)-catalyzed azide–alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as click chemistry, and C–H bond activation have gained significant attention and have emerged as key synthetic methodologies. In our efforts to synthesize fused nitrogen-containing heterocycles, we developed a palladium-catalyzed [...] Read more.
Over the past two decades, the copper(I)-catalyzed azide–alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as click chemistry, and C–H bond activation have gained significant attention and have emerged as key synthetic methodologies. In our efforts to synthesize fused nitrogen-containing heterocycles, we developed a palladium-catalyzed protocol for the synthesis of functionalized 7,10-dihydropyrrolo[3,2,1-ij][1,2,3]triazolo[4,5-c]quinolines and 5,8-dihydrobenzo[3,4][1,2,3]triazolo[4′,5′:5,6]azepino[1,2-a]indoles from suitable bromo-substituted N-propargyl-indoles. The reaction conditions demonstrate broad functional group compatibility including halogen, alkoxyl, cyano, ketone, and ester, affording the target compounds in good to high yields. Full article
Show Figures

Graphical abstract

15 pages, 1744 KB  
Article
New Conjugatable Platinum(II) Chlorins: Synthesis, Reactivity and Singlet Oxygen Generation
by José Almeida, Giampaolo Barone, Luís Cunha-Silva, Ana F. R. Cerqueira, Augusto C. Tomé, Maria Rangel and Ana M. G. Silva
Molecules 2025, 30(12), 2496; https://doi.org/10.3390/molecules30122496 - 6 Jun 2025
Cited by 1 | Viewed by 848
Abstract
An efficient protocol was developed for the microwave-mediated metallation of 5-(4-methoxycarbonylphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (P1) with bis(benzonitrile)platinum dichloride salt and subsequent 1,3-dipolar cycloaddition of the resulting PtP1 with an azomethine ylide to give two isomeric metallochlorins: PtC1 (main isomer) and PtC3. The methyl [...] Read more.
An efficient protocol was developed for the microwave-mediated metallation of 5-(4-methoxycarbonylphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (P1) with bis(benzonitrile)platinum dichloride salt and subsequent 1,3-dipolar cycloaddition of the resulting PtP1 with an azomethine ylide to give two isomeric metallochlorins: PtC1 (main isomer) and PtC3. The methyl ester group of metalloporphyrin PtP1 and metallochlorin PtC1 was successfully hydrolysed in an alkaline medium to yield the corresponding derivatives PtP2 and PtC2 in moderate-to-good yields. As a proof of concept of the reactivity of the carboxy group in PtP2 and PtC2, these compounds were conjugated with a hydroxylated derivative of indomethacin, a known potent non-steroidal anti-inflammatory, obtaining the conjugates PtP2-Ind and PtC2-Ind. The obtained platinum(II) porphyrins and chlorins were characterized by UV-Vis, NMR spectroscopy and mass spectrometry. The structure of PtP1 was also confirmed by X-ray crystallography. Singlet oxygen generation studies were carried out, as well as theoretical calculations, which demonstrated that the prepared Pt(II) complexes can be considered potential photosensitizers for PDT. Full article
(This article belongs to the Section Colorants)
Show Figures

Graphical abstract

16 pages, 1321 KB  
Article
Solvent-Free 1,3-Dipolar Cycloadditions of Nitrones for a More Sustainable Synthesis of Glycomimetics
by Debora Pratesi, Alessio Morano, Andrea Goti, Francesca Cardona and Camilla Matassini
Reactions 2025, 6(2), 36; https://doi.org/10.3390/reactions6020036 - 5 Jun 2025
Viewed by 2199
Abstract
1,3-Dipolar cycloadditions on nitrone dipoles are key reactions to access five-membered heterocycles, which are useful intermediates in the synthesis of biologically relevant glycomimetics. The good atomic balance and high stereoselectivity characteristic of such reactions make them good candidates for the development of green [...] Read more.
1,3-Dipolar cycloadditions on nitrone dipoles are key reactions to access five-membered heterocycles, which are useful intermediates in the synthesis of biologically relevant glycomimetics. The good atomic balance and high stereoselectivity characteristic of such reactions make them good candidates for the development of green protocols. In the present work, these features were maximized by avoiding the use of organic solvents and considering starting materials derived from biomass. Reactions involving (acyclic and cyclic) carbohydrate-derived nitrones as dipoles and levoglucosenone as dipolarophile were considered. Performing selected 1,3-dipolar cycloadditions in neat conditions showed reduced reaction times, maintaining similar selectivity and yields with respect to the classical protocols. The use of microwave irradiation and orbital shaking were also exploited to increase the sustainability of the synthetic protocols. The collected results highlight the potential of solvent-free 1,3-dipolar cycloadditions in the design of efficient synthetic routes according to green chemistry principles, such as prevention, atom economy, safer solvents and auxiliaries, and use of renewable feedstocks. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Graphical abstract

Back to TopTop