Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = 2D-Ti3C2Tx MXene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 7657 KiB  
Article
Cation Vacancies Anchored Transition Metal Dopants Based on a Few-Layer Ti3C2Tx Catalyst for Enhanced Hydrogen Evolution
by Xiangjie Liu, Xiaomin Chen, Chunlan Huang, Sihan Sun, Ding Yuan and Yuhai Dou
Catalysts 2025, 15(7), 663; https://doi.org/10.3390/catal15070663 - 7 Jul 2025
Viewed by 356
Abstract
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ [...] Read more.
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ LiF/HCl etching process, the aluminum layers in Ti3AlC2 were precisely removed, resulting in a few-layer Ti3C2Tx MXene with an increased interlayer spacing of 12.3 Å. Doping with the transition metals Fe, Co, Ni, and Cu demonstrated that Fe@Ti3C2 provided the optimal HER performance, characterized by an overpotential (η10) of 81 mV at 10 mA cm−2, a low Tafel slope of 33.03 mV dec−1, and the lowest charge transfer resistance (Rct = 5.6 Ω cm2). Mechanistic investigations revealed that Fe’s 3d6 electrons induce an upward shift in the d-band center of MXene, improving hydrogen adsorption free energy and reducing lattice distortion. This research lays a solid foundation for the design of non-precious metal catalysts using MXenes and highlights future avenues in bimetallic synergy and scalability. Full article
Show Figures

Graphical abstract

15 pages, 4032 KiB  
Article
The Effect of Microstructural Changes Produced by Heat Treatment on the Electromagnetic Interference Shielding Properties of Ti-Based MXenes
by Xue Han, Jae Jeong Lee, Ji Soo Kyoung and Yun Sung Woo
Nanomaterials 2025, 15(9), 676; https://doi.org/10.3390/nano15090676 - 29 Apr 2025
Viewed by 459
Abstract
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this [...] Read more.
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this study, we investigated the microstructural changes produced by heat treatment and their effect on the EMI shielding properties of Ti-based MXenes. Ti3C2TX and Ti2CTX films were prepared using vacuum filtration and annealed at temperatures up to 300 °C. The microstructures and chemical bonding properties of these heat-treated Ti3C2TX and Ti2CTX films were analyzed, and the EMI shielding effectiveness was measured in the X-band and THz frequency range. The porous Ti3C2TX film showed higher EM absorption than that calculated using the transfer matrix method. On the other hand, the Ti2CTX films had a more densely stacked structure and lower EM absorption. As the heat treatment temperature increased, Ti3C2TX developed a more porous structure without significant changes in its chemical bonding. Its EM absorption per unit of thickness increased up to 6 dB/μm, while the reflectance remained constant at less than 1 dB/μm after heat treatment. This suggested that the heat treatment of Ti-based MXenes can increase the porosity of the film by removing residual organics without changing the chemical bonds, thereby increasing electromagnetic shielding through absorption. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

14 pages, 9159 KiB  
Article
Copper Nanoclusters Anchored on Crumpled N-Doped MXene for Ultra-Sensitive Electrochemical Sensing
by Hanxue Yang, Chao Rong, Shundong Ge, Tao Wang, Bowei Zhang and Fu-Zhen Xuan
Sensors 2025, 25(8), 2508; https://doi.org/10.3390/s25082508 - 16 Apr 2025
Viewed by 498
Abstract
Simultaneous detection of dopamine (DA) and uric acid (UA) is essential for diagnosing neurological and metabolic diseases but hindered by overlapping electrochemical signals. We present an ultrasensitive electrochemical sensor using copper nanoclusters anchored on nitrogen-doped crumpled Ti3C2Tx MXene [...] Read more.
Simultaneous detection of dopamine (DA) and uric acid (UA) is essential for diagnosing neurological and metabolic diseases but hindered by overlapping electrochemical signals. We present an ultrasensitive electrochemical sensor using copper nanoclusters anchored on nitrogen-doped crumpled Ti3C2Tx MXene (Cu-N/Ti3C2Tx). The engineered 3D crumpled architecture prevents MXene restacking, exposes active sites, and enhances ion transport, while Cu nanoclusters boost electrocatalytic activity via accelerated electron transfer. Structural analyses confirm uniform Cu dispersion (3.0 wt%), Ti-N bonding, and strain-induced wrinkles, synergistically improving conductivity. The sensor achieves exceptional sensitivity (1958.3 and 1152.7 μA·mM−1·cm−2 for DA/UA), ultralow detection limits (0.058 and 0.099 μM for DA/UA), rapid response (<1.5 s), and interference resistance (e.g., ascorbic acid). Differential pulse voltammetry enables independent linear detection ranges (DA: 2–60 μM; UA: 5–100 μM) in biofluids, with 94.4% stability retention over 7 days. The designed sensor exhibits excellent capabilities for DA and UA detection. This work provides a novel design strategy for developing high-performance electrochemical sensors. Full article
Show Figures

Figure 1

18 pages, 7546 KiB  
Article
Few-Layered MXene Modulating In Situ Growth of Carbon Nanotubes for Enhanced Microwave Absorption
by Qing Tang, Qi Fan, Lei He, Ping Yu, Qing Huang, Yuanming Chen, Bingbing Fan and Kun Liang
Molecules 2025, 30(7), 1625; https://doi.org/10.3390/molecules30071625 - 5 Apr 2025
Viewed by 602
Abstract
MXene is widely used in the fields of microwave absorption and electromagnetic shielding to balance electromagnetic pollution with the development of communication technologies and human health, due to its excellent surface functional groups and tunable electronic properties. Although pure multilayered MXene has an [...] Read more.
MXene is widely used in the fields of microwave absorption and electromagnetic shielding to balance electromagnetic pollution with the development of communication technologies and human health, due to its excellent surface functional groups and tunable electronic properties. Although pure multilayered MXene has an excellent accordion-like structure, the weak dielectric loss and lack of magnetic loss result in poor microwave absorption performance. Here, we propose a strategy for the catalytic growth of CNTs by the electrophoretic deposition of adsorbed metal ions, leading to the successful preparation of Ni-MWCNTs/Ti3C2Tx composites with a “layer-by-layer” structure, achieved through in situ regulated growth of CNTs. By introducing dielectric–magnetic synergy to improve the impedance matching conditions, and by regulating the diameter of the CNTs to alter the electromagnetic parameters of Ni-MWCNTs/Ti3C2Tx, the 2-Ni-MWCNTs/Ti3C2Tx composite achieves the best reflection loss (RL) value of −44.08 dB and an effective absorption bandwidth of 1.52 GHz at only 2.49 mm thickness. This unique layered structure and the regulation strategy provide new opportunities for the development of few-layered MXene composites. Full article
Show Figures

Figure 1

14 pages, 2671 KiB  
Article
Ion Transport Mechanism in the Sub-Nano Channels of Edge-Capping Modified Transition Metal Carbides/Nitride Membranes
by Yinan Li, Xiangmin Xu, Xiaofeng Fang and Fang Li
Separations 2025, 12(4), 78; https://doi.org/10.3390/separations12040078 - 28 Mar 2025
Viewed by 404
Abstract
Edge-capping modified MXene membranes with new channels created by lateral nanosheets are of great research significance. After introducing tripolyphosphate (STPP) to Ti edges of Ti3C2Tx nanosheets and fabricating the STPP-MXene membranes edge-capping method, this research investigated the performance [...] Read more.
Edge-capping modified MXene membranes with new channels created by lateral nanosheets are of great research significance. After introducing tripolyphosphate (STPP) to Ti edges of Ti3C2Tx nanosheets and fabricating the STPP-MXene membranes edge-capping method, this research investigated the performance optimization mechanism of STPP-modified MXene membranes in terms of salt permeability (NaCl, Na2SO4, MgCl2, and MgSO4) and transmembrane energy barriers (Esalt) through the concentration gradient permeation test. Experimental results demonstrated an approximately 1.86-fold enhancement in salt flux (Js) compared to the MXene membranes. The solution–diffusion model was also introduced to evaluate the salt solubility (Ks) and diffusivity (Ds) during permeation. Furthermore, analysis of transmembrane energy barriers revealed that STPP modification induced significantly larger reductions in activation energy for magnesium salts (MgSO4: 55.1%; MgCl2: 47.4%) compared to sodium salts (NaCl: 30.5%; Na2SO4: 30.9%). This phenomenon indicated the weakened electrostatic interactions between high-valent Mg2+ and the modified lateral membrane Ti edges, whereas the limited charge density of Na+ resulted in relatively modest optimization. The results highlight the contribution of STPP capping on the edges of adjacent lateral nanosheets. Therefore, the modification increased the transportation rate of cations across the MXene membrane by more than twice, thus advancing the application of 2D MXene membranes in resource recovery. Full article
(This article belongs to the Special Issue Membrane Separation Process for Water Treatment)
Show Figures

Figure 1

11 pages, 2995 KiB  
Article
Ti3AlC2 MAX/MXene for Hydrogen Generation via Photocatalytic Hydride Hydrolysis
by Hani Nasser Abdelhamid
Inorganics 2025, 13(2), 44; https://doi.org/10.3390/inorganics13020044 - 5 Feb 2025
Cited by 4 | Viewed by 916
Abstract
Reducing dehydrogenation temperature while preserving high hydrogen generation capacity obstructs the hydrolysis of sodium borohydrides (NaBH4). The two-dimensional (2D) MAX phase of titanium aluminum carbide (Ti3AlC2) and MXene (Ti3C2Tx) multilayers was [...] Read more.
Reducing dehydrogenation temperature while preserving high hydrogen generation capacity obstructs the hydrolysis of sodium borohydrides (NaBH4). The two-dimensional (2D) MAX phase of titanium aluminum carbide (Ti3AlC2) and MXene (Ti3C2Tx) multilayers was investigated for hydrogen generation via NaBH4 hydrolysis with and without light. The material was characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS). The activity of Ti3AlC2 was significantly enhanced by the integration of UV light radiation during hydrolysis. Ti3AlC2/Ti3C2Tx improved the dehydrogenation rates of NaBH4 at ambient conditions and maintained high hydrogen generation rates (HGRs) over time compared to a conventional method. It exhibited a HGR of 200–300 mL·min−1·g−1. Photo-assisted hydrolysis over the catalyst can be maintained for several times at ambient temperature. The catalyst demonstrated effective performance even after five cycles of usage. Full article
Show Figures

Figure 1

38 pages, 30937 KiB  
Review
Surface-Modification Strategy to Produce Highly Anticorrosive Ti3C2Tx MXene-Based Polymer Composite Coatings: A Mini-Review
by Shufang Zhang, Guoqin Zhang, Liang Fang, Zhiheng Wang, Fang Wu, Gaobin Liu, Qirui Wang and Hongen Nian
Materials 2025, 18(3), 653; https://doi.org/10.3390/ma18030653 - 1 Feb 2025
Cited by 5 | Viewed by 1580
Abstract
MXenes are a group of novel two-dimensional (2D) materials with merits such as large specific surface area, abundant surface-functional groups, high chemical activity, excellent mechanical properties, high hydrophilicity, and good compatibility with various polymers. In recent years, many novel high-performance organic anticorrosion coatings [...] Read more.
MXenes are a group of novel two-dimensional (2D) materials with merits such as large specific surface area, abundant surface-functional groups, high chemical activity, excellent mechanical properties, high hydrophilicity, and good compatibility with various polymers. In recent years, many novel high-performance organic anticorrosion coatings using MXenes as nanofillers have been reported and have attracted widespread attention. As the first successfully prepared MXene material, Ti3C2Tx is the most extensively studied and typical member of the MXene family. Therefore, it is taken as the representative of its family, and the status of Ti3C2Tx MXene/epoxy resin (EP) and MXene/waterborne polyurethane (WPU) polymer anticorrosive composite coatings is reviewed. Firstly, the structure, characteristics, and main synthesis methods of MXenes are briefly introduced. Then, the latest progress of four surface-modification strategies to improve the dispersion, compatibility, stability, and anti-aggregation properties of MXenes, namely functionalization grafting, orientation regulation, heterostructure nanocomposite design, and stabilization and greening treatment, are analyzed and summarized. Finally, the current challenges and future opportunities regarding MXene-based corrosion-resistant organic composite coatings are discussed prospectively. Full article
(This article belongs to the Special Issue Corrosion Behavior and Mechanical Properties of Metallic Materials)
Show Figures

Figure 1

33 pages, 7684 KiB  
Review
Unlocking the Potential of Ti3C2Tx MXene: Present Trends and Future Developments of Gas Sensing
by Aviraj M. Teli, Sagar M. Mane, Rajneesh Kumar Mishra, Wookhee Jeon and Jae Cheol Shin
Micromachines 2025, 16(2), 159; https://doi.org/10.3390/mi16020159 - 29 Jan 2025
Cited by 1 | Viewed by 2164
Abstract
In recent years, the need for future developments in sensor technology has arisen out of the changing landscape, such as pollution monitoring, industrial safety, and healthcare. MXenes, a 2D class of transition metal carbides, nitrides, and carbonitrides, have emerged as a particularly promising [...] Read more.
In recent years, the need for future developments in sensor technology has arisen out of the changing landscape, such as pollution monitoring, industrial safety, and healthcare. MXenes, a 2D class of transition metal carbides, nitrides, and carbonitrides, have emerged as a particularly promising group in part due to their exceptionally high conductivity, large area, and tunable surface chemistry. Proposed future research directions, including material modification and novel sensor designs, are presented to maximize Ti3C2Tx MXene-based sensors for various gas sensing applications. While recent progress in Ti3C2Tx MXene-based gas sensors is reviewed, we consolidate their material properties, fabrication strategy, and sensing mechanisms. Further, the significant progress on the synthesis and applications of Ti3C2Tx MXene-based gas sensors, as well as the innovative technologies developed, will be discussed in detail. Interestingly, the high sensitivity, selectivity, and quick response times identified in recent studies are discussed, with specificity and composite formation highlighted to have a significant influence on sensor performance. In addition, this review highlights the limitations witnessed in real-life implementability, including stability, the possibility of achieving reproducible results, and interaction with currently available technologies. Prospects for further work are considered, emphasizing increased production scale, new techniques for synthesis, and new application areas for Ti3C2Tx MXenes, including electronic nose and environmental sensing. Contemplating the existing works, further directions and the development framework for Ti3C2Tx MXene-based gas sensors are discussed. Full article
(This article belongs to the Special Issue Gas Sensors: From Fundamental Research to Applications)
Show Figures

Figure 1

17 pages, 3778 KiB  
Article
High-Performance Ammonia QCM Sensor Based on SnO2 Quantum Dots/Ti3C2Tx MXene Composites at Room Temperature
by Chong Li, Ran Tao, Jinqiao Hou, Huanming Wang, Chen Fu and Jingting Luo
Nanomaterials 2024, 14(22), 1835; https://doi.org/10.3390/nano14221835 - 16 Nov 2024
Cited by 2 | Viewed by 1627
Abstract
Ammonia (NH3) gas is prevalent in industrial production as a health hazardous gas. Consequently, it is essential to develop a straightforward, reliable, and stable NH3 sensor capable of operating at room temperature. This paper presents an innovative approach to modifying [...] Read more.
Ammonia (NH3) gas is prevalent in industrial production as a health hazardous gas. Consequently, it is essential to develop a straightforward, reliable, and stable NH3 sensor capable of operating at room temperature. This paper presents an innovative approach to modifying SnO2 colloidal quantum dots (CQDs) on the surface of Ti3C2Tx MXene to form a heterojunction, which introduces a significant number of adsorption sites and enhances the response of the sensor. Zero-dimensional (0D) SnO2 quantum dots and two-dimensional (2D) Ti3C2Tx MXene were prepared by solvothermal and in situ etching methods, respectively. The impact of the mass ratio between two materials on the performance was assessed. The sensor based on 12 wt% Ti3C2Tx MXene/SnO2 composites demonstrates excellent performance in terms of sensitivity and response/recovery speed. Upon exposure to 50 ppm NH3, the frequency shift in the sensor is −1140 Hz, which is 5.6 times larger than that of pure Ti3C2Tx MXene and 2.8 times higher than that of SnO2 CQDs. The response/recovery time of the sensor for 10 ppm NH3 was 36/54 s, respectively. The sensor exhibited a theoretical detection limit of 73 ppb and good repeatability. Furthermore, a stable sensing performance can be maintained after 30 days. The enhanced sensor performance can be attributed to the abundant active sites provided by the accumulation/depletion layer in the Ti3C2Tx/SnO2 heterojunction, which facilitates the adsorption of oxygen molecules. This work promotes the gas sensing application of MXenes and provides a way to improve gas sensing performance. Full article
Show Figures

Graphical abstract

11 pages, 1643 KiB  
Communication
Silica–Ti3C2Tx MXene Nanoarchitectures with Simultaneous Adsorption and Photothermal Properties
by Eduardo Ruiz-Hitzky, Mabrouka Ounis, Mohamed Kadri Younes and Javier Pérez-Carvajal
Materials 2024, 17(17), 4273; https://doi.org/10.3390/ma17174273 - 29 Aug 2024
Cited by 1 | Viewed by 1244
Abstract
Layered Ti3C2Tx MXene has been successfully intercalated and exfoliated with the simultaneous generation of a 3D silica network by treating its cationic surfactant intercalation compound (MXene-CTAB) with an alkoxysilane (TMOS), resulting in a MXene–silica nanoarchitecture, which has high [...] Read more.
Layered Ti3C2Tx MXene has been successfully intercalated and exfoliated with the simultaneous generation of a 3D silica network by treating its cationic surfactant intercalation compound (MXene-CTAB) with an alkoxysilane (TMOS), resulting in a MXene–silica nanoarchitecture, which has high porosity and specific surface area, together with the intrinsic properties of MXene (e.g., photothermal response). The ability of these innovative MXene silica materials to induce thermal activation reactions of previously adsorbed compounds is demonstrated here using NIR laser irradiation. For this purpose, the pinacol rearrangement reaction has been selected as a first model example, testing the effectiveness of NIR laser-assisted photothermal irradiation in these processes. This work shows that Ti3C2Tx-based nanoarchitectures open new avenues for applications that rely on the combined properties inherent to their integrated nanocomponents, which could be extended to the broader MXene family. Full article
Show Figures

Figure 1

14 pages, 6351 KiB  
Article
Comparative Study on the Lubrication of Ti3C2TX MXene and Graphene Oxide Nanofluids for Titanium Alloys
by Yaru Tian, Ye Yang, Heyi Zhao, Lina Si, Hongjuan Yan, Zhaoliang Dou, Fengbin Liu and Yanan Meng
Lubricants 2024, 12(8), 285; https://doi.org/10.3390/lubricants12080285 - 9 Aug 2024
Cited by 1 | Viewed by 1417
Abstract
Titanium alloys are difficult to machine and have poor tribological properties. Nanoparticles have good cooling and lubricating properties, which can be used in metal cutting fluid. The lubrication characteristics of the two-dimensional materials Ti3C2TX MXene and graphene oxide [...] Read more.
Titanium alloys are difficult to machine and have poor tribological properties. Nanoparticles have good cooling and lubricating properties, which can be used in metal cutting fluid. The lubrication characteristics of the two-dimensional materials Ti3C2TX MXene and graphene oxide in water-based fluid for titanium alloys were comparatively investigated in this paper. Graphene oxide had smaller friction coefficients and wear volume than Ti3C2TX MXene nanofluid. As to the mechanism, MXene easily formed TiO2 for the tribo-chemical reaction, which accelerated wear. Moreover, GO nanofluid can form a more uniform and stable friction layer between the frictional interface, which reduces the friction coefficient and decreases the adhesive wear. The effects of different surfactants on the lubricating properties of MXene were further investigated. It was found that the cationic surfactant Hexadecyl trimethyl ammonium chloride (1631) had the lowest friction coefficient and anti-wear properties for the strong electrostatic attraction with MXene nanoparticles. The results of this study indicate that 2D nanoparticles, especially graphene oxide, could improve the lubricating properties of titanium alloys. It provides insight into the application of water-based nanofluids for difficult-to-machine materials to enhance surface quality and cutting efficiency. The developed nanofluid, which can lubricate titanium alloys, effectively has very broad applications in prospect. Full article
(This article belongs to the Special Issue Advanced Polymeric and Colloidal Lubricants)
Show Figures

Figure 1

28 pages, 9261 KiB  
Review
Recent Progress in MXenes-Based Materials for Gas Sensors and Photodetectors
by Praveen Kumar, Waseem Raza, Sanjeevamuthu Suganthi, Mohd Quasim Khan, Khursheed Ahmad and Tae Hwan Oh
Chemosensors 2024, 12(8), 147; https://doi.org/10.3390/chemosensors12080147 - 1 Aug 2024
Cited by 1 | Viewed by 2914
Abstract
Recently, a new class of two-dimensional (2D) materials known as MXenes, such as Ti3C2Tx, have received significant attention due to their exceptional structural and physiochemical properties. MXenes are widely used in a variety of applications, including sensors, [...] Read more.
Recently, a new class of two-dimensional (2D) materials known as MXenes, such as Ti3C2Tx, have received significant attention due to their exceptional structural and physiochemical properties. MXenes are widely used in a variety of applications, including sensors, due to their excellent charge transport, high catalytic, and conducive properties, making them superior materials for sensing applications. Sensing technology has attracted significant interest from the scientific community due to its wide range of applications. In particular, gas sensing technology is essential in today’s world due to its vital role in detecting various gases. Gas sensors have an essential role in real-time environmental monitoring health assessment, and the demand for air quality monitoring is driving the gas sensor market forward. Similarly, optical sensors are a related technology that can rapidly detect toxic substances and biomaterials using optical absorption spectroscopy. MXenes are highly desirable for gas and optical sensing applications due to their abundant active sites, metallic conductivity, optical properties, customizable surface chemistry, and exceptional stability. In this review article, we compile recent advancements in the development of gas sensors and optical sensors using MXenes and their composite materials. This review article would be beneficial for researchers working on the development of MXenes-based gas sensors and optical sensors. Full article
Show Figures

Figure 1

12 pages, 3457 KiB  
Article
Microwave-Assisted Synthesis of Few-Layer Ti3C2Tx Loaded with Ni0.5Co0.5Se2 Nanospheres for High-Performance Supercapacitors
by Linghong Wu, Juan Shen and Bo Jin
Materials 2024, 17(10), 2292; https://doi.org/10.3390/ma17102292 - 12 May 2024
Cited by 2 | Viewed by 1934
Abstract
Transition metal selenides have high theoretical capacities, making them attractive candidates for energy storage applications. Here, using the microwave-absorbing properties of the materials, we designed a simple and efficient microwave-assisted synthesis method to produce a composite made of nanospheres Ni0.5Co0.5 [...] Read more.
Transition metal selenides have high theoretical capacities, making them attractive candidates for energy storage applications. Here, using the microwave-absorbing properties of the materials, we designed a simple and efficient microwave-assisted synthesis method to produce a composite made of nanospheres Ni0.5Co0.5Se2 (NCSe) and highly conductive, stable Ti3C2Tx MXene. The Ni0.5Co0.5Se2/Ti3C2Tx composites are characterized via scanning electron microscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The findings indicate that 3D Ni0.5Co0.5Se2 bimetallic selenide nanospheres were uniformly loaded within the few-layer Ti3C2Tx MXene wrapper in a short period. The optimal NCSe/Ti3C2Tx−2 electrode can demonstrate a specific capacitance of 752.4 F g–1 at 1 A g–1. Furthermore, the asymmetric supercapacitor combined with activated carbon maintains a capacitance retention of 110% even after 5000 cycles. The method of directly growing active substances on few-layer Ti3C2Tx MXene will provide inspiration for the manufacture of high-pseudocapacitance supercapacitors. Full article
Show Figures

Graphical abstract

15 pages, 3719 KiB  
Article
Engineering Ti3C2-MXene Surface Composition for Excellent Li+ Storage Performance
by Minghua Chen, Qi Fan, Ping Yu, Ke Chen, Peng Li and Kun Liang
Molecules 2024, 29(8), 1731; https://doi.org/10.3390/molecules29081731 - 11 Apr 2024
Cited by 4 | Viewed by 2670
Abstract
Exploiting novel materials with high specific capacities is crucial for the progress of advanced energy storage devices. Intentionally constructing functional heterostructures based on a variety of two-dimensional (2D) substances proves to be an extremely efficient method for capitalizing on the shared benefits of [...] Read more.
Exploiting novel materials with high specific capacities is crucial for the progress of advanced energy storage devices. Intentionally constructing functional heterostructures based on a variety of two-dimensional (2D) substances proves to be an extremely efficient method for capitalizing on the shared benefits of these materials. By elaborately designing the structure, a greatly escalated steadiness can be achieved throughout electrochemical cycles, along with boosted electron transfer kinetics. In this study, chemical vapor deposition (CVD) was utilized to alter the surface composition of multilayer Ti3C2Tx MXene, contributing to contriving various layered heterostructure materials through a precise adjustment of the reaction temperature. The optimal composite materials at a reaction temperature of 500 °C (defined as MX500), incorporating MXene as the conductive substrate, exhibited outstanding stability and high coulombic efficiency during electrochemical cycling. Meanwhile, the reactive sites are increased by using TiS2 and TiO2 at the heterogeneous interfaces, which sustains a specific capacity of 449 mAh g−1 after 200 cycles at a current density of 0.1 A g−1 and further demonstrates their exceptional electrochemical characteristics. Additionally, the noted pseudocapacitive properties, like MXene materials, further highlight the diverse capabilities of intuitive material design. This study illuminates the complex details of surface modification in multilayer MXene and offers a crucial understanding of the strategic creation of heterostructures, significantly impacting sophisticated electrochemical applications. Full article
Show Figures

Figure 1

14 pages, 3762 KiB  
Article
Broadening the Voltage Window of 3D-Printed MXene Micro-Supercapacitors with a Hybridized Electrolyte
by Xin Jiang, Haowen Jia, Xuan Chen, Jiajia Li, Yanling Chen, Jin Jia, Guangzhen Zhao, Lianghao Yu, Guang Zhu and Yuanyuan Zhu
Molecules 2024, 29(6), 1393; https://doi.org/10.3390/molecules29061393 - 20 Mar 2024
Cited by 4 | Viewed by 2031
Abstract
The burgeoning demand for miniaturized energy storage devices compatible with the miniaturization trend of electronic technologies necessitates advancements in micro-supercapacitors (MSCs) that promise safety, cost efficiency, and high-speed charging capabilities. However, conventional aqueous MSCs face a significant limitation due to their inherently narrow [...] Read more.
The burgeoning demand for miniaturized energy storage devices compatible with the miniaturization trend of electronic technologies necessitates advancements in micro-supercapacitors (MSCs) that promise safety, cost efficiency, and high-speed charging capabilities. However, conventional aqueous MSCs face a significant limitation due to their inherently narrow electrochemical potential window, which restricts their operational voltage and energy density compared to their organic and ionic liquid counterparts. In this study, we introduce an innovative aqueous NaCl/H2O/EG hybrid gel electrolyte (comprising common salt (NaCl), H2O, ethylene glycol (EG), and SiO2) for Ti3C2Tx MXene MSCs that substantially widens the voltage window to 1.6 V, a notable improvement over traditional aqueous system. By integrating the hybrid electrolyte with 3D-printed MXene electrodes, we realized MSCs with remarkable areal capacitance (1.51 F cm−2) and energy density (675 µWh cm−2), significantly surpassing existing benchmarks for aqueous MSCs. The strategic formulation of the hybrid electrolyte—a low-concentration NaCl solution with EG—ensures both economic and environmental viability while enabling enhanced electrochemical performance. Furthermore, the MSCs fabricated via 3D printing technology exhibit exceptional flexibility and are suitable for modular device integration, offering a promising avenue for the development of high-performance, sustainable energy storage devices. This advancement not only provides a tangible solution to the challenge of limited voltage windows in aqueous MXene MSCs but also sets a new precedent for the design of next-generation MSCs that align with the needs of an increasingly microdevice-centric world. Full article
(This article belongs to the Special Issue 2D Nanosheets and Their Nanohybrids)
Show Figures

Figure 1

Back to TopTop