Engineering Ti3C2-MXene Surface Composition for Excellent Li+ Storage Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Chemical Composition
2.2. Evolution of Structure and Surface
2.3. Electrochemical Characterizations and the Lithium Ion Storage Mechanism
2.4. Electrochemical Performance
2.5. Electrochemical Kinetics
3. Materials and Methods
3.1. Materials
3.2. Preparation of MX-n Heterostructures
3.2.1. Preparation of MXenes
3.2.2. Preparation of MX-n Heterostructures
3.2.3. Preparation of Electrode and Cell Assembly
3.3. Material Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blomgren, G.E. The development and future of lithium ion batteries. J. Electrochem. Soc. 2016, 164, A5019. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 2018, 1, 35–53. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, H.; Wu, Z.-S. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy Environ. Sci. 2023, 16, 4834–4871. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, D.; Yin, Z.; Yan, Q.; Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 2014, 10, 3480–3498. [Google Scholar] [CrossRef] [PubMed]
- Yun, Q.; Li, L.; Hu, Z.; Lu, Q.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, Z.; Shuck, C.E.; Liang, G.; Gogotsi, Y.; Zhi, C. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389–404. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, P.; Zhang, X.; Yin, H.; Yu, F.; Ma, J. Two-dimensional hetero-structured TiO2/TiS2 nanosheets for capacitive deionization. Chem. Mat. 2023, 35, 2069–2077. [Google Scholar] [CrossRef]
- Whittingham, M.S. Intercalation chemistry and energy storage. J. Solid State Chem. 1979, 29, 303–310. [Google Scholar] [CrossRef]
- Whittingham, M.S. Electrical energy storage and intercalation chemistry. Science 1976, 192, 1126–1127. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, N.; Sun, B.; Zhong, L.; He, L.; Komarneni, S.; Hu, W. MoSe2 hollow nanospheres with expanded selenide interlayers for high-performance aqueous zinc-ion batteries. J. Colloid. Interface Sci. 2023, 650, 456–465. [Google Scholar] [CrossRef]
- Li, Q.; Yao, Z.; Wu, J.; Mitra, S.; Hao, S.; Sahu, T.S.; Li, Y.; Wolverton, C.; Dravid, V.P. Intermediate phases in sodium intercalation into MoS2 nanosheets and their implications for sodium-ion batteries. Nano Energy 2017, 38, 342–349. [Google Scholar] [CrossRef]
- Bang, G.S.; Nam, K.W.; Kim, J.Y.; Shin, J.; Choi, J.W.; Choi, S.Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 7084–7089. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Stöhr, M.; Van Voorhis, T.; Tkatchenko, A. Theory and practice of modeling van der Waals interactions in electronic-structure calculations. Chem. Soc. Rev. 2019, 48, 4118–4154. [Google Scholar] [CrossRef]
- Guo, Y.-J.; Wang, P.-F.; Niu, Y.-B.; Zhang, X.-D.; Li, Q.; Yu, X.; Fan, M.; Chen, W.-P.; Yu, Y.; Liu, X. Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nat. Commun. 2021, 12, 5267. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Etman, A.S.; Zhou, J.; Rosen, J. Ti1.1V0.7CrxNb1.0Ta0.6C3Tz high-entropy MXene freestanding films for charge storage applications. Electrochem. Commun. 2022, 137, 107264. [Google Scholar] [CrossRef]
- Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 2021, 33, e2103393. [Google Scholar] [CrossRef] [PubMed]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, P.; Soomro, R.A.; Zhu, Q.; Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 2021, 33, e2103148. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Li, Y.; Li, M.; Chen, K.; Liang, K.; Chen, G.; Lu, J.; Palisaitis, J.; Persson, P.O.; Eklund, P. Chemical scissor–mediated structural editing of layered transition metal carbides. Science 2023, 379, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- Kamysbayev, V.; Filatov, A.S.; Hu, H.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R.F.; Talapin, D.V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xie, X.; Choi, S.; Zhao, Y.; Liu, H.; Wang, C.; Chang, S.; Wang, G. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 12445–12452. [Google Scholar] [CrossRef]
- Wang, Y.; Song, J.; Wong, W.Y. Constructing 2D sandwich-like MOF/MXene heterostructures for durable and fast aqueous Zinc-Ion batteries. Angew. Chem.-Int. Edit. 2022, 135, e202218343. [Google Scholar] [CrossRef]
- Yu, L.; Xiong, Z.; Zhang, W.; Wang, D.; Shi, H.; Wang, C.; Niu, X.; Wang, C.; Yao, L.; Yan, X. SnO2/SnS2 heterostructure@ MXene framework as high performance anodes for hybrid lithium-ion capacitors. Electrochim. Acta 2022, 409, 139981. [Google Scholar] [CrossRef]
- Ipadeola, A.K.; Haruna, A.B.; Gaolatlhe, L.; Lebechi, A.K.; Meng, J.; Pang, Q.; Eid, K.; Abdullah, A.M.; Ozoemena, K.I. Efforts at enhancing bifunctional electrocatalysis and related events for rechargeable zinc-air batteries. ChemElectroChem 2021, 8, 3998–4018. [Google Scholar] [CrossRef]
- Peng, Q.; Rehman, J.; Eid, K.; Alofi, A.S.; Laref, A.; Albaqami, M.D.; Alotabi, R.G.; Shibl, M.F. Vanadium carbide V4C3 MXene as an efficient anode for Li-ion and Na-ion batteries. Nanomaterials 2022, 12, 2825. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Chen, L.; Jing, Y.; Zhu, Y.; Dai, J.; Meng, A.; Sun, C.; Jia, J.; Li, Z. Intensifying electrochemical activity of Ti3C2TxMXene via customized interlayer structure and surface chemistry. Molecules 2023, 28, 5776. [Google Scholar] [CrossRef]
- Liang, K.; Matsumoto, R.A.; Zhao, W.; Osti, N.C.; Popov, I.; Thapaliya, B.P.; Fleischmann, S.; Misra, S.; Prenger, K.; Tyagi, M.; et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater. 2021, 31, 2104007. [Google Scholar] [CrossRef]
- Hong Ng, V.M.; Huang, H.; Zhou, K.; Lee, P.S.; Que, W.; Xu, J.Z.; Kong, L.B. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: Synthesis and applications. J. Mater. Chem. A 2017, 5, 3039–3068. [Google Scholar] [CrossRef]
- Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P.O.A.; Eklund, P.; Hultman, L.; Li, M.; et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, Q.; Zhu, K.; Wang, G.; Cao, D.; Yan, J. N-doped carbon coated MoO3/MoS2 integrated MXene nanosheets with ultra-long cycle stability for sodium-ion batteries. Appl. Surf. Sci. 2024, 652, 159294. [Google Scholar] [CrossRef]
- Zhao, M.Q.; Ren, C.E.; Ling, Z.; Lukatskaya, M.R.; Zhang, C.F.; Van Aken, K.L.; Barsoum, M.W.; Gogotsi, Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 2015, 27, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhu, X.D.; Wang, K.X.; Gu, L.L.; Qiu, S.Y.; Gao, X.T.; Zuo, P.J.; Zhang, N.Q. A general way to fabricate transition metal dichalcogenide/oxide-sandwiched MXene nanosheets as flexible film anodes for high-performance lithium storage. Sustain. Energy Fuels 2019, 3, 2577–2582. [Google Scholar] [CrossRef]
- Yan, J.Y.; Wu, C.X.; Hou, J.X.; Zhang, X.L.; Liu, Y.X.; Zhang, Y.J.; Li, P.; Che, H.W.; Xing, Z.G.; Wang, Y.M. Tribological properties of polyimide coatings filled with graphene oxide and MXene composite nanofillers. Tribol. Int. 2023, 189, 109000. [Google Scholar] [CrossRef]
- Guo, R.T.; Li, W.; Huang, R.Q.; Chen, M.Q.; Liu, Z.; Han, G.C. Shuttle-inhibited 3D sandwich MXene/SnO2 QDs sulfur host for high-performance lithium-sulfur batteries. J. Alloys Compd. 2023, 937, 168427. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Guo, B.S.; Hu, L.Y.; Xu, Q.J.; Li, Y.; Liu, D.Y.; Xu, M.W. Synthesis of SnS nanoparticle-modified MXene (Ti3C2Tx) composites for enhanced sodium storage. J. Alloys Compd. 2018, 732, 448–453. [Google Scholar] [CrossRef]
- Shekhirev, M.; Shuck, C.E.; Sarycheva, A.; Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 2021, 120, 100757. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, S.; Jia, X.; Yang, J.; Li, Y.; Liao, J.; Song, H. Freestanding sandwich-like hierarchically TiS2–TiO2/Mxene bi-functional interlayer for stable Li–S batteries. Carbon 2022, 188, 533–542. [Google Scholar] [CrossRef]
- Ahmadi, E.; Suzuki, R.O.; Kaneko, T.; Kikuchi, T. A sustainable approach for producing Ti and TiS2 from TiC. Metall. Mater. Trans. B 2020, 52, 77–87. [Google Scholar] [CrossRef]
- Huang, X.; Tang, J.; Luo, B.; Knibbe, R.; Lin, T.; Hu, H.; Rana, M.; Hu, Y.; Zhu, X.; Gu, Q.; et al. Sandwich-Like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901872. [Google Scholar] [CrossRef]
- Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mat. 2020, 32, 3480–3488. [Google Scholar] [CrossRef]
- Sharaf el-deen, S.E.A.; Hashem, A.M.A.; Abdel-Ghany, A.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C. Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics 2018, 24, 2925–2934. [Google Scholar] [CrossRef]
- Lin, C.; Zhu, X.; Feng, J.; Wu, C.; Hu, S.; Peng, J.; Guo, Y.; Peng, L.; Zhao, J.; Huang, J.; et al. Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 2013, 135, 5144–5151. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, Z.E.; Langford, J.J.; Kapsimalis, R.J.; Niedziela, J.L. Quantitative analysis of Raman spectral parameters for carbon fibers: Practical considerations and connection to mechanical properties. J. Mater. Sci. 2021, 56, 15087–15121. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, S.; Singh, R.C.; Sharma, S. Structural transformation and room temperature ammonia sensing properties of TiS2 nanostructures. SN Appl. Sci. 2020, 2, 887. [Google Scholar] [CrossRef]
- Halim, J.; Cook, K.M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M.W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417. [Google Scholar] [CrossRef]
- Ghidiu, M.; Halim, J.; Kota, S.; Bish, D.; Gogotsi, Y.; Barsoum, M.W. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mat. 2016, 28, 3507–3514. [Google Scholar] [CrossRef]
- Huckaba, A.J.; Gharibzadeh, S.; Ralaiarisoa, M.; Roldán-Carmona, C.; Mohammadian, N.; Grancini, G.; Lee, Y.; Amsalem, P.; Plichta, E.J.; Koch, N.; et al. Low-cost TiS2 as hole-transport material for perovskite solar cells. Small Methods 2017, 1, 1700250. [Google Scholar] [CrossRef]
- Kissinger, P.T.; Heineman, W.R. Cyclic voltammetry. J. Chem. Educ. 1983, 60, 702. [Google Scholar] [CrossRef]
- Cheng, R.; Hu, T.; Zhang, H.; Wang, C.; Hu, M.; Yang, J.; Cui, C.; Guang, T.; Li, C.; Shi, C.; et al. Understanding the lithium storage mechanism of Ti3C2Tx MXene. J. Phys. Chem. C 2018, 123, 1099–1109. [Google Scholar] [CrossRef]
- Luo, Q.; Tian, R.; Wu, A.; Dong, X.; Jin, X.; Zhou, S.; Huang, H. In-built durable Li–S counterparts from Li–TiS2 batteries. Mater. Today Energy 2020, 17, 100439. [Google Scholar] [CrossRef]
- Han, X.; Wang, M.; Yu, J.; Wang, S. Optimization of structural expansion and contraction for TiS2 by controlling the electrochemical window of intercalation/delithiation. Mater. Adv. 2022, 3, 1652–1659. [Google Scholar] [CrossRef]
- Yan, Y.; Hao, B.; Wang, D.; Chen, G.; Markweg, E.; Albrecht, A.; Schaaf, P. Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. J. Mater. Chem. A 2013, 1, 14507–14513. [Google Scholar] [CrossRef]
- Fleischmann, S.; Shao, H.; Taberna, P.-L.; Rozier, P.; Simon, P. Electrochemically induced deformation determines the rate of lithium intercalation in bulk TiS2. ACS Energy Lett. 2021, 6, 4173–4178. [Google Scholar] [CrossRef]
- Hu, W.; Peng, Y.; Wei, Y.; Yang, Y. Application of electrochemical impedance spectroscopy to degradation and aging research of lithium-ion batteries. J. Phys. Chem. C 2023, 127, 4465–4495. [Google Scholar] [CrossRef]
- Lin, Z.; Rozier, P.; Duployer, B.; Taberna, P.-L.; Anasori, B.; Gogotsi, Y.; Simon, P. Electrochemical and in-situ X-ray diffraction studies of Ti3C2TxMXene in ionic liquid electrolyte. Electrochem. Commun. 2016, 72, 50–53. [Google Scholar] [CrossRef]
- Yu, Y.-X. Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries. J. Phys. Chem. C 2016, 120, 5288–5296. [Google Scholar] [CrossRef]
- Vadivel Murugan, A.; Reddy, M.V.; Campet, G.; Vijayamohanan, K. Cyclic voltammetry, electrochemical impedance and ex situ X-ray diffraction studies of electrochemical insertion and deinsertion of lithium ion into nanostructured organic–inorganic poly(3,4-ethylenedioxythiophene) based hybrids. J. Electroanal. Chem. 2007, 603, 287–296. [Google Scholar] [CrossRef]
- Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S.-E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722. [Google Scholar] [CrossRef]
- Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Liu, T.C.; Pell, W.; Conway, B.; Roberson, S. Behavior of molybdenum nitrides as materials for electrochemical capacitors: Comparison with ruthenium oxide. J. Electrochem. Soc. 1998, 145, 1882. [Google Scholar] [CrossRef]
- Bhat, V.S.; Toghan, A.; Hegde, G.; Varma, R.S. Capacitive dominated charge storage in supermicropores of self-activated carbon electrodes for symmetric supercapacitors. J. Energy Storage 2022, 52, 104776. [Google Scholar] [CrossRef]
- NIST Standard Reference Database 20. Available online: https://www.nist.gov/srd (accessed on 23 November 2023).
- Yamamoto, S.; Bluhm, H.; Andersson, K.; Ketteler, G.; Ogasawara, H.; Salmeron, M.; Nilsson, A. In situx-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. J. Phys. Condens. Matter. 2008, 20, 184025. [Google Scholar] [CrossRef]
- Sun, D.; Wang, M.; Li, Z.; Fan, G.; Fan, L.-Z.; Zhou, A. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 2014, 47, 80–83. [Google Scholar] [CrossRef]
- Li, Z.; Chen, G.; Deng, J.; Li, D.; Yan, T.; An, Z.; Shi, L.; Zhang, D. Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for Li-ion hybrid capacitors. ACS Sustain. Chem. Eng. 2019, 7, 15394–15403. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Y.; Sun, X.; Zhang, Y.; Hou, L.; Zhang, Q.; Yuan, C. In-situ construction of hierarchical accordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries. Electrochim. Acta 2018, 271, 165–172. [Google Scholar] [CrossRef]
- Kong, F.; He, X.; Liu, Q.; Qi, X.; Sun, D.; Zheng, Y.; Wang, R.; Bai, Y. Further surface modification by carbon coating for in-situ growth of Fe3O4 nanoparticles on MXene Ti3C2 multilayers for advanced Li-ion storage. Electrochim. Acta 2018, 289, 228–237. [Google Scholar] [CrossRef]
- Liu, M.-C.; Zhang, B.-M.; Zhang, Y.-S.; Hu, Y.-X. Diacid molecules welding achieved self-adaption layered structure Ti3C2 MXene toward fast and stable lithium-ion storage. ACS Sustain. Chem. Eng. 2021, 9, 12930–12939. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Vargun, E.; Plachy, T.; Saha, P.; Cheng, Q. 3D porous Ti3C2 MXene/NiCo-MOF composites for enhanced lithium storage. Nanomaterials 2020, 10, 695. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Zhang, D.-T.; Zhao, B.; Chen, H.; Chang, C.-G.; Liu, M.-C. Ti3C2/graphene oxide layered nanocomposites for enhanced lithium-ion storage. ACS Appl. Nano Mater. 2023, 6, 3572–3579. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, P.; Chen, J.; Tian, W.B.; Zhang, Y.M.; Sun, Z.M. In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. J. Mater. Chem. A 2018, 6, 3543–3551. [Google Scholar] [CrossRef]
- Seo, D.; Kim, M.-R.; Kyu Song, J.; Kim, E.; Koo, J.; Kim, K.-C.; Han, H.; Lee, Y.; Won Ahn, C. Hollow Ti3C2 MXene/carbon nanofibers as an advanced anode material for lithium-ion batteries. ChemElectroChem 2022, 9, e202101344. [Google Scholar] [CrossRef]
- Rai, A.K.; Anh, L.T.; Gim, J.; Mathew, V.; Kang, J.; Paul, B.J.; Song, J.; Kim, J. Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochim. Acta 2013, 90, 112–118. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, X.; Peng, Y.; Zhao, S.; Zhou, N. First-principles calculations study of TiS2/Ti2CS2 heterostructure as an anode material for Li/Na/K-ion batteries. Comp. Mater. Sci. 2022, 215, 111784. [Google Scholar] [CrossRef]
- Lung-Hao Hu, B.; Wu, F.-Y.; Lin, C.-T.; Khlobystov, A.N.; Li, L.-J. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 2013, 4, 1687. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Halim, J.; Lu, J.; Cook, K.M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Fan, Q.; Yu, P.; Chen, K.; Li, P.; Liang, K. Engineering Ti3C2-MXene Surface Composition for Excellent Li+ Storage Performance. Molecules 2024, 29, 1731. https://doi.org/10.3390/molecules29081731
Chen M, Fan Q, Yu P, Chen K, Li P, Liang K. Engineering Ti3C2-MXene Surface Composition for Excellent Li+ Storage Performance. Molecules. 2024; 29(8):1731. https://doi.org/10.3390/molecules29081731
Chicago/Turabian StyleChen, Minghua, Qi Fan, Ping Yu, Ke Chen, Peng Li, and Kun Liang. 2024. "Engineering Ti3C2-MXene Surface Composition for Excellent Li+ Storage Performance" Molecules 29, no. 8: 1731. https://doi.org/10.3390/molecules29081731
APA StyleChen, M., Fan, Q., Yu, P., Chen, K., Li, P., & Liang, K. (2024). Engineering Ti3C2-MXene Surface Composition for Excellent Li+ Storage Performance. Molecules, 29(8), 1731. https://doi.org/10.3390/molecules29081731