Few-Layered MXene Modulating In Situ Growth of Carbon Nanotubes for Enhanced Microwave Absorption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Ni-MWCNTs/Ti3C2Tx Composites
2.2. Electromagnetic Parameter Analysis and Microwave Absorption Properties
2.3. Microwave Absorption Mechanisms
3. Experimental Section
3.1. Materials
3.2. Preparation of Few-Layered Ti3C2Tx MXene Suspension
3.3. Preparation of Ni2+-Ti3C2Tx Membrane
3.4. Preparation of Ni-MWCNTs/Ti3C2Tx
3.5. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M.K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C.M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [PubMed]
- Zhang, Z.; Cai, Z.; Zhang, Y.; Peng, Y.; Wang, Z.; Xia, L.; Ma, S.; Yin, Z.; Wang, R.; Cao, Y.; et al. The recent progress of MXene-based microwave absorption materials. Carbon 2021, 174, 484–499. [Google Scholar]
- Song, L.; Zhang, F.; Chen, Y.; Guan, L.; Zhu, Y.; Chen, M.; Wang, H.; Putra, B.R.; Zhang, R.; Fan, B. Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 152. [Google Scholar]
- Gou, J.L.; Chang, Y.K.; Liu, S.; Li, P.H.; Cui, P.H.; Hu, Q.K.; Wang, L.B.; Zhang, X.; Wang, J.K.; Xia, Q.X.; et al. Solid solution strategy modulated defects engineering of (Cr1-xVx)2AlC MAX phase toward superior electromagnetic wave absorption. Rare Met. 2024, 43, 3205–3219. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, X.L.; Qin, Y.; Qiao, J.; Pan, F.; Wu, N.; Wang, C.; Zhao, S.; Liu, W.; Cui, J.; et al. Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 2023, 17, 12510–12518. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, C.; Estevez, D.; Xu, P.; Peng, M.; Wei, H.; Qin, F. Boosting interfacial polarization through heterointerface engineering in MXene/Graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 2023, 15, 152. [Google Scholar]
- Zou, Z.; Ning, M.; Lei, Z.; Zhuang, X.; Tan, G.; Hou, J.; Xu, H.; Man, Q.; Li, J.; Li, R.W. 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2~18 GHz. Carbon 2022, 193, 182–194. [Google Scholar] [CrossRef]
- Su, X.; Wang, J.; Zhang, X.; Huo, S.; Dai, W.; Zhang, B. Synergistic effect of polyhedral iron-cobalt alloys and graphite nanosheets with excellent microwave absorption performance. J. Alloys Compd. 2020, 829, 154426. [Google Scholar] [CrossRef]
- Zhuang, X.; Tan, G.; Ning, M.; Qi, C.; Ge, X.; Yang, Z.; Man, Q. Boosted microwave absorbing performance of Ce2Fe17N3-δ@SiO2 composite with broad bandwidth and low thickness. J. Alloys Compd. 2021, 883, 160835. [Google Scholar]
- Iqbal, A.; Sambyal, P.; Koo, C.M. 2D MXenes for electromagnetic shielding: A Review. Adv. Funct. Mater. 2020, 30, 2000883. [Google Scholar]
- Lei, Z.; Zhu, S.; Sun, X.; Yu, S.; Liu, X.; Liang, K.; Zhang, X.; Qu, L.; Wang, L.; Zhang, X. A multiscale porous 3D-Fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination. Adv. Funct. Mater. 2022, 32, 2205790. [Google Scholar]
- Zhang, J.; Liu, Y.; Liao, Z.; Hu, J.; Ma, A.; Ma, Y.; Feng, C.; Ma, M. MoS2-based materials for microwave absorption: An overview of recent advances and prospects. Synth. Met. 2022, 291, 117188. [Google Scholar]
- Nie, Z.; Feng, Y.; Hu, X.; Su, J.; Zhao, Z.; Chen, J.; Wang, R.; Qi, S. In situ-growth ultrathin hexagonal boron nitride/N-doped reduced graphene oxide composite aerogel for high performance of thermal insulation and electromagnetic wave absorption. Ceram. Int. 2023, 49, 36080–36091. [Google Scholar]
- Wang, F.; Bai, C.; Chen, L.; Yu, Y. Boron nitride nanocomposites for microwave absorption: A review. Mater. Today Nano. 2021, 13, 100108. [Google Scholar]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Man Hong, S.; Koo, C.M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar]
- Song, Q.; Ye, F.; Kong, L.; Shen, Q.; Han, L.; Feng, L.; Yu, G.; Pan, Y.; Li, H. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475. [Google Scholar]
- Hart, J.L.; Hantanasirisakul, K.; Lang, A.C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J.T.; May, S.J.; Gogotsi, Y.; Taheri, M.L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522. [Google Scholar]
- Sun, B.; Wang, N.; Xie, X.; Zhong, L.; He, L.; Xiang, M.; Liang, K.; Hu, W. Flexible aqueous Cr-Ion hybrid supercapacitors with remarkable electrochemical properties in all climates. Angew. Chem. Int. Ed. 2024, 63, e202408569. [Google Scholar]
- He, L.; Zhuang, H.; Fan, Q.; Yu, P.; Wang, S.; Pang, Y.; Chen, K.; Liang, K. Advances and challenges in MXene-based electrocatalysts: Unlocking the potential for sustainable energy conversion. Mater. Horiz. 2024, 11, 4239–4255. [Google Scholar]
- Li, Z.Y.; Zhao, W.J.; Sun, Y.; Zhou, B.; Feng, Y.Z.; Liu, C.T. Comparative enhancement of H+ and OH− treatment on electromagnetic interference shielding in aligned and compact Ti3C2Tx MXene film. Rare Met. 2025, 44, 1833–1843. [Google Scholar]
- Li, X.; Wang, G.; Li, Q.; Wang, Y.; Lu, X. Dual optimized Ti3C2Tx MXene@ZnIn2S4 heterostructure based on interface and vacancy engineering for improving electromagnetic absorption. Chem. Eng. J. 2023, 453, 139488. [Google Scholar]
- Sun, C.; Jia, Z.; Xu, S.; Hu, D.; Zhang, C.; Wu, G. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption. J. Mater.Sci. Technol. 2022, 113, 128–137. [Google Scholar]
- Li, Y.; Meng, F.; Mei, Y.; Wang, H.; Guo, Y.; Wang, Y.; Peng, F.; Huang, F.; Zhou, Z. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512. [Google Scholar]
- Wang, J.; Wu, Z.; Xing, Y.; Li, B.; Huang, P.; Liu, L. Multi-Scale design of Ultra-Broadband microwave metamaterial absorber based on hollow Carbon/MXene/Mo2C microtube. Small 2023, 19, 2207051. [Google Scholar]
- Cui, Y.; Yang, K.; Wang, J.; Shah, T.; Zhang, Q.; Zhang, B. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 2021, 172, 1–14. [Google Scholar]
- Kong, L.; Zhang, G.; Cui, H.; Qi, J.; Wang, T.; Xu, H. Deformation induced absorption band-tunable smart CNTs/Ti3C2Tx-WPU electromagnetic wave absorbing aerogel. Carbon 2024, 223, 119023. [Google Scholar]
- Tao, W.; Shao, W.; Ma, M.; Chen, S.; Shi, Y.; He, H.; Zhu, Y.; Wang, X. Ag anchored mesoporous carbon hollow sphere in Cellulose nanofibers/MXene composite films for high-performance electromagnetic interference shielding. Nano Mater. Sci. 2024, 6, 2589–9651. [Google Scholar]
- Chen, L.; Pan, J.; Wang, T.; Xia, W.; He, J.; Zhang, K. 1D Magnetic nickel-carbon matrix nanotube composites derived from Hydrogen-Bonded organic frameworks and metal-organic frameworks for electromagnetic wave absorption. Adv. Funct. Mater. 2025, 35, 2409432. [Google Scholar] [CrossRef]
- Huynh, T.M.; Nguyen, S.; Nguyen, N.T.; Nguyen, H.M.; Do, N.U.; Nguyen, D.C.; Nguyen, L.H.; Nguyen, C.V. Effects of catalyst pretreatment on carbon nanotube synthesis from methane using thin stainless-steel foil as catalyst by chemical vapor deposition method. Nanomaterials 2021, 11, 50. [Google Scholar]
- Li, X.; You, W.; Xu, C.; Wang, L.; Yang, L.; Li, Y.; Che, R. 3D seed-germination-like MXene with In Situ Growing CNTs/Ni Heterojunction for Enhanced Microwave Absorption via Polarization and Magnetization. Nano-Micro Lett. 2021, 13, 157. [Google Scholar] [CrossRef]
- Zheng, C.; Yao, Y.; Rui, X.; Feng, Y.; Yang, D.; Pan, H.; Yu, Y. Functional MXene-based Materials for next-generation rechargeable batteries. Adv. Mater. 2022, 34, 2204988. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Que, W.; Tang, Y.; Kang, Y.; Bin, X.; Wu, Z.; Yuliarto, B.; Gao, B.; Henzie, J.; Yamauchi, Y. Regulating functional groups enhances the performance of flexible microporous MXene/Bacterial cellulose electrodes in supercapacitors. ACS Nano 2024, 18, 11675–11687. [Google Scholar] [CrossRef]
- Naguib, M.; Unocic, R.R.; Armstrong, B.L.; Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 2015, 44, 9353–9358. [Google Scholar] [CrossRef] [PubMed]
- Baghel, P.; Kaushal, P. Rapid synthesis of carbon nanotubes from Prosopis juliflora biochar using microwave irradiation. Mater. Sci. Eng. B 2022, 286, 115987. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Libera, J.A.; Kalashnikov, N.; Yoshimura, M. Graphite polyhedral crystals. Science 2000, 290, 317–320. [Google Scholar] [CrossRef]
- Rao, A.M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P.C.; Williams, K.A.; Fang, S.; Subbaswamy, K.R.; Menon, M.; Thess, A.; et al. Diameter-Selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Shevchuk, K.; Sarycheva, A.; Shuck, C.E.; Gogotsi, Y. Raman spectroscopy characterization of 2D carbide and carbonitride MXenes. Chem. Mater. 2023, 35, 8239–8247. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Wei, F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 2017, 46, 3661–3715. [Google Scholar]
- Liu, W.; Ding, X.; Cheng, J.; Jing, J.; Li, T.; Huang, X.; Xie, P.; Lin, X.; Ding, H.; Kuang, Y.; et al. Inhibiting dissolution of active sites in 80 °C alkaline water electrolysis by oxyanion engineering. Angew. Chem. Int. Ed. 2024, 63, e202406082. [Google Scholar] [CrossRef]
- Chen, G.; Futaba, D.N.; Sakurai, S.; Yumura, M.; Hata, K. Interplay of wall number and diameter on the electrical conductivity of carbon nanotube thin films. Carbon 2014, 67, 318–325. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, Y.; Ramasamy, R.P. Non-Covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors 2019, 19, 392. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.; He, J.; Tian, J.; Wu, W.; Li, J.; Zhang, J.; Yu, H.; Zhang, X.; Lu, M. Ultrathin MWCNT/Ti3C2Tx hybrid films for electromagnetic interference shielding. Nanomaterials 2025, 15, 6. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Yang, D.; Du, Z.; Zhi, X.; Yu, R.; Guo, Z.; Tang, C.; Fang, Y. MXene-CNTs/Co dielectric-electromagnetic synergistic composites with multi-heterogeneous interfaces for microwave absorption. Carbon 2025, 232, 119825. [Google Scholar] [CrossRef]
- Wang, H.Y.; Sun, X.-B.; Yang, S.H.; Zhao, P.Y.; Zhang, X.J.; Wang, G.S.; Huang, Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206. [Google Scholar] [CrossRef]
- Niu, H.; Jiang, X.; Li, W.; Min, Z.; Putra, B.R.; Wahyuni, W.T.; Wang, H.; Zhang, R.; Fan, B. Enhanced electromagnetic wave absorption via optical fiber-like PMMA@Ti3C2Tx@SiO2 composites with improved impedance matching. Nano Res. 2024, 17, 1676–1686. [Google Scholar] [CrossRef]
- Lv, H.; Ji, G.; Liang, X.; Zhang, H.; Du, Y. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 2015, 3, 5056–5064. [Google Scholar] [CrossRef]
- Yao, X.; Kou, X.; Qiu, J. Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability. Carbon 2016, 107, 261–267. [Google Scholar] [CrossRef]
- Chang, M.; Li, Q.; Jia, Z.; Zhao, W.; Wu, G. Tuning microwave absorption properties of Ti3C2Tx MXene-based materials: Component optimization and structure modulation. J. Mater. Sci. Technol. 2023, 148, 150–170. [Google Scholar] [CrossRef]
- Li, X.; Wu, Z.; You, W.; Yang, L.; Che, R. Self-Assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 2022, 14, 73. [Google Scholar] [CrossRef]
- Cao, M.S.; Cai, Y.Z.; He, P.; Shu, J.C.; Cao, W.Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302. [Google Scholar]
- Jiang, X.; Wang, Q.; Song, L.; Lu, H.; Xu, H.; Shao, G.; Wang, H.; Zhang, R.; Wang, C.; Fan, B. Enhancing electromagnetic wave absorption with core-shell structured SiO2@MXene@MoS2 nanospheres. Carbon Energy 2024, 6, e502. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W.; Pan, D.; Li, Z.; Zhou, B.; Huang, M.; Mi, L.; Liu, C.; Feng, Y.; Shen, C. Absorption-Reflection-Transmission power coefficient guiding gradient distribution of magnetic MXene in layered composites for electromagnetic wave absorption. Nano-Micro Lett. 2025, 17, 147. [Google Scholar]
- Li, M.; Han, M.; Zhou, J.; Deng, Q.; Zhou, X.; Xue, J.; Du, S.; Yin, X.; Huang, Q. Novel scale-like structures of Graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Adv. Electron. Mater. 2018, 4, 1700617. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, H.; Zhang, D.; Gao, F.; Liu, Y.; Chen, X.; Wu, D.; Terrones, M.; Wang, Y. Sustainable synthesis of tunable 2D porous carbon nanosheets toward remarkable electromagnetic wave absorption performance. Chem. Eng. J. 2023, 476, 146912. [Google Scholar]
- Zhou, Z.; Zhu, Q.; Liu, Y.; Zhang, Y.; Jia, Z.; Wu, G. Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 2023, 15, 137. [Google Scholar]
- Zhou, X.; Wen, J.; Wang, Z.; Ma, X.; Wu, H. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol. 2022, 115, 148–155. [Google Scholar]
- Wang, W.; Ding, X.; Lin, D.; Feng, Y.; Fu, H.; Liu, C.; Tian, K.; Xu, P.; Li, Q. Manipulating highly ordered MXene porous composites by directional freezing for absorption effectiveness-enhanced electromagnetic interference shielding. ACS Appl. Nano Mater. 2024, 7, 28582–28592. [Google Scholar]
- Liu, X.; Zhou, J.; Xue, Y.; Lu, X. Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 2024, 16, 174. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Guo, Y.; Bai, X.; Qi, J.; Lu, H. Facile constructing Ti3C2Tx/TiO2@C heterostructures for excellent microwave absorption properties. J. Colloid. Interface Sci. 2024, 654, 1483–1491. [Google Scholar]
- Wang, J.; Zhang, L.; Yan, J.; Yun, J.; Zhao, W.; Dai, K.; Wang, H.; Sun, Y. MXene-based ultrathin electromagnetic wave absorber with hydrophobicity, anticorrosion, and quantitively classified electrical losses by intercalation growth nucleation engineering. Adv. Funct. Mater. 2024, 34, 2402419. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Fan, Q.; He, L.; Yu, P.; Huang, Q.; Chen, Y.; Fan, B.; Liang, K. Few-Layered MXene Modulating In Situ Growth of Carbon Nanotubes for Enhanced Microwave Absorption. Molecules 2025, 30, 1625. https://doi.org/10.3390/molecules30071625
Tang Q, Fan Q, He L, Yu P, Huang Q, Chen Y, Fan B, Liang K. Few-Layered MXene Modulating In Situ Growth of Carbon Nanotubes for Enhanced Microwave Absorption. Molecules. 2025; 30(7):1625. https://doi.org/10.3390/molecules30071625
Chicago/Turabian StyleTang, Qing, Qi Fan, Lei He, Ping Yu, Qing Huang, Yuanming Chen, Bingbing Fan, and Kun Liang. 2025. "Few-Layered MXene Modulating In Situ Growth of Carbon Nanotubes for Enhanced Microwave Absorption" Molecules 30, no. 7: 1625. https://doi.org/10.3390/molecules30071625
APA StyleTang, Q., Fan, Q., He, L., Yu, P., Huang, Q., Chen, Y., Fan, B., & Liang, K. (2025). Few-Layered MXene Modulating In Situ Growth of Carbon Nanotubes for Enhanced Microwave Absorption. Molecules, 30(7), 1625. https://doi.org/10.3390/molecules30071625