Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,717)

Search Parameters:
Keywords = 2D numerical simulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1332 KB  
Article
Simulation of Perovskite Solar Cell with BaZr(S0.6Se0.4)3–Based Absorber Using SCAPS–1D
by Lihle Mdleleni, Sithenkosi Mlala, Tobeka Naki, Edson L. Meyer, Mojeed A. Agoro and Nicholas Rono
Processes 2026, 14(1), 87; https://doi.org/10.3390/pr14010087 - 26 Dec 2025
Viewed by 62
Abstract
The increasing impact of global warming is predominantly driven by the extensive use of fossil fuels, which release significant amounts of greenhouse gases into the atmosphere. This has led to a critical need for alternative, sustainable energy sources that can mitigate environmental impacts. [...] Read more.
The increasing impact of global warming is predominantly driven by the extensive use of fossil fuels, which release significant amounts of greenhouse gases into the atmosphere. This has led to a critical need for alternative, sustainable energy sources that can mitigate environmental impacts. Photovoltaic technology has emerged as a promising solution by harnessing renewable energy from the sun, providing a clean and inexhaustible power source. Perovskite solar cells (PSCs) are a class of hybrid organic–inorganic solar cells that have recently attracted significant scientific attention due to their low cost, relatively high efficiency, low–temperature processing routes, and longer carrier lifetimes. These characteristics make them a viable alternative to traditional fossil fuels, reducing the carbon footprint and contributing to the fight against global warming. In this study, the SCAPS–1D numerical simulator was used in the computational analysis of a PSC device with the configuration FTO/ETL/BaZr(S0.6Se0.4)3/HTL/Ir. Different hole transport layer (HTL) and electron transport layer (ETL) material were proposed and tested. The HTL materials included copper (I) oxide (Cu2O), 2,2′,7,7′–Tetrakis(N,N–di–p–methoxyphenylamine)9,9′–spirobifluorene (spiro–OMETAD), and poly(3–hexylthiophene) (P3HT), while the ETLs included cadmium suphide (CdS), zinc oxide (ZnO), and [6,6]–phenyl–C61–butyric acid methyl ester (PCBM). Finally, BaZr(S0.6Se0.4)3 was proposed as an absorber, and a fluorine–doped tin oxide glass substrate (FTO) was proposed as an anode. The metal back contact used was iridium. Photovoltaic parameters such as short circuit density (Isc), open circuit voltage (Voc), fill factor (FF), and power conversion efficiency (PCE) were used to evaluate the performance of the device. The initial simulated primary device with the configuration FTO/CdS/BaZr(S0.6Se0.4)3/spiro–OMETAD/Ir gave a PCE of 5.75%. Upon testing different HTL materials, the best HTL was found to be Cu2O, and the PCE improved to 9.91%. Thereafter, different ETLs were also inserted and tested, and the best ETL was established to be ZnO, with a PCE of 10.10%. Ultimately an optimized device with a configuration of FTO/ZnO/BaZr(S0.6Se0.4)3/Cu2O/Ir was achieved. The other photovoltaic parameters for the optimized device were as follows: FF = 31.93%, Jsc = 14.51 mA cm−2, and Voc = 2.18 V. The results of this study will promote the use of environmentally benign BaZr(S0.6Se0.4)3–based absorber materials in PSCs for improved performance and commercialization. Full article
Show Figures

Figure 1

23 pages, 5456 KB  
Article
Numerical Simulation of Fluid–Structure Interaction in Wind Turbines: A Reduced-Order Approach via Periodic Modeling and Substructuring
by Harouna Illou Abdoulaye and Rabii El Maani
Appl. Mech. 2026, 7(1), 1; https://doi.org/10.3390/applmech7010001 - 23 Dec 2025
Viewed by 144
Abstract
This paper presents a numerical study of fluid–structure interaction (FSI) applied to wind turbines, combining computational fluid dynamics (CFD) and finite element analysis (FEA). The study focuses on a 3D wind turbine blade inspired by the GE 1.5XLE model. The blade features a [...] Read more.
This paper presents a numerical study of fluid–structure interaction (FSI) applied to wind turbines, combining computational fluid dynamics (CFD) and finite element analysis (FEA). The study focuses on a 3D wind turbine blade inspired by the GE 1.5XLE model. The blade features a twisted geometry with S818, S825, and S826 aerodynamic profiles, and is made of an orthotropic composite material with variable thickness and an internal spar. The fluid domain is defined by two circular sections upstream and downstream, aligned along the Z-axis. Simulations are performed under a wind speed of 12 m/s and a rotational speed of −2.22 rad/s (Tip Speed Ratio (TSR) = 8), with air modeled as an incompressible fluid at ambient temperature. On the CFD side, a periodic and symmetric modeling approach is applied, reducing the fluid domain to one-third of the full configuration by simulating flow around a single blade and extrapolating results to the remaining ones. This method achieves a 47% reduction in computation time while maintaining high accuracy in aerodynamic results. On the FEA side, spar condensation is performed by creating a superelement using the substructuring method. This strategy reduces structural computation time by 45% while preserving reliable predictions of displacements, stresses, and natural frequencies. These results confirm the effectiveness of the proposed techniques for accurate and computationally efficient aeroelastic simulations. Full article
Show Figures

Figure 1

24 pages, 8979 KB  
Article
Physics-Consistent Overtopping Estimation for Dam-Break Induced Floods via AE-Enhanced CatBoost and TreeSHAP
by Hanze Li, Yazhou Fan, Zhenzhu Meng, Xinhai Zhang, Jinxin Zhang and Liang Wang
Water 2026, 18(1), 42; https://doi.org/10.3390/w18010042 - 23 Dec 2025
Viewed by 222
Abstract
Dam break problem-induced floods can trigger hazardous dike overtopping, demanding predictions that are fast, accurate, and interpretable. We pursue two objectives: (i) introducing a new alpha evolution (AE) optimization scheme to improve tree-model predictive accuracy, and (ii) developing a cluster-wise modeling strategy in [...] Read more.
Dam break problem-induced floods can trigger hazardous dike overtopping, demanding predictions that are fast, accurate, and interpretable. We pursue two objectives: (i) introducing a new alpha evolution (AE) optimization scheme to improve tree-model predictive accuracy, and (ii) developing a cluster-wise modeling strategy in which regimes are defined by wave characteristics. Using a dataset generated via physical model experiments and smoothed particle hydrodynamics (SPH) numerical simulations, we first group samples via hierarchical clustering (HC) on the Froude number (Fr), wave nonlinearity (R), and relative distance to the dike (D). We then benchmark CatBoost, XGBoost, and ExtraTrees within each cluster and select the best-performing CatBoost as the baseline, after which we train standard CatBoost and its AE-optimized variant. Under random train–test splits, AE-CatBoost achieves the strongest generalization for predicting relative run-up distance Hm (testing dataset R2=0.9803, RMSE=0.0599), outperforming particle swarm optimization (PSO) and grid search (GS)-tuned CatBoost. We further perform TreeSHAP analyses on AE-CatBoost for global, local, and interaction attributions. SHAP analysis yields physics-consistent explanations: D dominates, followed by H and L, with a weaker positive effect of Fr and minimal influence of R; H×D is the strongest interaction pair. Overall, AE optimization combined with HC-based cluster-wise modeling produces accurate, interpretable overtopping predictions and provides a practical route toward field deployment. Full article
Show Figures

Figure 1

18 pages, 862 KB  
Article
The Dynamics of One 3D Myeloid Leukemia Model with a Holling Type IV Immune Response
by Konstantin E. Starkov and Alexander P. Krishchenko
Mathematics 2026, 14(1), 21; https://doi.org/10.3390/math14010021 - 21 Dec 2025
Viewed by 72
Abstract
In this paper, we study the ultimate dynamics of a 3D chronic myeloid leukemia (CML) model under the assumption that a tyrosine kinase inhibitor is administered. This model may exhibit an immune window. Our approach uses the localization method of compact invariant sets. [...] Read more.
In this paper, we study the ultimate dynamics of a 3D chronic myeloid leukemia (CML) model under the assumption that a tyrosine kinase inhibitor is administered. This model may exhibit an immune window. Our approach uses the localization method of compact invariant sets. We derive the ultimate upper bounds for quiescent leukemic cells, actively cycling (AC) leukemic cells, CML-specific immune effector cells (briefly, immune cells), and the lower bound for immune cells, which characterizes the persistent inner dynamics, including the attractor. Global conditions for leukemia eradication are obtained as global asymptotic stability conditions for the leukemia-free equilibrium point. In particular, it is shown that this global condition coincides with the local one, and, thus, these conditions are not improvable. We study the case in which the immune window exists and describe the situation in which the inner equilibrium point exists and is unique. We study its location with respect to the immune window and prove that it is locally asymptotically stable. By conducting a numerical simulation, we provide examples of leukemia eradication/relapse. Full article
(This article belongs to the Section E3: Mathematical Biology)
Show Figures

Figure 1

29 pages, 1116 KB  
Article
Global Dynamics of a Multi-Population Water Pollutant Model with Distributed Delays
by Nada A. Almuallem and Miled El Hajji
Mathematics 2026, 14(1), 20; https://doi.org/10.3390/math14010020 - 21 Dec 2025
Viewed by 94
Abstract
This paper presents a comprehensive mathematical analysis of a novel compartmental model describing the dynamics of dispersed water pollutants and their interaction with two distinct host populations. The model is formulated as a system of integro-differential equations that incorporates multiple distributed delays to [...] Read more.
This paper presents a comprehensive mathematical analysis of a novel compartmental model describing the dynamics of dispersed water pollutants and their interaction with two distinct host populations. The model is formulated as a system of integro-differential equations that incorporates multiple distributed delays to realistically account for time lags in the infection process and pollutant transport. We rigorously establish the biological well-posedness of the model by proving the non-negativity and ultimate boundedness of solutions, confirming the existence of a positively invariant feasible region. The analysis characterizes the long-term behavior of the system through the derivation of the basic reproduction number R0d, which serves as a sharp threshold determining the system’s fate. For the model without delays, we prove the global asymptotic stability of the infection-free equilibrium (IFE) when R01 and of the endemic equilibrium (EE) when R0>1. These stability results are extended to the distributed-delay model by using sophisticated Lyapunov functionals, demonstrating that R0d universally governs the global dynamics: the IFE (E0d) is globally asymptotically stable (GAS) if R0d1, while the EE (Ed) is GAS if R0d>1. Numerical simulations validate the theoretical findings and provide further insights. Sensitivity analysis identifies the most influential parameters on R0d, highlighting the recruitment rate of susceptible individuals, exposure rate, and pollutant shedding rate as key intervention targets. Furthermore, we investigate the impact of control measures, showing that treatment efficacy exceeding a critical value is sufficient for disease eradication. The analysis also reveals the inherent mitigating effect of the maturation delay, demonstrating that a delay longer than a critical duration can naturally suppress the outbreak. This work provides a robust mathematical framework for understanding and managing dispersed water pollution, emphasizing the critical roles of multi-source contributions, time delays, and targeted interventions for environmental sustainability. Full article
Show Figures

Figure 1

19 pages, 4826 KB  
Article
An Accurate CFD-FEM Model for the Thermal Stress of the Simulation of Selective Laser Melting
by Yilai Chen, Xuezhi Zhang, Anguo Huang, Shengyong Pang and Lvjie Liang
Materials 2026, 19(1), 22; https://doi.org/10.3390/ma19010022 - 20 Dec 2025
Viewed by 323
Abstract
Selective laser melting (SLM) is a 3D printing technology for precision manufacturing. Owing to its high forming accuracy, parts fabricated by SLM can often be used directly without secondary machining. Consequently, the stress field in the structure, especially local stress concentration in small [...] Read more.
Selective laser melting (SLM) is a 3D printing technology for precision manufacturing. Owing to its high forming accuracy, parts fabricated by SLM can often be used directly without secondary machining. Consequently, the stress field in the structure, especially local stress concentration in small regions, is of great importance. Building on our previous work, this study proposes an accurate and efficient thermo-mechanical analysis method that combines a computational fluid dynamics (CFD) model and a finite element method (FEM) model for stress prediction in micrometer-scale SLM. Compared with the conventional element birth–death method, the present model more faithfully reproduces the SLM process and the post-solidification morphology and stress distribution. Numerical simulation of a single-track TC4 scan shows that pronounced surface undulations and lack-of-fusion regions exhibit significant stress concentration: the local residual stress can reach approximately 900 MPa, whereas regions with relatively smooth surface geometry exhibit stresses of about 650 MPa. This indicates a clear positive correlation between surface quality and stress concentration. The results provide a new theoretical basis for understanding defect formation mechanisms, spatial stress distribution, and scan-path optimization in SLM components. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

24 pages, 4420 KB  
Article
Overlying Strata Settlement in Subsea Mine Stopes: A Study on the Effects of Backfill Compression
by Hao Wu, Hassan Nasir Mangi, Yunpeng Kou, Gengjie Zhu and Ying Chen
Appl. Sci. 2026, 16(1), 45; https://doi.org/10.3390/app16010045 - 19 Dec 2025
Viewed by 126
Abstract
This study investigates the settlement characteristics of overlying strata in backfilled stopes at the Sanshandao Gold Mine, focusing on the compaction behavior of backfill materials. Integrating laboratory tests, numerical modeling, and field monitoring, we analyzed the particle size distribution and fractal dimensions of [...] Read more.
This study investigates the settlement characteristics of overlying strata in backfilled stopes at the Sanshandao Gold Mine, focusing on the compaction behavior of backfill materials. Integrating laboratory tests, numerical modeling, and field monitoring, we analyzed the particle size distribution and fractal dimensions of tailings (2.1525) and C material (2.1994), with tailings showing better gradation. Systematic compaction tests examined the effects of mix ratio, water content, and curing time. Results indicate that compression follows a viscous sliding model with exponential curves, progressing through three stages—pore compaction, structural deformation, and elastic/plastic deformation—with energy dissipation ratios of 1:5:18. Water content was the most influential factor, with optimal compaction occurring at 5~8%. Coupled Midas-Flac3D simulations estimated a theoretical compaction rate of 0~2% in filled stopes, excluding seepage and equipment effects. Field monitoring at the −480 m level revealed non-uniform settlement, with maximum subsidence of 63.75 mm above stopes and initial settlement rates of 12~20 mm/month. At the −520 m mining level, the backfill compaction rate reached 0.31%, with minor future increases expected. These findings offer valuable guidance for backfill mixture design and strata control in mining engineering. Full article
(This article belongs to the Special Issue Advances in Rock Excavation and Underground Construction Technology)
Show Figures

Figure 1

20 pages, 7589 KB  
Article
Practical Method for Evaluating the Element Sensitivity Variation of an Ultrasonic Annular Phased Array Transducer
by Zhengxiao Sha, Xiao Liu, Yanze Liu, Xiao Wang and Xiaoming Zhou
Sensors 2026, 26(1), 25; https://doi.org/10.3390/s26010025 - 19 Dec 2025
Viewed by 254
Abstract
The unique features of annular phased array transducers, such as ring-shaped elements and the concentric configuration, cause them to behave differently from commonly used linear array transducers, in terms of sound field distribution and pulse–echo response. Consequently, standard techniques for assessing linear array [...] Read more.
The unique features of annular phased array transducers, such as ring-shaped elements and the concentric configuration, cause them to behave differently from commonly used linear array transducers, in terms of sound field distribution and pulse–echo response. Consequently, standard techniques for assessing linear array transducers can introduce significant errors when applied to annular array transducers, especially concerning element-to-element sensitivity variance. This study investigates the consistency of element sensitivity in annular phased array transducers. Through theoretical analysis, a Long-Belt source assumption model was developed based on the Rayleigh integral to characterize the responses of ring-shaped elements in an analytical and explicit form. The model suggests that the response amplitude is linearly correlated with the radial width of the element, which was validated by subsequent numerical simulations. Based on these findings, a modified sensitivity evaluation algorithm for annular array transducers is presented. The response voltage per unit width, rather than the total response voltage, is used to eliminate the influence of varying geometries and sizes across elements. The sensitivity variation of a 32-element annular array transducer was evaluated using the new algorithm. Compared to the uncorrected measurement, the maximum sensitivity variation was reduced significantly from 25 dB to 6 dB, revealing the transducer’s intrinsic consistency despite the different geometric features of each element. Due to its distinct geometry compared to the ring-shaped elements, the central element cannot be corrected or evaluated using this method. These results suggest that the proposed algorithm enables the more accurate evaluation of sensitivity consistency for annular phased array transducers, thereby improving measurement reliability in practical applications. Full article
(This article belongs to the Collection Ultrasound Transducers)
Show Figures

Figure 1

19 pages, 8193 KB  
Article
Numerical and Experimental Analysis of Whistling Sound Generation and Suppression in Narrow-Gap Flow of Vehicle Side-View Mirror
by Kwongi Lee, Sangheon Lee, Cheolung Cheong, Sungnam Rim and Seongryong Shin
Appl. Sci. 2026, 16(1), 31; https://doi.org/10.3390/app16010031 - 19 Dec 2025
Viewed by 147
Abstract
This study investigates the generation and suppression of the whistling noise caused by flow through the narrow gap of a vehicle’s side mirror, an aerodynamic phenomenon often reported as a source of discomfort to passengers. The research employs a simultaneous approach, combining wind [...] Read more.
This study investigates the generation and suppression of the whistling noise caused by flow through the narrow gap of a vehicle’s side mirror, an aerodynamic phenomenon often reported as a source of discomfort to passengers. The research employs a simultaneous approach, combining wind tunnel experiments to determine the geometries and wind conditions at a flow speed of 22 m/s contributing to whistle generation at between 7 kHz and 8 kHz with numerical simulations utilizing compressible Large Eddy Simulation (LES) techniques for an in-depth investigation of the underlying aerodynamics. The Simplified Side-mirror Model (SSM) is developed, enabling precise wind visualization, and facilitating the identification of fundamental aerodynamic sound sources via vortex sound theory. The analysis reveals that the whistling sound is intricately linked to edge tone phenomena, driven by vortex shedding and flow instabilities at the angled shape in a narrow gap. Building on these insights, the study introduces the Suppressed Whistle Model (SWM), a configuration including shapes resembling a vortex generator that successfully mitigates the whistling by disrupting the identified flow structures causing the whistling sound. The suggested design is validated through wind visualization, comparing the numerical flow structures with the experimental ones. The experimental whistling sound pressure level of SWM decreases by about 20 dB compared to SSM, and a similar trend can be confirmed in the numerical results. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

29 pages, 1473 KB  
Article
Global Dynamics of a Dual-Target HIV Model with Time Delays and Treatment Implications
by Hanan H. Almuashi and Miled El Hajji
Mathematics 2026, 14(1), 6; https://doi.org/10.3390/math14010006 - 19 Dec 2025
Cited by 1 | Viewed by 140
Abstract
We present a comprehensive mathematical analysis of a within-host dual-target HIV dynamics model, which explicitly incorporates the virus’s interactions with its two primary cellular targets: CD4+ T cells and macrophages. The model is formulated as a system of five nonlinear delay differential [...] Read more.
We present a comprehensive mathematical analysis of a within-host dual-target HIV dynamics model, which explicitly incorporates the virus’s interactions with its two primary cellular targets: CD4+ T cells and macrophages. The model is formulated as a system of five nonlinear delay differential equations, integrating three distinct discrete time delays to account for critical intracellular processes such as the development of productively infected cells and the maturation of new virions. We first establish the model’s biological well-posedness by proving the non-negativity and boundedness of solutions, ensuring all trajectories remain within a feasible region. The basic reproduction number, R0d, is derived using the next-generation matrix method and serves as a sharp threshold for disease dynamics. Analytical results demonstrate that the infection-free equilibrium is globally asymptotically stable (GAS) when R0d1, guaranteeing viral eradication from any initial state. Conversely, when R0d>1, a unique endemic equilibrium emerges and is proven to be GAS, representing a state of chronic infection. These global stability properties are rigorously established for both the non-delayed and delayed systems using carefully constructed Lyapunov functions and functionals, coupled with LaSalle’s invariance principle. A sensitivity analysis identifies viral production rates (p1,p2) and infection rates (β1,β2) as the most influential parameters on R0d, while the viral clearance rate (m) and maturation delay (τ3) have a suppressive effect. The model is extended to evaluate antiretroviral therapy (ART), revealing a critical treatment efficacy threshold ϵcr required to suppress the virus. Numerical simulations validate all theoretical findings and further investigate the dynamics under varying treatment efficacies and maturation delays, highlighting how these factors can shift the system from persistence to clearance. This study provides a rigorous mathematical framework for understanding HIV dynamics, with actionable insights for designing targeted treatment protocols aimed at achieving viral suppression. Full article
(This article belongs to the Special Issue Complex System Dynamics and Mathematical Biology)
Show Figures

Figure 1

19 pages, 1987 KB  
Article
Structural Design and Energy Dissipation Characteristics of a Horizontal Opposing Jet Energy Dissipator
by Lianle Wang, Qiongqiong Gu, Xihuan Sun, Yongye Li and Juanjuan Ma
Water 2026, 18(1), 8; https://doi.org/10.3390/w18010008 - 19 Dec 2025
Viewed by 204
Abstract
To address the limitations of traditional energy dissipation technologies, such as difficulty in arranging energy dissipators due to narrow river valleys and complex geological conditions and the low energy dissipation efficiency of existing air jet collision methods, this study proposes a novel structural [...] Read more.
To address the limitations of traditional energy dissipation technologies, such as difficulty in arranging energy dissipators due to narrow river valleys and complex geological conditions and the low energy dissipation efficiency of existing air jet collision methods, this study proposes a novel structural form of a horizontal opposing jet energy dissipator. Water is diverted to the open area downstream of the reservoir hub via diversion pipelines, and energy dissipation is achieved through horizontal opposing collision of jets in the air. Focusing on this new energy dissipator, numerical simulations combined with physical experiments were conducted to investigate its energy dissipation characteristics, with the dimensionless parameters l/d (collision distance/pipeline diameter) and Reynolds number (Re) as the main variables. The results indicate that two opposing jets formed a crown-shaped water jet after horizontal collision in the air. The rising height in the Z-direction and expanding width in the Y-direction of the crown-shaped water jet exhibit a negative correlation with l/d and a positive correlation with Re. Energy dissipation was achieved through jet collision, mixing, friction, diffusion, aeration, and fragmentation in the air. This energy dissipation method improved the energy dissipation rate by extending the collision time and mixing length of jets in the air. The primary factors influencing the energy dissipation rate were l/d and Re. Under the study conditions, the energy dissipation rate of jet collision in the air ranged from 16.25% to 39.54%. The energy dissipation efficiency exhibits a negative correlation with l/d and a positive correlation with Re. This study provides a new approach for energy dissipation in hydraulic engineering. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Figure 1

26 pages, 5054 KB  
Article
Energy-Based Design for the Seismic Improvement of Historic Churches by Nonlinear Modelling
by Nicola Longarini, Pietro Crespi, Luigi Cabras and Michele Santoro
Buildings 2026, 16(1), 12; https://doi.org/10.3390/buildings16010012 - 19 Dec 2025
Viewed by 134
Abstract
This study investigates the seismic retrofit of historic single-nave churches through the optimization of roof diaphragms designed to enhance energy dissipation. The proposed strategy introduces a deformable box-type diaphragm above the existing roof, composed of timber panels and steel connectors with a cover [...] Read more.
This study investigates the seismic retrofit of historic single-nave churches through the optimization of roof diaphragms designed to enhance energy dissipation. The proposed strategy introduces a deformable box-type diaphragm above the existing roof, composed of timber panels and steel connectors with a cover of steel stripes, where energy dissipation is concentrated in the connections. The retrofit design is guided by the estimation of Equivalent Damping Ratio (EDR) instead of the usually adopted resistance criterion, considering an energy-based approach to improve global seismic performance while preserving architectural integrity. In this way, the retrofitted configuration of the roof can be considered a damper. Three numerical phases are presented to assess the effectiveness of the equivalent damping-based intervention. In the first one, the seismic response of the initial non-retrofitted configuration is implemented using a 3D linear finite element model subjected to a response spectrum. Subsequently, nonlinear equivalent models subjected to spectrum-compatible accelerograms are implemented, simulating the possible retrofitted configurations of the roofs to detect the optimum damping and finding the corresponding roof diaphragm configuration. In the third one, the response of the detected retrofitted configuration is also evaluated by nonlinear 3D model subjected to accelerograms. The three phases with the relative numerical approaches are here applied to a case study, located in a high seismic hazard area. The results demonstrate that the EDR-based methodology can optimize the retrofitted roof diaphragm configuration; the nave transverse response is improved in comparison with that designed with the traditional approach, considering only the over-strength of the interventions. Comparisons about the approaches based on the EDR and the strength criteria are presented in terms of lateral displacements, in-plane shear acting on the roof diaphragm, and in-plane stresses on the façade. Full article
(This article belongs to the Special Issue Modeling and Testing the Performance of Masonry Structures)
Show Figures

Figure 1

24 pages, 14158 KB  
Article
Combustion, Emission, and Knock Characteristics in a Hydrogen-Doped Premixed Ammonia Spark-Ignition Heavy-Duty Engine
by Qian Xiong, Kai Han, Xinru Shi, Dezhi Liang, Juntao Li and Xuan Hou
Sustainability 2026, 18(1), 42; https://doi.org/10.3390/su18010042 - 19 Dec 2025
Viewed by 143
Abstract
As sustainable green fuels for heavy-duty engines, using hydrogen doping with ammonia helps to mitigate greenhouse gas emissions. Based on the background of hydrogen production from ammonia reforming, the combustion and emission characteristics of hydrogen-doped ammonia engines are studied. By employing 3D-CFD numerical [...] Read more.
As sustainable green fuels for heavy-duty engines, using hydrogen doping with ammonia helps to mitigate greenhouse gas emissions. Based on the background of hydrogen production from ammonia reforming, the combustion and emission characteristics of hydrogen-doped ammonia engines are studied. By employing 3D-CFD numerical simulation, this study systematically explores the combined effects of the ignition timing, hydrogen energy ratio (HER), and equivalence ratio (Φ) on the premixed combustion and emission performances of ammonia–hydrogen blends. The findings indicate that at the operating conditions of HER = 4% and Φ = 1.0, the indicated mean effective pressure (IMEP) reaches its maximum at −40 °CA aTDC, with the indicated thermal efficiency (ITE) reaching 48.2%. However, to mitigate knock hazards, the ignition timing should be adjusted to −37.5 °CA aTDC. With HER increasing from 4% to 25%, the flame propagation velocity is markedly improved, and the combustion duration is notably reduced. As the equivalence ratio rises from 0.8 to 1.0, the combustion intensity is strengthened while the proportion of indicated work declines. Notably, the lean burn condition (Φ = 0.8) exhibits no knock risk and achieves the highest ITE (49.2%). In terms of emission characteristics, advanced ignition timing, higher HER, and lower equivalence ratio all promote NOX formation. In contrast, N2O emissions decrease as the combustion temperature rises and the combustion duration shortens. Unburned NH3 is mainly distributed in the low-temperature areas inside the cylinder, and its emission amount decreases with the improvement of combustion completeness. Full article
(This article belongs to the Special Issue Green Shipping and Operational Strategies of Clean Energy)
Show Figures

Figure 1

20 pages, 2412 KB  
Article
Synergistic Temperature–Pressure Optimization in PEM Water Electrolysis: A 3D CFD Analysis for Efficient Green Ammonia Production
by Dexue Yang, Xiaomeng Zhang, Jianpeng Li, Fengwei Rong, Jiang Zhu, Guidong Li, Xu Ji and Ge He
Energies 2026, 19(1), 2; https://doi.org/10.3390/en19010002 - 19 Dec 2025
Viewed by 229
Abstract
To address the fluctuation and instability of renewable power generation and the steady-state demands of chemical processes, a single-channel, non-isothermal computational fluid dynamics 3D model was developed. This model explicitly incorporates the coupling effects of electrochemical reactions, two-phase flow, and heat transfer. Subsequently, [...] Read more.
To address the fluctuation and instability of renewable power generation and the steady-state demands of chemical processes, a single-channel, non-isothermal computational fluid dynamics 3D model was developed. This model explicitly incorporates the coupling effects of electrochemical reactions, two-phase flow, and heat transfer. Subsequently, the influence of key operating parameters on proton exchange membrane water electrolyzer (PEMWE) system performance was investigated. The model accurately predicts the current–voltage polarization curve and has been validated against experimental data. Furthermore, the CFD model was employed to investigate the coupled effects of several key parameters—including operating temperature, cathode pressure, membrane thickness, porosity of the porous transport layer, and water inlet rate—on the overall electrolysis performance. Based on the numerical simulation results, the evolution of the ohmic polarization curve under temperature gradient, the block effect of bubble transport under high pressure, and the influence mechanism of the microstructure of the multi-space transport layer on gas–liquid, two-phase flow distribution are mainly discussed. Operational strategy analysis indicates that the high-efficiency mode (4.3–4.5 kWh/Nm3) is suitable for renewable energy consumption scenarios, while the economy mode (4.7 kWh/Nm3) reduces compression energy consumption by 23% through pressure–temperature synergistic optimization, achieving energy consumption alignment with green ammonia synthesis processes. This provides theoretical support for the optimization design and dynamic regulation of proton exchange membrane water electrolyzers. Full article
(This article belongs to the Special Issue Advances in Green Hydrogen Production Technologies)
Show Figures

Figure 1

24 pages, 3887 KB  
Article
Numerical Simulation Study on Synergistic Influencing Factors of CO2 Flooding and Geological Storage in Low-Permeability and High-Water-Cut Reservoirs
by Qi Wang, Jihong Zhang, Guantong Huo, Peng Wang, Fei Li, Xinjian Tan and Qiang Xie
Energies 2025, 18(24), 6630; https://doi.org/10.3390/en18246630 - 18 Dec 2025
Viewed by 141
Abstract
How to economically and effectively mobilize remaining oil and achieve carbon sequestration after water flooding in low-permeability, high-water-cut reservoirs is an urgent challenge. This study, focusing on Block Y of the Daqing Oilfield, employs numerical simulation to systematically reveal the synergistic influencing mechanisms [...] Read more.
How to economically and effectively mobilize remaining oil and achieve carbon sequestration after water flooding in low-permeability, high-water-cut reservoirs is an urgent challenge. This study, focusing on Block Y of the Daqing Oilfield, employs numerical simulation to systematically reveal the synergistic influencing mechanisms of CO2 flooding and geological storage. A three-dimensional compositional model characterizing this reservoir was constructed, with a focus on analyzing the controlling effects of key geological (depth, heterogeneity, physical properties) and engineering (gas injection rate, gas injection volume, bottom-hole flowing pressure) parameters on the displacement and storage processes. Simulation results indicate that the low-permeability characteristics of Block Y effectively suppress gas channeling, enabling a CO2 flooding enhanced oil recovery (EOR) increment of 15.65%. Increasing reservoir depth significantly improves both oil recovery and storage efficiency by improving the mobility ratio and enhancing gravity segregation. Parameter optimization is key to achieving synergistic benefits: the optimal gas injection rate is 700–900 m3/d, the economically reasonable gas injection volume is 0.4–0.5 PV, and the optimal bottom-hole flowing pressure is 9–10 MPa. This study confirms that for Block Y and similar high-water-cut, low-permeability reservoirs, CO2 flooding is a highly promising replacement technology; through optimized design, it can simultaneously achieve significant crude oil production increase and efficient CO2 storage. Full article
Show Figures

Figure 1

Back to TopTop