Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (144)

Search Parameters:
Keywords = 28 GHz band

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3810 KiB  
Article
Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication
by Muhammad Asfar Saeed, Augustine O. Nwajana and Muneeb Ahmad
Electronics 2025, 14(15), 2933; https://doi.org/10.3390/electronics14152933 - 23 Jul 2025
Viewed by 285
Abstract
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × [...] Read more.
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × 6 linear series-fed microstrip patch antenna array for 5G millimeter-wave communication operating at 28 GHz. The proposed antenna is fabricated on a low-loss Rogers RO3003 substrate and incorporates an integrated symmetric two-way microstrip power divider to ensure balanced feeding and phase uniformity across elements. The antenna achieves a simulated peak gain of 11.5 dBi and a broad simulated impedance bandwidth of 30.21%, with measured results confirming strong impedance matching and a return loss better than −20 dB. The far-field radiation patterns demonstrate a narrow, highly directive beam in the E-plane, and the H-plane results reveal beam tilting behavior, validating the antenna’s capability for passive beam steering through feedline geometry and element spacing (~0.5λ). Surface current distribution analysis confirms uniform excitation and efficient radiation, further validating the design’s stability. The fabricated prototype shows excellent agreement with the simulation, with minor discrepancies attributed to fabrication tolerances. These results establish the proposed antenna as a promising candidate for applications requiring compact, high-gain, and beam-steerable solutions, such as 5G mm-wave wireless communication systems, point-to-point wireless backhaul, and automotive radar sensing. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

21 pages, 6045 KiB  
Article
Frequency-Bounded Matching Strategy for Wideband LNA Design Utilising a Relaxed SSNM Approach
by Vanya Sharma, Patrick E. Longhi, Walter Ciccognani, Sergio Colangeli, Antonio Serino, Swati Sharma and Ernesto Limiti
Appl. Sci. 2025, 15(15), 8148; https://doi.org/10.3390/app15158148 - 22 Jul 2025
Viewed by 183
Abstract
This paper proposes relaxed Simultaneous Signal and Noise Matching (SSNM) conditions to address limitations in selecting source degeneration inductors for multistage LNA design, achieved by introducing controlled mismatches at the external ports. Additionally, a novel frequency-bounded mismatch envelope is introduced to guide load [...] Read more.
This paper proposes relaxed Simultaneous Signal and Noise Matching (SSNM) conditions to address limitations in selecting source degeneration inductors for multistage LNA design, achieved by introducing controlled mismatches at the external ports. Additionally, a novel frequency-bounded mismatch envelope is introduced to guide load termination selection based on desired IM-OM (input mismatch-output mismatch) characteristics across the operating band. Building on these concepts, a systematic, easy-to-follow strategy is presented for implementing wideband multistage low-noise amplifiers (LNAs), significantly reducing reliance on blind CAD-based optimisation. This approach is validated through a three-stage MMIC LNA prototype, fabricated using a 0.15 μm GaAs process and operating from 28 to 34 GHz. The measured results closely match the simulation, demonstrating a stable gain of 23 ± 1 dB and a noise figure of 2–2.5 dB, confirming the practical effectiveness of the proposed design approach for wideband amplifiers. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 5094 KiB  
Article
Design and Realization of a Multi-Band, High-Gain, and High-Isolation MIMO Antenna for 5G mmWave Communications
by Nabeel Alsaab and Mahmoud Shaban
Appl. Sci. 2025, 15(12), 6857; https://doi.org/10.3390/app15126857 - 18 Jun 2025
Viewed by 491
Abstract
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm [...] Read more.
This research introduces a novel, high-performance multiple-input–multiple-output (MIMO) antenna designed to operate in allocated millimeter-wave (mmWave) 5G wireless communications. Operating in the tri-band, 28, 35, and 38 GHz, the four-port MIMO antenna possesses a compact size—measuring just 50 × 50 × 0.787 mm3 (4.67λo × 4.67λo × 0.73λo). The antenna delivers a remarkable performance, achieving peak gains of 9.6, 7.8, and 13.7 dBi in the tri-band, respectively. The realized bandwidths are 1.1, 2.2, and 3.7 GHz, at the tri-band frequencies. The antenna’s performance was significantly improved by carefully spacing the elements and employing a decoupling technique using metamaterial cells. This minimized interference between the antenna elements, resulting in efficient MIMO operation with a low envelope correlation coefficient of 0.00015 and a high diversity gain approaching 10 dB, and high isolation of 34.5, 22, and 30 dB, in the tri-band. This proposed design is confirmed with experimental measurements and offers a promising candidate for multi-band use of mmWave communication systems. Full article
(This article belongs to the Special Issue Multi-Band/Broadband Antenna Design, Optimization and Measurement)
Show Figures

Figure 1

17 pages, 127269 KiB  
Article
A Novel 28-GHz Meta-Window for Millimeter-Wave Indoor Coverage
by Chun Yang, Chuanchuan Yang, Cheng Zhang and Hongbin Li
Electronics 2025, 14(9), 1893; https://doi.org/10.3390/electronics14091893 - 7 May 2025
Viewed by 672
Abstract
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and [...] Read more.
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and etching on a standard soda-lime glass substrate, the meta-window incorporates subwavelength metallic structures arranged in a rotating pattern based on the Pancharatnam–Berry phase principle, enabling 0–360° phase control within the 25–32 GHz frequency band. A 210 mm × 210 mm prototype operating at 28 GHz was constructed using a 69 × 69 array of metasurface unit cells, leveraging planar electromagnetic lens principles. Experimental results demonstrate that the meta-window achieves greater than 20 dB signal focusing gain between 26 and 30 GHz, consistent with full-wave electromagnetic simulations, while maintaining up to 74.93% visible transmittance. This dual transparency—for both visible light and millimeter-wave frequencies—was further validated by a communication prototype system exhibiting a greater than 20 dB signal-to-noise ratio improvement and successful demodulation of a 64-QAM single-carrier signal (1 GHz bandwidth, 28 GHz) with an error vector magnitude of 4.11%. Moreover, cascading the meta-window with a reconfigurable reflecting metasurface antenna array facilitates large-angle beam steering; stable demodulation (error vector magnitude within 6.32%) was achieved within a ±40° range using the same signal parameters. Compared to conventional transmissive metasurfaces, this approach leverages established glass manufacturing techniques and offers potential for direct building integration, providing a promising solution for improving millimeter-wave indoor penetration and coverage. Full article
Show Figures

Figure 1

13 pages, 2978 KiB  
Article
Compact Beam-Scanning Reflectarray Antenna with SLL Reduction Using In-Plane Panel Translations
by Andrés Gómez-Álvarez, Sérgio A. Matos, Manuel Arrebola, Marcos R. Pino and Carlos A. Fernandes
Appl. Sci. 2025, 15(8), 4244; https://doi.org/10.3390/app15084244 - 11 Apr 2025
Viewed by 384
Abstract
A mechanical beam-scanning reflectarray (RA) antenna is presented for Ka band. The 1D steering of the beam is achieved through linear in-plane panel translations, which can be implemented at low cost using a rail-mounted moving RA panel. Compared to related works, a highly [...] Read more.
A mechanical beam-scanning reflectarray (RA) antenna is presented for Ka band. The 1D steering of the beam is achieved through linear in-plane panel translations, which can be implemented at low cost using a rail-mounted moving RA panel. Compared to related works, a highly uniform beam level is achieved with a remarkably compact antenna profile. A new technique is also proposed to mitigate the high side lobes caused by the compact antenna optics, achieving an estimated 2.3 dB reduction in maximum SLL. The manufactured prototype has a panel size of 256.4 by 187.2 mm with 2898 elements, and an F/D of only 0.47. A measured scan loss of 1.1 dB is achieved over a 45-degree scanning range. The measured gain is 31.6 dBi and the aperture efficiency is 24.7% at the design frequency of 29.5 GHz, with SLL between −9.4 and −17.5 dB. In-band measurements show a 1 dB bandwidth from 28 to over 32 GHz (11.9%). Full article
(This article belongs to the Special Issue Recent Advances in Reflectarray and Transmitarray Antennas)
Show Figures

Figure 1

14 pages, 1376 KiB  
Article
Ultra-Wideband Analog Radio-over-Fiber Communication System Employing Pulse-Position Modulation
by Sandis Migla, Kristaps Rubuls, Nikolajs Tihomorskis, Toms Salgals, Oskars Ozolins, Vjaceslavs Bobrovs, Sandis Spolitis and Arturs Aboltins
Appl. Sci. 2025, 15(8), 4222; https://doi.org/10.3390/app15084222 - 11 Apr 2025
Viewed by 697
Abstract
This research presents a novel approach to 28 GHz impulse radio ultra-wideband (IR-UWB) transmission using pulse position modulation (PPM) over an analog radio-over-fiber (ARoF) link, investigating the impact of fiber-based fronthaul on the overall performance of the communication system. In this setup, an [...] Read more.
This research presents a novel approach to 28 GHz impulse radio ultra-wideband (IR-UWB) transmission using pulse position modulation (PPM) over an analog radio-over-fiber (ARoF) link, investigating the impact of fiber-based fronthaul on the overall performance of the communication system. In this setup, an arbitrary waveform generator (AWG) is employed for PPM signal generation, while demodulation is performed with a commercial time-to-digital converter (TDC) based on an event timer. To enhance the reliability of transmitted reference PPM (TR-PPM) signals, the transmission system integrates Gray coding and Consultative Committee for Space Data Systems (CCSDS)-standard-compliant Reed-Solomon (RS) error correcting code (ECC). System performance was evaluated by transmitting pseudorandom binary sequences (PRBSs) and measuring the bit error ratio (BER) across a 5-m wireless link between two 20 dBi gain horn (Ka-band) antennas, with and without a 20 km single-mode optical fiber (SMF) link in transmitter side and ECC at the receiver side. The system achieved a BER of less than 8.17 × 10−7, using a time bin duration of 200 ps and a pulse duration of 100 ps, demonstrating robust performance and significant potential for space-to-ground telecommunication applications. Full article
(This article belongs to the Special Issue Recent Advances in Microwave Devices and Intelligent Systems)
Show Figures

Figure 1

24 pages, 5904 KiB  
Article
High-Gain Dual-Band Microstrip Antenna for 5G mmWave Applications: Design, Optimization, and Experimental Validation
by Bilal Okan Icmez and Cetin Kurnaz
Appl. Sci. 2025, 15(7), 3993; https://doi.org/10.3390/app15073993 - 4 Apr 2025
Cited by 1 | Viewed by 1167
Abstract
This study presents a novel dual-band microstrip antenna operating at 28/38 GHz, which is designed for fifth generation (5G) and next-generation communications. The objective was to create a high-gain, single-element solution that addresses millimeter-wave (mmWave) challenges, like attenuation and signal loss, offering a [...] Read more.
This study presents a novel dual-band microstrip antenna operating at 28/38 GHz, which is designed for fifth generation (5G) and next-generation communications. The objective was to create a high-gain, single-element solution that addresses millimeter-wave (mmWave) challenges, like attenuation and signal loss, offering a more efficient alternative to complex array antennas. The antenna was designed using Rogers RT/duroid 5880 as a substrate, and CST simulations were used to optimize the return loss, gain, and efficiency. Analytical methods and parametric analyses were used to further optimize the design. Additionally, an SMP connector was integrated into the simulated model using Antenna Magus software, followed by further refinement through additional parametric studies. The final compact antenna (33 × 27 × 1.6 mm3) demonstrates excellent performance with simplified fabrication. The antenna achieved bandwidths of 1.12 GHz at 28 GHz and 1.27 GHz at 38 GHz, with remarkably low return loss values of −53.04 dB and −83.65 dB, respectively. The gain values reached 7.82 dBi at 28 GHz and 8.98 dBi at 38 GHz—prototype measurements closely aligned with simulations, confirming reliability. This study introduces a high-performance, single-element antenna that is both simple and complex. The meticulous optimization process, including SMP connector variations, minimized the fabrication sensitivity and improved the overall performance, thereby marking a significant advancement in antenna design. Full article
Show Figures

Figure 1

27 pages, 3010 KiB  
Article
Energy and Spectral Efficiency Analysis for UAV-to-UAV Communication in Dynamic Networks for Smart Cities
by Mfonobong Uko, Sunday Ekpo, Ubong Ukommi, Unwana Iwok and Stephen Alabi
Smart Cities 2025, 8(2), 54; https://doi.org/10.3390/smartcities8020054 - 22 Mar 2025
Cited by 2 | Viewed by 1190
Abstract
Unmanned Aerial Vehicles (UAVs) are integral to the development of smart city infrastructures, enabling essential services such as real-time surveillance, urban traffic regulation, and cooperative environmental monitoring. UAV-to-UAV communication networks, despite their adaptability, have significant limits stemming from onboard battery constraints, inclement weather, [...] Read more.
Unmanned Aerial Vehicles (UAVs) are integral to the development of smart city infrastructures, enabling essential services such as real-time surveillance, urban traffic regulation, and cooperative environmental monitoring. UAV-to-UAV communication networks, despite their adaptability, have significant limits stemming from onboard battery constraints, inclement weather, and variable flight trajectories. This work presents a thorough examination of energy and spectral efficiency in UAV-to-UAV communication over four frequency bands: 2.4 GHz, 5.8 GHz, 28 GHz, and 60 GHz. Our MATLAB R2023a simulations include classical free-space path loss, Rayleigh/Rician fading, and real-time mobility profiles, accommodating varied heights (up to 500 m), flight velocities (reaching 15 m/s), and fluctuations in the path loss exponent. Low-frequency bands (e.g., 2.4 GHz) exhibit up to 50% reduced path loss compared to higher mmWave bands for distances exceeding several hundred meters. Energy efficiency (ηe) is evaluated by contrasting throughput with total power consumption, indicating that 2.4 GHz initiates at around 0.15 bits/Joule (decreasing to 0.02 bits/Joule after 10 s), whereas 28 GHz and 60 GHz demonstrate markedly worse ηe (as low as 103104bits/Joule), resulting from increased path loss and oxygen absorption. Similarly, sub-6 GHz spectral efficiency can attain 4×1012bps/Hz in near-line-of-sight scenarios, whereas 60 GHz lines encounter significant attenuation at distances above 200–300 m without sophisticated beamforming techniques. Polynomial-fitting methods indicate that the projected ηe diverges from actual performance by less than 5% after 10 s of flight, highlighting the feasibility of machine-learning-based techniques for real-time power regulation, beam steering, or multi-band switching. While mmWave UAV communication can provide significant capacity enhancements (100–500 MHz bandwidth), energy efficiency deteriorates markedly without meticulous flight planning or adaptive protocols. We thus advocate using multi-band radios, adaptive modulation, and trajectory optimisation to equilibrate power consumption, ensure connection stability, and meet high data-rate requirements in densely populated, dynamic urban settings. Full article
Show Figures

Figure 1

20 pages, 5586 KiB  
Article
A Low-Power Complementary Metal-Oxide-Semiconductor Receiver with Quadrature Bandpass Continuous-Time Delta–Sigma Analog-to-Digital Converter for IoT Applications
by Nam-Seog Kim
Sensors 2025, 25(6), 1748; https://doi.org/10.3390/s25061748 - 12 Mar 2025
Viewed by 762
Abstract
This paper presents a low-power CMOS receiver with a complex continuous-time delta–sigma ADC designed for IoT applications in the 2.4 GHz band. The architecture employs a quadrature bandpass continuous-time delta–sigma ADC optimized for Bluetooth Low Energy (BLE) standards, achieving an ENOB of 10.9 [...] Read more.
This paper presents a low-power CMOS receiver with a complex continuous-time delta–sigma ADC designed for IoT applications in the 2.4 GHz band. The architecture employs a quadrature bandpass continuous-time delta–sigma ADC optimized for Bluetooth Low Energy (BLE) standards, achieving an ENOB of 10.9 bits while consuming only 0.81 mW from a 1.0 V supply. The receiver demonstrates impressive performance metrics, including a sensitivity of −95 dBm at a 10⁻3-bit error rate, an image rejection ratio of 54.2 dBc, and a spurious-free dynamic range of 79.8 dBc. Operating at a 1.5 MHz intermediate frequency with a 2 MHz bandwidth, the ADC achieves superior energy efficiency with a figure of merit (FOMW) of 103.2 fJ/conv. Implemented in 28 nm CMOS technology, the complete receiver occupies 0.375 mm2 for the RF front-end and 0.145 mm2 for the ADC while consuming 4.08 mW total power, making it well suited for battery-powered IoT sensor nodes requiring both power efficiency and reliable wireless connectivity. Full article
Show Figures

Figure 1

17 pages, 5727 KiB  
Article
Development and Implementation of High-Gain, and High-Isolation Multi-Input Multi-Output Antenna for 5G mmWave Communications
by Mahmoud Shaban
Telecom 2025, 6(1), 14; https://doi.org/10.3390/telecom6010014 - 25 Feb 2025
Cited by 1 | Viewed by 733
Abstract
This work introduces a high-performance multi-input multi-output (MIMO) antenna design to operate at the 28 GHz band. The proposed four-port MIMO antenna, in which each port comprises a 1 × 8 series-fed array, achieves peak gains of 13 dBi along with bandwidths of [...] Read more.
This work introduces a high-performance multi-input multi-output (MIMO) antenna design to operate at the 28 GHz band. The proposed four-port MIMO antenna, in which each port comprises a 1 × 8 series-fed array, achieves peak gains of 13 dBi along with bandwidths of 1 GHz. Enhanced antenna performance is achieved through the optimal spacing of antenna elements and a decoupling methodology comprising a well-designed metamaterial unit cell, leading to reduced interference between antenna arrays. The design shows significantly suppressed mutual coupling to be less than −40 dB, a diversity gain that is very close to 10 dB, an envelope correlation coefficient of 0.00012, and a channel capacity loss of 0.147 bit/s/Hz, at 28 GHz. The experimental assessments confirmed these developments, endorsing the suggested design as a robust contender for 5G mmWave communications. Full article
(This article belongs to the Special Issue Advances in Wireless Communication: Applications and Developments)
Show Figures

Figure 1

20 pages, 8736 KiB  
Article
High-Performance Series-Fed Array Multiple-Input Multiple-Output Antenna for Millimeter-Wave 5G Networks
by Nabeel Alsaab, Khaled Alhassoon, Fahd Alsaleem, Fahad Nasser Alsunaydih, Sayed O. Madbouly, Sherif A. Khaleel, Allam M. Ameen and Mahmoud Shaban
Sensors 2025, 25(4), 1036; https://doi.org/10.3390/s25041036 - 9 Feb 2025
Cited by 4 | Viewed by 1072
Abstract
This research presents a high-performance design for a multiple-input multiple-output (MIMO) antenna intended for operation within the 28 GHz band. The four-port MIMO antenna configuration, featuring 1 × 8 series-fed arrays for each port, has demonstrated peak gains of 15.5 dBi and bandwidths [...] Read more.
This research presents a high-performance design for a multiple-input multiple-output (MIMO) antenna intended for operation within the 28 GHz band. The four-port MIMO antenna configuration, featuring 1 × 8 series-fed arrays for each port, has demonstrated peak gains of 15.5 dBi and bandwidths of 2 GHz. This improved antenna performance results from carefully optimized antenna spacing and a decoupling approach involving well-designed metamaterial cells, effectively minimizing interference between antenna elements. The system exhibits remarkably low mutual coupling, measuring below −40 dB, with envelope correlation coefficients of 0.00010, diversity gains nearing 10 dB, and a channel loss capacity of 0.11 bit/s/Hz across the frequency spectrum under investigation. Experimental evaluations have confirmed these improvements, establishing the proposed design as a robust candidate suitable for a wide range of millimeter-wave communication systems. Full article
Show Figures

Figure 1

17 pages, 6210 KiB  
Article
A Small Implantable Compact Antenna for Wireless Telemetry Applied to Wireless Body Area Networks
by Zongsheng Gan, Dan Wang, Lu Liu, Xiaofeng Fu, Xinju Wang and Peng Chen
Appl. Sci. 2025, 15(3), 1385; https://doi.org/10.3390/app15031385 - 29 Jan 2025
Viewed by 2824
Abstract
Wireless Body Area Networks (WBANs) are human-centric wireless networks, and implantable antennas represent a vital communication component within WBANs. The dielectric properties of human tissue are highly complex, with each layer exhibiting distinct dielectric constants that significantly influence the performance of implanted antennas. [...] Read more.
Wireless Body Area Networks (WBANs) are human-centric wireless networks, and implantable antennas represent a vital communication component within WBANs. The dielectric properties of human tissue are highly complex, with each layer exhibiting distinct dielectric constants that significantly influence the performance of implanted antennas. It is therefore imperative that a compact broadband implantable antenna be designed in order to address the instability in communication of medical implant devices. The antenna, coated in silicone, is a single-layer structure fed by a coaxial cable, with a volume of just 6 mm × 6 mm× 0.53 mm. A metallic patch is etched on the upper surface of the substrate, and the compact antenna design is enhanced with the introduction of S-shaped, F-shaped, and rectangular slots on the patch. The bottom side of the substrate is etched with rectangular ground planes, which broaden the impedance bandwidth of the antenna. The simulation results demonstrate that the antenna attains an impedance bandwidth of 23.8% (2.08–2.64 GHz), encompassing the entirety of the Industrial, Scientific, and Medical (ISM) band (2.4–2.48 GHz). In order to simulate the working environment of the antenna within the human body, physical tests were conducted on the antenna in pork tissue. The test results demonstrate that the antenna exhibits a measured bandwidth of 28% (2.3–3.03 GHz), with a radiation pattern that displays omnidirectional radiation characteristics. The antenna’s impedance matching and radiation characteristics remain essentially consistent in both bent and unbent states, indicating structural robustness. In comparison to other implantable antennas, this antenna displays a wider impedance bandwidth, a lower Specific Absorption Rate (SAR), and superior implant performance. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

11 pages, 4261 KiB  
Article
Design of a Half-Mode Substrate-Integrated Waveguide (HMSIW) Multimode Resonator Bandpass Filter Using the Minkowski Fractal for C-Band Applications
by Nitin Muchhal, Abhay Kumar, Nidhi Tewari, Samriti Kalia and Shweta Srivastava
Micromachines 2024, 15(12), 1440; https://doi.org/10.3390/mi15121440 - 28 Nov 2024
Cited by 1 | Viewed by 1156
Abstract
A substrate-integrated waveguide (SIW) bandpass filter (BPF) with extraordinary selectivity and an adequate upper stopband for C-band Satellite Communication (SATCOM) applications is proposed in this paper. The design comprises comb-shaped slots engraved on a half-mode SIW (HMSIW) that constitute a multimode resonator (MMR). [...] Read more.
A substrate-integrated waveguide (SIW) bandpass filter (BPF) with extraordinary selectivity and an adequate upper stopband for C-band Satellite Communication (SATCOM) applications is proposed in this paper. The design comprises comb-shaped slots engraved on a half-mode SIW (HMSIW) that constitute a multimode resonator (MMR). Its performance is further ameliorated by applying the first and second iterations of the Minkowski fractal curve in the ground plane as a defected ground structure (DGS). The Minkowski fractal has advantages in terms of better bandwidth and miniaturization. The filter is first simulated using the commercial full-wave electromagnetic simulator HFSS v19 and then fabricated on a 0.062′′ (1.6 mm) FR4 with dielectric constant εr = 4.4. The measured results are comparable with the simulated ones and demonstrate that the BPF has a resonant frequency (f0) of 4.75 GHz, a 3 dB bandwidth of 770 MHz (fractional bandwidth of 21.4%), an insertion loss of 1.05 dB, and an out-of-band rejection (in the stopband) of more than 28 dB up to 8 GHz, demonstrating a wide and deep stopband. Using the multimode resonator (MMR) technique, a wide bandwidth has been achieved, and by virtue of using half-mode SIW (HMSIW), the proposed BPF is compact in size. Also, the fractal DGS aids in better stopband performance. Full article
Show Figures

Figure 1

11 pages, 6783 KiB  
Article
23.5–27.5 GHz Band Doherty Power Amplifier Integrated Circuit Using 28 nm Bulk CMOS Process Based on Dynamic Power Dividing Network
by Young Chan Choi, Soohyun Bin, Keum Cheol Hwang, Kang-Yoon Lee and Youngoo Yang
Electronics 2024, 13(21), 4190; https://doi.org/10.3390/electronics13214190 - 25 Oct 2024
Viewed by 1239
Abstract
This paper presents a Doherty power amplifier (DPA) integrated circuit (IC) designed to have enhanced gain, efficiency, and AM-AM characteristics through a dynamic power dividing technique, which can control the power dividing ratio according to the input power. Since this multi-purpose dynamic power [...] Read more.
This paper presents a Doherty power amplifier (DPA) integrated circuit (IC) designed to have enhanced gain, efficiency, and AM-AM characteristics through a dynamic power dividing technique, which can control the power dividing ratio according to the input power. Since this multi-purpose dynamic power dividing network also provides the phase offset and impedance matching at the interstage network needed for appropriate DPA operation, the active IC area could be reduced. To verify the proposed technique and its analysis, the DPA was implemented with a 28 nm bulk CMOS process for the fifth-generation (5G) new radio (NR) millimeter-wave frequency band of 23.5–27.5 GHz. The measured results showed a gain of 20.3–21.9 dB, saturated output power of 14.0–15.2 dBm, power added efficiency (PAE) of 22.8–26.7% at the peak power, and PAE of 14.6–17.6% at the 6 dB output power back-off (OBO). Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

17 pages, 9928 KiB  
Article
Anti-Corrosion and Wave-Absorbing Properties of Epoxy-Based Coatings on Q235 Steel
by Rehan Zhang, Kai Yang, Bo Dang, Mengling Zhan, Pingze Zhang and Shuqin Li
Coatings 2024, 14(10), 1315; https://doi.org/10.3390/coatings14101315 - 15 Oct 2024
Cited by 3 | Viewed by 1737
Abstract
Carbon nanotube/epoxy resin (CNE) coatings and carbon nanotube/carboxy iron powder/epoxy resin (CIE) coatings were applied on the surface of Q235 steel, and their corrosion, absorption properties and other characteristics were measured in this work. The results indicate that the average thickness of a [...] Read more.
Carbon nanotube/epoxy resin (CNE) coatings and carbon nanotube/carboxy iron powder/epoxy resin (CIE) coatings were applied on the surface of Q235 steel, and their corrosion, absorption properties and other characteristics were measured in this work. The results indicate that the average thickness of a single application was approximately 400 μm, and the surface of the CNE coating was still smooth and intact after a 3000 h copper ion accelerated salt spray test without bubbles, falling off or other corrosion phenomena. The same was true for 28 days of full immersion in solutions of 10% hydrochloric acid (HCl) and 10% sodium hydroxide (NaOH) of the coating. The electrochemical testing exhibited the corrosion current of the CNE coating as being markedly lower than that of Q235 steel, with a protection efficiency of 81.68% for the Q235 steel. The CNE-0.6 coating had the maximum corrosion voltage (−0.390 V), and the CNE-0.3 coating had the minimum corrosion current of 2.07 × 10−6 A·cm2. The adhesion between the coating and Q235 could reach level 0, and the tensile strength of the coating was up to 18.75 MPa. The coating was observed to remain intact and free from detachment upon undergoing a drop test from a height of 50 cm. In addition, the CIE-0.6 coating exhibited an effective absorption band of 9.1 GHz, covering the range from 8.2 to 13.7 GHz, and it achieved a maximum reflection loss of −15.1 dB at a frequency of 8.6 GHz. Full article
Show Figures

Figure 1

Back to TopTop