Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,701)

Search Parameters:
Keywords = 22MnB5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4741 KB  
Article
Hydrochemistry and Environmental Isotopes for the Investigation of Water Quality in the Upper Olifants River Catchment in the Mpumalanga Province, South Africa
by Manare Marweshi, Abera Tessema, Kingsley Kwabena Ayisi and Mike Butler
Water 2026, 18(2), 201; https://doi.org/10.3390/w18020201 (registering DOI) - 13 Jan 2026
Abstract
The Upper Olifants River Catchment in the Mpumalanga Province has experienced water contamination in the past few decades due to existing land use and land cover. This study employed hydrochemical and environmental isotopes to investigate the water quality and understand the sources of [...] Read more.
The Upper Olifants River Catchment in the Mpumalanga Province has experienced water contamination in the past few decades due to existing land use and land cover. This study employed hydrochemical and environmental isotopes to investigate the water quality and understand the sources of contaminants within tertiary catchments B11F and B11G of the Upper Olifants River Catchment. The hydrochemistry results indicate that the shallow weathered aquifers are more susceptible to contamination with major pollutants being TDS, SO4, Ca, Mg, Fe, and Mn, which can be associated with the geology and coal mining activities in the area. Additionally, the environmental isotopes suggest that the climate, fractionation, and elevation play a major role in the evolution of the water. The correlation of major ion ratios suggests that processes such as silicate and carbonate weathering and cation exchange reactions play a significant role in making the water vulnerable to pollution. In general, the overall water quality index of the study area indicates poor water quality falling within the range of 0 < WQI ≤ 44, making it undesirable for domestic use. Furthermore, approximately 35% of the samples are not suitable for irrigation purposes based on the SAR and PI. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 11383 KB  
Article
Identification of miRNAs Responsive to a Defined Period of Iron Deficiency and Resupply in Arabidopsis thaliana
by Qianmiao Zhao, Fei Liu, Jin Xu and Ping Zhang
Plants 2026, 15(2), 227; https://doi.org/10.3390/plants15020227 - 11 Jan 2026
Abstract
Iron (Fe), as one of the essential micronutrients for plants, plays a pivotal role in regulating growth and development through homeostatic balance. Fe deficiency is a common agricultural stress that causes visible leaf chlorosis and impairs plant growth. In this study, Arabidopsis thaliana [...] Read more.
Iron (Fe), as one of the essential micronutrients for plants, plays a pivotal role in regulating growth and development through homeostatic balance. Fe deficiency is a common agricultural stress that causes visible leaf chlorosis and impairs plant growth. In this study, Arabidopsis thaliana seedlings grown under Fe deficiency for 4 days were subjected to 6 h Fe resupply via foliar spray or root supply, followed by measurements of chlorophyll fluorescence and metal ion contents in leaves and roots. Fe deficiency significantly reduced Fe levels and the maximum quantum yield of fluorescence (Fv/Fm), while increasing copper (Cu) accumulation in roots. Zinc (Zn) and manganese (Mn) levels were also altered, depending on tissue type. Fe resupply restored Fv/Fm, increased Mn levels, and rebalanced micronutrient content. MicroRNA (miRNA) mediates adaptation to Fe deficiency via post-transcriptional regulation in plants. However, the involved regulatory networks of miRNAs under stress conditions during Fe resupply following deficiency remain poorly understood. These physiological changes prompted us to explore the underlying regulatory networks using miRNA-seq and mRNA-seq. The bioinformatics analysis identified differentially expressed miRNAs responsive to Fe stress, with the Fe-deficiency-specific cis-element IDE1 characterized in their promoter regions. By integrating miRNA-seq and mRNA-seq datasets, we constructed a regulatory network and identified 13 miRNAs harboring IDE1 motifs alongside their functional target genes. Three critical Fe homeostasis modules were proposed—miR396b-LSU2, miR401-HEMA1, and miR169b-NF-YA2—that link Fe homeostasis to chlorophyll synthesis, sulfur (S) responses, and developmental signaling. This study integrates physiological phenotyping with transcriptomic insights to provide a comprehensive view of Fe deficiency and recovery in Arabidopsis. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

25 pages, 1169 KB  
Article
Biostimulants Enhance the Growth and Nutritional Quality of Lettuce (Lactuca sativa L.)
by Metin Turan, Melek Ekinci, Esma Yigider, Murat Aydin, Melike Akca, Sanem Argin, Nazlı İlke Eken Türer and Ertan Yildirim
Horticulturae 2026, 12(1), 75; https://doi.org/10.3390/horticulturae12010075 - 8 Jan 2026
Viewed by 148
Abstract
Biostimulants have emerged as effective tools for enhancing both the productivity and quality of crops. In this study, we assessed the impact of the two commercial biostimulant products (Kiana Earth® and Kiana Climate®) on the growth, yield, and quality of [...] Read more.
Biostimulants have emerged as effective tools for enhancing both the productivity and quality of crops. In this study, we assessed the impact of the two commercial biostimulant products (Kiana Earth® and Kiana Climate®) on the growth, yield, and quality of lettuce (Lactuca sativa L.). Eight treatments were established, comprising six different biostimulant formulations, a normal control (no fertilizer applied), and a positive control (chemical fertilizer application). Biostimulant treatments significantly improved plant and stem diameters, fresh and dry biomass, and yield (p < 0.01). The best yields and morphological performance were obtained with samples receiving T6 (Kiana Climate® + 75:50:75 kg ha−1 N:P:K) and T7 (Kiana Earth® + 150:100:150 kg ha−1 N:P:K) applications, which comprised biostimulant–fertilizer combinations. Chlorophyll a, chlorophyll b, and total chlorophyll levels were significantly higher with than without biostimulant treatment, indicating that the biostimulants enhanced photosynthetic efficiency. Biochemical analyses further identified significant increases in vitamin C levels, total antioxidant capacity, total phenolic compounds, and flavonoid contents, especially with treatments T5 (Kiana Earth® + 75:50:75 kg ha−1 N:P:K)–T8 (Kiana Climate® + 150:100:150 kg ha−1 N:P:K). Nitrogen assimilation analysis showed that leaf NO3 levels were lower with the combined treatment than with chemical fertilizer alone, suggesting that the biostimulants improved nitrogen-use efficiency. Micronutrient (Fe, Zn, Cu, Mn, Na) and macronutrient (N, P, K, Ca, Mg, S) levels were significantly increased with biostimulant-enriched treatments, alongside a rise in soil organic matter. Biostimulants, especially when combined with mineral fertilization, significantly enhanced lettuce growth, yield, and nutritional quality, while also promoting soil fertility. These findings highlight the potential of biostimulants as valuable tools in conventional, regenerative, and organic agricultural practices, offering a sustainable approach to enhancing agricultural productivity while ensuring long-term soil fertility. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

14 pages, 14424 KB  
Article
In-Situ Growth of Carbon Nanotubes on MOF-Derived High-Entropy Alloys with Efficient Electromagnetic Wave Absorption
by Zhongjing Wang, Bin Meng, Xingyu Ping, Qingqing Yang, Kang Wang and Shuo Wang
Materials 2026, 19(2), 239; https://doi.org/10.3390/ma19020239 - 7 Jan 2026
Viewed by 96
Abstract
To obtain an excellent electromagnetic wave (EMW) absorption material, a strategy was proposed in this study with the aid of in-situ growth of carbon nanotubes (CNTs) on the surface of a metal–organic framework (MOF)-derived FeCoNiMnMg high-entropy alloy (HEA). The HEA@CNT composite was successfully [...] Read more.
To obtain an excellent electromagnetic wave (EMW) absorption material, a strategy was proposed in this study with the aid of in-situ growth of carbon nanotubes (CNTs) on the surface of a metal–organic framework (MOF)-derived FeCoNiMnMg high-entropy alloy (HEA). The HEA@CNT composite was successfully prepared via a solvothermal method combined with a one-step pyrolysis process. With the pyrolysis temperature increasing from 600 °C to 800 °C, the length of CNTs grew from 200 nm to about 600 nm approximately, while the defect density of CNTs was enhanced. This structural evolution significantly improved the dielectric properties and impedance matching. Consequently, the sample prepared at 800 °C (HEA@CNT-800) exhibited outstanding microwave absorption performances, achieving a minimum reflection loss (RLmin) of −57.52 dB at a matched thickness of 2.3 mm and an effective absorption bandwidth (EAB) of 4.4 GHz at a thinner thickness of 1.9 mm. This work provides a novel perspective for designing high-performance MOF-derived absorption materials. Full article
Show Figures

Figure 1

23 pages, 5527 KB  
Article
Ozone Micro–Nano Bubbles Application Controls Disease Development and Maintains Quality of Fresh Radix astragali
by Yan Lv, Jihui Xi, Jinzhu Li, Cuixia Yang, Haijiao Chai, Huali Xue and Yang Bi
J. Fungi 2026, 12(1), 44; https://doi.org/10.3390/jof12010044 - 6 Jan 2026
Viewed by 202
Abstract
Ozone micro–nano bubbles (OMNBs) are an emerging preservation technology. However, there are few reports regarding their application in controlling postharvest diseases of agricultural products. Radix astragali, as a medicinal and edible plant, is particularly vulnerable to pathogenic microorganisms during postharvest storage, which [...] Read more.
Ozone micro–nano bubbles (OMNBs) are an emerging preservation technology. However, there are few reports regarding their application in controlling postharvest diseases of agricultural products. Radix astragali, as a medicinal and edible plant, is particularly vulnerable to pathogenic microorganisms during postharvest storage, which leads to diminishing the quality and commercial value. In this study, fresh R. astragali inoculated with Penicillium polonicum was treated with different concentrations (2, 3, 4, 5, 6, 8 mg/L) of OMNBs and stored at room temperature for 28 days. The results indicate that 3 mg/L OMNBs application for 8 min effectively inhibited the development of blue mold in fresh R. astragali and preserved its quality. Then, we compared the three different treatments of micro–nano bubbles (MNBs), 3 mg/L O3, and 3 mg/L OMNBs on physiological and pathological parameters of un-inoculated fresh R. astragali during storage and analyzed the changes in the active ingredients by liquid chromatography and metabolomics. The results indicate that the 3 mg/L OMNBs treatment effectively inhibited the decline in weight loss rate, respiratory rate, firmness, browning index, and ABTS and DPPH radical-scavenging rates, as well as reduced the incidence rate and disease index of fresh R. astragali during storage. The metabolomics results suggest that the 3 mg/L OMNBs application activated the mevalonate pathway (MVA), the methylerythritol phosphate pathway (MEP), and the phenylpropanoid biosynthesis pathway to maintain the content of active ingredients such as terpenoids and flavonoids, and these findings are consistent with the results of HPLC-MS analysis. Full article
(This article belongs to the Special Issue Control of Postharvest Fungal Diseases, 2nd Edition)
Show Figures

Figure 1

15 pages, 3639 KB  
Article
Asymmetric Isoporous Membranes of 2-Vinylpyridine-Styrene Linear Diblock Copolymers: Fabrication and Evaluation in Water Treatment
by Maria Rikkou-Kalourkoti, Katerina Antoniou, Nicholas A. Pissarides, Georgios T. Papageorgiou and Costas S. Patrickios
Polymers 2026, 18(2), 149; https://doi.org/10.3390/polym18020149 - 6 Jan 2026
Viewed by 157
Abstract
Herein, we report the synthesis via controlled reversible addition-fragmentation chain transfer (RAFT) polymerization of amphiphilic 2-vinylpyridine-b-styrene (2VPy-b-Sty) diblock copolymers of high molar masses (range: 52,100–304,000 g mol−1) and various compositions (range: 2VP content 11.6–59.2 mol%) and their [...] Read more.
Herein, we report the synthesis via controlled reversible addition-fragmentation chain transfer (RAFT) polymerization of amphiphilic 2-vinylpyridine-b-styrene (2VPy-b-Sty) diblock copolymers of high molar masses (range: 52,100–304,000 g mol−1) and various compositions (range: 2VP content 11.6–59.2 mol%) and their use for the fabrication of nanoporous membranes. The successful synthesis of the amphiphilic diblock copolymers was confirmed through the characterization of their molar masses, molar mass distribution, and composition using GPC and 1H-NMR spectroscopy, respectively. Subsequently, membranes of the diblock copolymers were fabricated following the “phase inversion” technique. The resulting membranes were characterized via scanning electron microscopy which revealed the presence of sphere percolation networks morphology for all diblock copolymers with Mn ranging from 120 to 300 kDa and 2VPy content between 10 and 15 mol% at the optimal conditions. Afterward, the developed membranes were evaluated in terms of their permeability towards water and in terms of their ability to retain two different microorganisms, namely, Enterococcus faecalis and Escherichia coli, that are known to be harmful to human health. The experimental water flux for a membrane with pore size around 60 nm was equal to 31,400 L h−1 m2 and expectedly decreased with the decrease in membrane pore diameter. The retention ability of membranes for Enterococcus faecalis and Escherichia coli was higher than 90%. In particular, the retention ability for Enterococcus faecalis was equal to 98.9% and for Escherichia coli was 91.4%. The toxicity of the produced membrane was also determined, and the measured value was relatively low, at 17%. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

18 pages, 2146 KB  
Article
Source Apportionment and Ecological Risk Assessment of Metal Elements in the Upper Reaches of the Yarlung Tsangpo River
by Guiming Zhang, Hao Dong, Jiangyi Zhang, Guangliang Wu, Huiguo Sun and Zhifang Xu
Water 2026, 18(1), 113; https://doi.org/10.3390/w18010113 - 2 Jan 2026
Viewed by 228
Abstract
Heavy metal (HM) pollution in the southern Tibetan Plateau has attracted global attention. Prior studies have noted HM enrichment and water issues in Tibetan rivers, but seasonal variation, sources, and controlling factors remain unclear. This study measured HM levels in high-frequency river water [...] Read more.
Heavy metal (HM) pollution in the southern Tibetan Plateau has attracted global attention. Prior studies have noted HM enrichment and water issues in Tibetan rivers, but seasonal variation, sources, and controlling factors remain unclear. This study measured HM levels in high-frequency river water and suspended particulate matter (SPM) at the Lhaze on the Yarlung Tsangpo River (YTR), assessing pollution and ecological risks. The results showed that the overall surface water quality was excellent. The SPM overall showed a low potential ecological risk. Nevertheless, pollution risks were observed for As and B in river water samples during the dry season. Additionally, As and B were found to be in moderate-to-heavy pollution levels for SPM samples, and there was a moderate potential ecological risk for As during the dry season. The source identification results revealed geothermal spring input as the primary factor contributing to the ecological risks of As and B in the YTR water. While rock weathering dominates the origins of Al, Mn, and Fe in river water, with contributions ranging from 64% to 90% of their total amounts, water availability during weathering reactions in the dry and wet seasons serves as the primary control factor for their release, mobility in the YTR basin, and concentration in the river water. As an erosion product, SPM exhibited no significant seasonal changes in metal element concentrations and showed a moderate correlation with water discharge, indicating a stable HM ecological impact from the erosion process in the YTR basin. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

12 pages, 599 KB  
Article
Toxic and Trace Elements in Raw and Cooked Bluefish (Pomatomus saltatrix) from the Black Sea: Benefit–Risk Analysis
by Katya Peycheva, Veselina Panayotova, Tatyana Hristova, Diana A. Dobreva, Tonika Stoycheva, Rositsa Stancheva, Stanislava Georgieva, Evgeni Andreev, Silviya Nikolova and Albena Merdzhanova
Foods 2026, 15(1), 140; https://doi.org/10.3390/foods15010140 - 2 Jan 2026
Viewed by 342
Abstract
This study evaluated the effects of domestic cooking methods (pan-frying, smoking, and grilling) on the concentrations of elements of toxicological concern and essential elements (Cd, Cr, Cu, Fe, Mn, Ni, Zn, and Pb) in the traditionally consumed Black Sea bluefish (Pomatomus saltatrix [...] Read more.
This study evaluated the effects of domestic cooking methods (pan-frying, smoking, and grilling) on the concentrations of elements of toxicological concern and essential elements (Cd, Cr, Cu, Fe, Mn, Ni, Zn, and Pb) in the traditionally consumed Black Sea bluefish (Pomatomus saltatrix). The investigation also included an assessment of the associated health risks and benefits by calculating carcinogenic and non-carcinogenic effects as well as benefit–risk ratios. Toxic heavy metals such as Cd, Ni, and Pb were found to be below the maximum residual limits (MRLs) established by relevant food safety authorities. Cooking generally led to increased concentrations of both essential and toxic elements compared to raw samples, with the highest increases observed in grilled and smoked samples. Furthermore, evaluations of (a) estimated weekly intakes (EWIs), (b) target hazard quotients (THQs) for Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn, and (c) hazard quotient ratios for essential fatty acids (HQEFA) relative elements indicated that consumption of these cooked bluefish species does not pose significant health risks to consumers. Full article
(This article belongs to the Special Issue Risk Assessment in Food Safety)
Show Figures

Figure 1

14 pages, 2015 KB  
Article
Dark Septate Endophytic Fungi Improve Dry Matter Production and Fruit Yield in Ever-Bearing Strawberry (Fragaria × ananassa Duch.) Under High Temperatures
by Nanako Aomura, Ryuta Ninohei, Mana Noguchi, Midori Sakoda, Eiichi Inoue, Kazuhiko Narisawa and Yuya Mochizuki
Plants 2026, 15(1), 129; https://doi.org/10.3390/plants15010129 - 2 Jan 2026
Viewed by 236
Abstract
In Japan, strawberries are produced in the off-season (June to November) in cool regions; however, the high temperatures and strong sunlight limit fruit production. Dark septate endophytic fungi (DSEs) support growth and flower bud formation of plants grown in environments unsuitable for plant [...] Read more.
In Japan, strawberries are produced in the off-season (June to November) in cool regions; however, the high temperatures and strong sunlight limit fruit production. Dark septate endophytic fungi (DSEs) support growth and flower bud formation of plants grown in environments unsuitable for plant growth. In this study, we investigated the effects of DSE on dry matter production and flower bud formation in strawberry plants grown in the summer and autumn. The seeds were sown in soil mixed with DSE on 5 February 2024. The DSEs used were Cladophialophora chaetospira SK51 (S) and Cc. MNB12 (M), and Veronaeopsis simplex Y34 (Y). Plants were planted in a plastic house on April 18. The total dry weight was significantly increased by DSEs. This is because S and Y-cultured plants did not show a significant decrease in leaf emergence under high temperatures, unlike those grown with M; however, its leaf area was larger than that of the control. This resulted in a larger leaf area for receiving light and higher cumulative light reception and light-use efficiency. Although the DSEs increased cumulative fruit yield, the harvest period was limited to July because of the extreme summer heat. In addition, there was no difference in the budding date or flowering date between the treatments. These results suggest that DSEs improve light use efficiency, thereby increasing total dry matter weight and contributing to increased fruit yield in summer-autumn cultivation. Full article
Show Figures

Figure 1

13 pages, 408 KB  
Article
Essential, Non-Essential, and Toxic Elements in the Muscle of Meagre (Argyrosomus regius) from the Tagus Estuary (Portugal)
by André F. Jorge, Carla Rodrigues, Bernardo Quintella, Marco Gomes da Silva and Maria João Lança
Oceans 2026, 7(1), 3; https://doi.org/10.3390/oceans7010003 - 31 Dec 2025
Viewed by 229
Abstract
Monitoring trace metals in commercially important fish species provides an early warning of anthropogenic contamination and potential risk to consumers. This study semi-quantified and quantified essential, non-essential, and toxic elements in the muscle of wild meagre (Argyrosomus regius) captured in the [...] Read more.
Monitoring trace metals in commercially important fish species provides an early warning of anthropogenic contamination and potential risk to consumers. This study semi-quantified and quantified essential, non-essential, and toxic elements in the muscle of wild meagre (Argyrosomus regius) captured in the Tagus estuary (Portugal), which is used as a nursery and spawning aggregation area. Dry muscle was microwave-digested and analyzed using inductively coupled plasma–optical emission spectroscopy. Semi-quantified screening detected Al, B, Ca, Fe, K, Mg, Na, P, S, Si, Sr, and Ti, and eight elements were determined using multielement calibration (As, Cr, Cu, Hg, Mn, Ni, Se, and Zn); Cd, Pb (toxic elements), Co, and Mo were not detected in this study. Arsenic was detected in all individuals, with a minimum value of 0.348 mg/kg wet weight. A mercury level above the European Commission regulatory limit (0.5 mg/kg wet weight) was only detected in one individual, corresponding to 2% of the samples. Although other metals remain well below regulatory limits, continued biomonitoring is recommended to track temporal trends and safeguard seafood safety in transitional coastal systems, which is important for commercially relevant fish species. Full article
18 pages, 896 KB  
Article
Morphological and Biochemical Attributes of Brassica cretica Populations Grown Under Drought Tolerance Conditions
by Theodora Ntanasi, Efthalia Stathi, Ioannis Karavidas, George P. Spyrou, Evangelos Giannothanasis, Maria-Eleftheria Zografaki, Panayiotis Trigas, Eleni Tani and Georgia Ntatsi
Horticulturae 2026, 12(1), 53; https://doi.org/10.3390/horticulturae12010053 - 31 Dec 2025
Viewed by 321
Abstract
Drought stress is a major constraint on crop productivity in the Mediterranean region. Brassica crops are particularly valued in this region for their adaptability, nutritional benefits, and economic importance in sustainable farming systems. However, their productivity is highly sensitive to water deficits, necessitating [...] Read more.
Drought stress is a major constraint on crop productivity in the Mediterranean region. Brassica crops are particularly valued in this region for their adaptability, nutritional benefits, and economic importance in sustainable farming systems. However, their productivity is highly sensitive to water deficits, necessitating the identification of drought-resilient genotypes. This study investigated the responses of five wild Brassica cretica populations and a commercial Brassica oleracea cultivar to a 50% reduction in irrigation, evaluating key physiological traits, leaf nutrient composition, and antioxidant activity. The experiment was conducted in the greenhouse facilities of the Laboratory of Vegetable Production, Agricultural University of Athens. The results revealed significant variation in drought tolerance among the tested populations. Specifically, an ecotype of B. cretica subsp. cretica (C: Akrokorinthos) and B. cretica subsp. laconica (E) showed substantial reductions in biomass, leaf area, and leaf number, whereas B. cretica subsp. aegaea (A: Manikia and B: Ymittos) and another ecotype of B. cretica subsp. cretica (D: Lasithi) maintained stable growth under water-limited conditions. Water deficit also significantly impacted leaf mineral composition, increasing NO3 and Na+ levels while decreasing P, Zn, and Mn. Additionally, drought stress enhanced antioxidant capacity and secondary metabolite production, as indicated by elevated ferric reducing antioxidant power, Trolox equivalent antioxidant capacity, total phenolic content, and total flavonoid content. Notably, the two studied populations of B. cretica subsp. aegaea (A: Manikia, B: Ymittos) and the population of B. cretica subsp. cretica from Lasithi (Crete) (D) exhibit promising drought tolerance, suggesting their potential for cultivation or breeding in water-limited environments. This research contributes to the broader effort of identifying favorable traits in crop wild relatives and to utilize these valuable genetic resources to develop climate-resilient crops for Mediterranean agriculture, where sustainable water use is critical for food security. Full article
Show Figures

Figure 1

16 pages, 2620 KB  
Article
Estimation of Effective Cation Exchange Capacity and Exchangeable Iron in Paddy Fields After Soil Flooding
by Ledemar Carlos Vahl, Roberto Carlos Doring Wolter, Antônio Costa de Oliveira, Filipe Selau Carlos, Robson Bosa dos Reis and Rogério Oliveira de Sousa
Soil Syst. 2026, 10(1), 7; https://doi.org/10.3390/soilsystems10010007 - 31 Dec 2025
Viewed by 178
Abstract
In flooded soils, the concentrations of exchangeable Mn2+ and, especially, Fe2+ can be high and must be considered when determining the cation exchange capacity (CEC) of the soil under flooded conditions. However, these reduced forms of Mn and Fe are oxidized [...] Read more.
In flooded soils, the concentrations of exchangeable Mn2+ and, especially, Fe2+ can be high and must be considered when determining the cation exchange capacity (CEC) of the soil under flooded conditions. However, these reduced forms of Mn and Fe are oxidized and precipitated during the extraction process used in traditional CEC methods. This procedure underestimates the exchangeable portion of these cations and, consequently, the CEC value of the flooded soil. We introduce a pH-gradient-based model to predict ECEC and exchangeable Fe2+ in flooded soils, circumventing oxidation artifacts inherent in conventional methods. The objective of this study is to propose an alternative to estimate the exchangeable Fe2+ and the effective CEC (ECEC) of flooded soils. To achieve this goal, 21 surface samples (0–20 cm) of soil from rice fields were collected and distributed in the cultivation regions of southern Brazil. The soils were flooded for 50 days. The soil solution was collected on the first day and after 50 days of flooding and pH, Na, K, Ca, Mg, Fe and Mn were determined. In these samples, exchangeable cations (K, Na, Ca, Mg, Mn, Al and H + Al) were determined to calculate ECEC and CEC at pH 7 of unflooded soil and after 50 days of flooding. There was a wide range of variation in the exchangeable cation contents among the soil samples. The K contents ranged from 0.12 to 0.54 cmolc kg−1, the Na contents from 0.00 to 1.18 cmolc kg−1, the Ca contents from 0.48 to 37.31 cmolc kg−1, the Mg contents from 0.10 to 15.53 cmolc kg−1, the Mn contents from 0.01 to 0.36 cmolc kg−1, the Al contents from 0.10 to 1.74 cmolc kg−1 and the H + Al contents from 2.01 to 8.42 cmolc kg−1. The results were used to develop models to predict ECEC and exchangeable Fe content after 50 days of flooding. Estimating the ECEC after flooding using the pH gradient before and after flooding yielded values closer to CEC pH 7.0, correcting for the possible underestimation of the ECEC during flooding. The amount of exchangeable Fe estimated was higher than the exchangeable Fe determined, correcting the possible underestimation of these quantities determined during flooding. It is concluded that the estimations of ECEC after flooding through the equation ECECafter=ECEC+pHsol.after pHsol.before × (CECpH7 ECEC)(7 pHsol.before), where pHsol.before is pre-flooding soil pH, pHsol.after is after flooding pH, ECECafter is effective CEC after flooding and the exchangeable Fe2+ after flooding through the equation Feexc.after.estimated=ECECafter Ca+Mg+K+Na+Mn where Feexc.after.estimated is estimated exchangeable Fe2+ after flooding corrected the problem of underestimating the values of these variables by analytical methods, demonstrating its viability for use in flood-prone soils. Full article
Show Figures

Figure 1

29 pages, 8236 KB  
Article
Enriched Environment Ameliorates Cerebral Ischemia–Reperfusion Injury via Dopamine–H2S Axis-Mediated Dual Mitophagy Activation
by Bao Zhou, Haocheng Qin, Pengkun Yang, Na Ren, Lu Sun, Zhengran Ding, Zhong He, Shuai Zhang, Zijian Hua, Ya Zheng, Ce Li, Shenyi Kuang, Yulian Zhu and Kewei Yu
Antioxidants 2026, 15(1), 52; https://doi.org/10.3390/antiox15010052 - 30 Dec 2025
Viewed by 380
Abstract
Cerebral ischemia–reperfusion injury triggers mitochondrial dysfunction and oxidative stress, exacerbating neuronal apoptosis. Emerging evidence highlights hydrogen sulfide (H2S) as a gasotransmitter modulating redox balance, autophagy, and apoptosis. This study investigates the neuroprotective mechanisms of Enriched Environment (EE) against ischemic injury, focusing [...] Read more.
Cerebral ischemia–reperfusion injury triggers mitochondrial dysfunction and oxidative stress, exacerbating neuronal apoptosis. Emerging evidence highlights hydrogen sulfide (H2S) as a gasotransmitter modulating redox balance, autophagy, and apoptosis. This study investigates the neuroprotective mechanisms of Enriched Environment (EE) against ischemic injury, focusing on mitochondrial dynamics and H2S-mediated pathways. Using MCAO mice and OGD/R-treated SH-SY5Y neurons, interventions targeting H2S synthesis, hypoxia-inducible factor 1-alpha (HIF-1α), and mitophagy were implemented. Behavioral, histological, and molecular analyses demonstrated EE significantly improved neurological outcomes, suppressed apoptosis, and attenuated oxidative damage (reduced MDA, elevated MnSOD/glutathione). Mechanistically, EE enhanced mitophagy via dual pathways: canonical PINK1/parkin-mediated mitochondrial clearance, corroborated by transmission electron microscope and LC3B/parkin colocalization, and non-canonical HIF-1α/BNIP3L axis activation. Transcriptomic and Co-immunoprecipitation (Co-IP) data revealed EE upregulated endogenous H2S biosynthesis post-injury by promoting dopamine-induced calcium influx, which activated calmodulin-dependent signaling to stimulate cystathionine β-synthase/γ-lyase expression. Pharmacological blockade of H2S synthesis or HIF-1α abolished mitochondrial protection, confirming H2S as a central mediator. Notably, H2S exerted antiapoptotic effects by restoring mitochondrial integrity through synergistic mitophagy activation and oxidative stress mitigation. These findings propose a novel neuroprotective cascade: EE-induced dopaminergic signaling potentiates H2S production, which coordinates PINK1/parkin and HIF-1α/BNIP3L pathways to eliminate dysfunctional mitochondria, thereby preserving neuronal homeostasis. This study elucidates therapeutic potential of EE via H2S-driven mitochondrial quality control, offering insights for ischemic brain injury intervention. Full article
Show Figures

Figure 1

47 pages, 15765 KB  
Article
Harnessing Dual Power: Genistein-Loaded Pumpkisomes in Pullulan Microneedles for Potent Antioxidant and Anticancer Therapy Against Ehrlich Ascites Carcinoma and Breast Cancer Cells
by Sammar Fathy Elhabal, Mai S. Shoela, Mohamed Fathi Mohamed Elrefai, Fatma E. Hassan, Suzan Awad AbdelGhany Morsy, Wedian Younis Abdelgawad, Sahar K. Ali, Passant M. Mohie, Amal M. Elsharkawy, Tassneim M. Ewedah, Ibrahim S. Mousa, Marwa A. Fouad, Shady Allam and Ahmed Mohsen Elsaid Hamdan
Pharmaceutics 2026, 18(1), 36; https://doi.org/10.3390/pharmaceutics18010036 - 26 Dec 2025
Viewed by 406
Abstract
Background/Objectives: Breast cancer remains one of the leading causes of cancer-related mortality. Still, limited drug delivery systems for genistein, a powerful natural anticancer agent, draw significant attention. We aimed to develop a co-therapeutic/synergistic dual-compartment system; genistein-loaded pumpkisome nanovesicles (GNS-PKs) incorporated into pullulan microneedle [...] Read more.
Background/Objectives: Breast cancer remains one of the leading causes of cancer-related mortality. Still, limited drug delivery systems for genistein, a powerful natural anticancer agent, draw significant attention. We aimed to develop a co-therapeutic/synergistic dual-compartment system; genistein-loaded pumpkisome nanovesicles (GNS-PKs) incorporated into pullulan microneedle patches (MNs), and to explore its anticancer activity. Methods: GNS-PKs were prepared and characterized for particle size (P.S), polydispersity (PDI), zeta potential (Z.P), encapsulation efficiency (E.E%), and stability. Afterward, they were embedded in pullulan-dissolving microneedle arrays and characterized for release kinetics, mechanical strength, and in vitro cytotoxicity. The in vivo efficacy was evaluated in mice with solid Ehrlich Ascites Carcinoma (EAC), focusing on tumor volume, oxidative stress, inflammatory cytokines, Epidermal Growth Factor (EGFR) expression biomarkers, and histopathological analysis. Results: The optimized nanovesicles had a particle size of 170 nm, a zeta potential of −42 mV, and an entrapment efficiency of up to 92%. Pullulan microneedles demonstrated significantly high mechanical strength and effective deep penetration. In addition to, it markedly decreased MCF-7 cellular viability (IC50 = 3.5 µg/mL). Besides, it had a 76% reduction in tumor volume, significantly increased the antioxidant activity (SOD, CAT, GSH), decreased the levels of inflammatory biomarkers (IL-6, COX-2, NF-κB), and markedly downregulated the EGFR expression (p < 0.0001). Histological study revealed decreased mitotic activity and large tumor cells, with minimal systemic damage. Conclusions: GNS-PKs-pullulan microneedle system offers a hope for an innovative, potent, effective, and non-invasive strategy for breast cancer treatment with high antitumor efficacy. Full article
Show Figures

Graphical abstract

18 pages, 3870 KB  
Article
Nanotherapy Targeting miR-10b Improves Survival in Orthotopic Glioblastoma Models
by Bryan D. Kim, Ming Chen, Sujan K. Mondal, Elizabeth Kenyon, Christiane L. Mallett, Ana deCarvalho, Zdravka Medarova and Anna Moore
J. Funct. Biomater. 2026, 17(1), 15; https://doi.org/10.3390/jfb17010015 - 26 Dec 2025
Viewed by 396
Abstract
Glioblastoma (GBM) is the most aggressive primary cancer with poor survival. In the absence of an effective treatment and a high probability of recurrence, new therapeutic approaches are urgently needed. This study focused on targeting microRNA-10b (miR-10b) highly expressed in GBM cells that [...] Read more.
Glioblastoma (GBM) is the most aggressive primary cancer with poor survival. In the absence of an effective treatment and a high probability of recurrence, new therapeutic approaches are urgently needed. This study focused on targeting microRNA-10b (miR-10b) highly expressed in GBM cells that has been identified as one of the key drivers of GBM progression. Inhibiting miR-10b using antisense oligonucleotides (ASOs) has shown promise, but its delivery is challenging due to short circulation half-life, degradation by nucleases, and limited blood–brain barrier (BBB) permeability. To overcome these barriers, we employed a magnetic nanoparticle (MN) platform to deliver anti-miR-10b ASOs (MN-anti-miR10b). In addition to serving as a delivery vehicle, these nanoparticles can be used for monitoring delivery using magnetic resonance imaging (MRI). In therapeutic studies in orthotopic models of GBM presented here we used MN-anti-miR10b as well as TTX-MC138, a clinically tested anti-miR10b nanotherapeutic now in Phase I trials in patients with solid (non-GBM) cancers. Both formulations showed efficient delivery, as demonstrated by imaging and improved survival, leading to target inhibition and increased apoptosis. This approach may offer a novel strategy for delivering therapeutics to GBM and improving patient outcomes in one of the most aggressive and treatment-resistant forms of brain cancer. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Gene Therapy)
Show Figures

Figure 1

Back to TopTop