Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = 2,3-dihydro-1H-indene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 641 KiB  
Communication
Synthesis of 2-(2-((5″-(4-Cyanophenyl)-3,4′,4″-trioctyl[2,2′:5′,2″-terthiophen]-5-yl)methylene)-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile
by Alexia M. Frîncu, Lidia Căta, David Bălăceanu, Ion Grosu, Andreea P. Crișan and Anamaria Terec
Molbank 2025, 2025(3), M2038; https://doi.org/10.3390/M2038 - 18 Jul 2025
Viewed by 249
Abstract
A new π-conjugated acceptor–donor–acceptor small molecule, designed for applications in organic solar cells, containing a terthiophene core and indandione- and benzonitrile-based electron-withdrawing units, was synthesized via a multi-step process involving Suzuki–Miyaura cross-coupling and Knoevenagel condensation reactions. The structure was confirmed by NMR spectroscopy, [...] Read more.
A new π-conjugated acceptor–donor–acceptor small molecule, designed for applications in organic solar cells, containing a terthiophene core and indandione- and benzonitrile-based electron-withdrawing units, was synthesized via a multi-step process involving Suzuki–Miyaura cross-coupling and Knoevenagel condensation reactions. The structure was confirmed by NMR spectroscopy, HRMS, and its optoelectronic properties were evaluated by UV–vis spectroscopy and cyclic voltammetry. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

18 pages, 12019 KiB  
Article
Influence of Temperature on the Optical Properties of Ternary Organic Thin Films for Photovoltaics
by Gabriela Lewinska, Jerzy Sanetra, Konstanty W. Marszalek, Alexander Quandt and Bouchta Sahraoui
Materials 2025, 18(14), 3319; https://doi.org/10.3390/ma18143319 - 15 Jul 2025
Viewed by 314
Abstract
This study investigates the influence of temperature on the linear and nonlinear optical properties of ternary organic thin films for solar cell applications. Three-component organic thin films (poly({4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) and (poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), marked PTB7 and PTB7th- donors, PCBM, phenyl-C61-butyric acid methyl ester acceptor, [...] Read more.
This study investigates the influence of temperature on the linear and nonlinear optical properties of ternary organic thin films for solar cell applications. Three-component organic thin films (poly({4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) and (poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), marked PTB7 and PTB7th- donors, PCBM, phenyl-C61-butyric acid methyl ester acceptor, and Y5: 2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro[1,2,5]thiadiazolo[3,4e]thieno[2′,3′:4′,5′] thieno[2′,3′:4,5]pyrrolo[3,2-g] thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro1H-indene-2,1-diylidene))dimalononitrile) and Y6 non-fullerene acceptors: (2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13- dihydro-[1,2,5]thiadiazolo[3,4- e] thieno [2,″3″:4′,5′]thieno [2′,3′:4,5]), non-fullerene acceptors, were analyzed using spectroscopic ellipsometry and third-harmonic generation techniques across a temperature range of 30 °C to 120 °C. The absorption spectra of the ternary layers remained largely stable with temperature, but ellipsometry revealed temperature-dependent changes in layer thickness (a few percent increase during heating) and variations in refractive index and extinction coefficients, suggesting modest structural alterations. Analysis using a gradient model indicated that film composition varies with thickness. Third-harmonic generation measurements showed a decrease in χ(3) after annealing, with the most significant change observed in the PTB7th:Y5:PCBM layer. Full article
Show Figures

Figure 1

15 pages, 3325 KiB  
Article
Synthesis, Crystal Structure, DFT Analysis and Docking Studies of a Novel Spiro Compound Effecting on EGR-1-Regulated Gene Expression
by Soon Young Shin, Euitaek Jung, Youngshim Lee, Ha-Jin Lee, Hyeonhwa Lee, Jinju Yoo, Seunghyun Ahn and Dongsoo Koh
Crystals 2025, 15(4), 338; https://doi.org/10.3390/cryst15040338 - 2 Apr 2025
Viewed by 1309
Abstract
The spiro compound, 5,5′-dimethoxy-1,3-bis(3-(trifluoromethyl)phenyl)-3,3a-dihydro-1H-spiro[cyclopenta[a]indene-2,2′-indene]-1′,8(3′H,8aH)-dione (4), was synthesized and identified by NMR spectroscopy, mass spectrometry, and X-ray crystallography. Compound 4, C36H26F6O4, was crystallized in the triclinic space group P-1with the cell parameters [...] Read more.
The spiro compound, 5,5′-dimethoxy-1,3-bis(3-(trifluoromethyl)phenyl)-3,3a-dihydro-1H-spiro[cyclopenta[a]indene-2,2′-indene]-1′,8(3′H,8aH)-dione (4), was synthesized and identified by NMR spectroscopy, mass spectrometry, and X-ray crystallography. Compound 4, C36H26F6O4, was crystallized in the triclinic space group P-1with the cell parameters a = 8.8669(5) Å, b = 10.5298(8) Å, c = 17.0135(11) Å, α = 91.396(2)°, β = 90.490(2)°, γ = 109.235°, V = 1499.14(17) Å3, Z = 2. In an asymmetric unit, two molecules are packed by short contacts to form an inversion dimer. The molecules are linked into chains along the a- and b-axis directions by additional short contacts in the crystal. Compound 4 was synthesized by the dimerization of (E)-5-methoxy-2-(3-(trifluoromethyl)benzylidene)-2,3-dihydro-1H-inden-1-one (3). (E)-5-Methoxy-2-(3-methoxybenzylidene)-2,3-dihydro-1H-inden-1-one (5), one of the analogs of compound 3, was compared with compound 4 based on in vitro experiments, DFT calculations, and an in silico docking study. The HOMO/LUMO energy difference and binding energy difference between the two compounds are consistent with the results obtained from an in vitro assay where 4 showed a better effect than 5. To evaluate the biological activity of 4, we examined its inhibitory effects on Early Growth Respone-1 (EGR-1)-regulated gene expression in HaCaT keratinocytes. Treatment of cells with 4 reduced interleukin-4 (IL-4)-induced thymic stromal lymphopoietin (TSLP) mRNA levels, as revealed by reverse transcription-polymerase chain reaction and quantitative real-time PCR. Furthermore, the electrophoretic mobility shift assay demonstrated that 4 inhibited IL-4-induced DNA binding of EGR-1 to the promoter region of the TSLP gene. Full article
(This article belongs to the Topic Bioinformatics in Drug Design and Discovery—2nd Edition)
Show Figures

Figure 1

4 pages, 1012 KiB  
Short Note
1-(Dicyanomethylene)-3-hydroxy-1H-indene-2-carboxylic Acid
by Sofia D. Usova, Ekaterina A. Knyazeva and Oleg A. Rakitin
Molbank 2024, 2024(3), M1871; https://doi.org/10.3390/M1871 - 19 Aug 2024
Viewed by 1452
Abstract
Bulk heterojunction solar cells are among the most promising organic solar cells (OSCs). One of the two important parts of OSCs are acceptors, and the development of the design and synthesis of non-fullerene acceptors involves an electron-deficient heterocyclic central core and anchor acceptor [...] Read more.
Bulk heterojunction solar cells are among the most promising organic solar cells (OSCs). One of the two important parts of OSCs are acceptors, and the development of the design and synthesis of non-fullerene acceptors involves an electron-deficient heterocyclic central core and anchor acceptor malonitrile derivatives of 3-methylene-2,3-dihydro-1H-inden-1-ones. In this communication, an intermediate for the synthesis of this compound, 1-(dicyanomethylene)-3-hydroxy-1H-indene-2-carboxylic acid, was prepared by the Perkin reaction of 2-(3-oxoisobenzofuran-1(3H)-ylidene)malononitrile with tert-butyl acetoacetate in the presence of acetic anhydride and triethylamine. The structure of the newly synthesized compound was established by means of elemental analysis, high-resolution mass spectrometry, 1H NMR, 13C NMR and IR spectroscopy, and mass spectrometry. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Scheme 1

12 pages, 1323 KiB  
Article
Characterization and Metabolism of Drug Products Containing the Cocaine-Like New Psychoactive Substances Indatraline and Troparil
by Sascha K. Manier, Paula Mumber, Josef Zapp, Niels Eckstein and Markus R. Meyer
Metabolites 2024, 14(6), 342; https://doi.org/10.3390/metabo14060342 - 18 Jun 2024
Viewed by 1376
Abstract
With a rising demand of cocaine over the last years, it is likely that unregulated new psychoactive substances with similar effects such as indatraline ((1R,3S)-3-(3,4-dichlorophenyl)-N-methyl-2,3-dihydro-1H-inden-1-amine) and troparil (Methyl (1R,2S,3S,5 [...] Read more.
With a rising demand of cocaine over the last years, it is likely that unregulated new psychoactive substances with similar effects such as indatraline ((1R,3S)-3-(3,4-dichlorophenyl)-N-methyl-2,3-dihydro-1H-inden-1-amine) and troparil (Methyl (1R,2S,3S,5S)-8-methyl-3-phenyl-8-azabicyclo[3.2.1]octane-2-carboxylate) become popular as well. Both substances share a similar pharmacological profile as cocaine, while their potency is higher, and their duration of action is longer. This study investigated their metabolic fate in rat urine and incubations using pooled human liver S9 fraction (pHLS9). Indatraline formed two phase I and four phase II metabolites, with aromatic hydroxylation and glucuronidation being the main metabolic steps. All metabolites were detected in rat urine, while the parent compound was not detectable. Although low in abundance, indatraline metabolites were well identifiable due to their specific isotopic patterns caused by chlorine. Troparil formed four phase I and three phase II metabolites, with demethylation being the main metabolic step. Hydroxylation of the tropane ring, the phenyl ring, and combinations of these steps, as well as glucuronidation, were found. Phase I metabolites were detectable in rat urine and pHLS9, while phase II metabolites were only detectable in rat urine. Full article
Show Figures

Figure 1

13 pages, 4016 KiB  
Article
Allelopathic Activity of a Novel Compound and Two Known Sesquiterpene from Croton oblongifolius Roxb.
by Seinn Moh Moh, Shunya Tojo, Toshiaki Teruya and Hisashi Kato-Noguchi
Agronomy 2024, 14(4), 695; https://doi.org/10.3390/agronomy14040695 - 28 Mar 2024
Cited by 1 | Viewed by 1571
Abstract
Plant extracts with allelopathic activity and their related compounds have been investigated for a long time as an eco-friendly approach to sustainable weed management. Croton oblongifolius (Roxb.) is a traditional medicinal plant valued for its diverse source of bioactive compounds that have been [...] Read more.
Plant extracts with allelopathic activity and their related compounds have been investigated for a long time as an eco-friendly approach to sustainable weed management. Croton oblongifolius (Roxb.) is a traditional medicinal plant valued for its diverse source of bioactive compounds that have been used to treat various diseases. C. oblongifolius leaf extract was previously described to involve a number of allelochemicals. Therefore, we conducted this research to explore more of the allelochemicals in the leaves of C. oblongifolius. The leaf extracts showed significant inhibitory activity against two test plants, Lolium multiflorum (monocot) and Medicago sativa (dicot). The bioassay-directed chromatographic purification of the leaf extracts yielded three compounds, including one novel compound, identified using spectral data, as follows: (1) alpinolide peroxide, (2) 6-hydroxy alpinolide, and (3) 3-hydroxy-5-isopropyl-3-methyl-2,3-dihydro-1H-inden-1-one (a novel sesquiterpene). These compounds considerably limited the growth of L. sativum. The compound concentrations affecting a 50% growth limitation (IC50) of L. sativum varied from 0.16 to 0.34 mM. Therefore, these characterized compounds may be allelopathic agents that cause the allelopathy of C. oblongifolius. Full article
(This article belongs to the Special Issue Extraction and Analysis of Bioactive Compounds in Crops—2nd Edition)
Show Figures

Figure 1

14 pages, 4716 KiB  
Article
Synthesis of CF3-Containing Spiro-[Indene-Proline] Derivatives via Rh(III)-Catalyzed C-H Activation/Annulation
by Alexandra S. Bubnova, Daria V. Vorobyeva, Ivan A. Godovikov, Alexander F. Smol’yakov and Sergey N. Osipov
Molecules 2023, 28(23), 7809; https://doi.org/10.3390/molecules28237809 - 27 Nov 2023
Cited by 2 | Viewed by 1436
Abstract
An efficient method of accessing new CF3-containing spiro-[indene-proline] derivatives has been developed based on a Cp*Rh(III)-catalyzed tandem C-H activation/[3+2]–annulation reaction of 5-aryl-2-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylates with alkynes. An important feature of this spiro annulation process is the feasibility of dehydroproline moiety to [...] Read more.
An efficient method of accessing new CF3-containing spiro-[indene-proline] derivatives has been developed based on a Cp*Rh(III)-catalyzed tandem C-H activation/[3+2]–annulation reaction of 5-aryl-2-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylates with alkynes. An important feature of this spiro annulation process is the feasibility of dehydroproline moiety to act as a directing group in the selective activation of the aromatic C-H bond. Full article
(This article belongs to the Special Issue Fluorine Chemistry 2.0)
Show Figures

Graphical abstract

14 pages, 4328 KiB  
Article
Enhanced Photovoltaic Properties of Y6 Derivatives with Asymmetric Terminal Groups: A Theoretical Insight
by Yunjie Xiang, Zhijun Cao, Xiaolu Zhang, Zhuo Zou and Shaohui Zheng
Int. J. Mol. Sci. 2023, 24(19), 14753; https://doi.org/10.3390/ijms241914753 - 29 Sep 2023
Cited by 5 | Viewed by 1930
Abstract
Y6 derivatives with asymmetric terminal groups have attracted considerable attention in recent years. However, the effects of the asymmetric modification of terminal groups on the photovoltaic performance of Y6 derivatives are not well understood yet. Therefore, we designed a series of Y6-based acceptors [...] Read more.
Y6 derivatives with asymmetric terminal groups have attracted considerable attention in recent years. However, the effects of the asymmetric modification of terminal groups on the photovoltaic performance of Y6 derivatives are not well understood yet. Therefore, we designed a series of Y6-based acceptors with asymmetric terminal groups by endowing them with various electron-withdrawing abilities and different conjugated rings to conduct systematic research. The electron-withdrawing ability of the Y6-D1 terminal group (substituted by IC-2F and IC-2NO2 terminals) is strongest, followed by Y6 (substituted by two same IC-2F terminals), Y6-D2 (substituted by IC-2F and 2-(4-oxo-4,5-dihydro-6H-cyclopenta[b]thiophen-6-ylidene)malononitrile terminals), Y6-D4 (substituted by IC-2F and indene ring), and Y6-D3 (substituted by IC-2F and thiazole ring). Computed results show that A–A stacking is the main molecular packing mode of Y6 and four other asymmetric Y6 derivatives. The ratios of A–A stacking face-on configuration of Y6-D1, Y6-D2, Y6-D3, Y6-D4, and Y6 are 51.6%, 55.0%, 43.5%, 59.3%, and 62.4%, respectively. Except for Y6-D1 substituted by the IC-2F and IC-2NO2 (the strongest electron-withdrawing capacity) terminal groups, the other three asymmetric molecules are mainly electron-transporting and can therefore act as acceptors. The open-circuit voltages of organic solar cells (OSCs) based on Y6-D2, Y6-D3, and Y6-D4, except for Y6-D1, may be higher than those of OSCs based on the Y6 acceptor because of their higher energy levels of lowest unoccupied molecular orbital (LUMO). PM6/Y6-D3 and PM6/Y6-D4 have better light absorption properties than PM6/Y6 due to their higher total oscillator strength. These results indicate that Y6-D3 and Y6-D4 can be employed as good acceptors. Full article
(This article belongs to the Collection State-of-the-Art Materials Science in China)
Show Figures

Figure 1

21 pages, 5413 KiB  
Article
Investigation on Novel E/Z 2-Benzylideneindan-1-One-Based Photoswitches with AChE and MAO-B Dual Inhibitory Activity
by Marco Paolino, Modesto de Candia, Rosa Purgatorio, Marco Catto, Mario Saletti, Anna Rita Tondo, Orazio Nicolotti, Andrea Cappelli, Antonella Brizzi, Claudia Mugnaini, Federico Corelli and Cosimo D. Altomare
Molecules 2023, 28(15), 5857; https://doi.org/10.3390/molecules28155857 - 3 Aug 2023
Cited by 10 | Viewed by 2298
Abstract
The multitarget therapeutic strategy, as opposed to the more traditional ‘one disease-one target-one drug’, may hold promise in treating multifactorial neurodegenerative syndromes, such as Alzheimer’s disease (AD) and related dementias. Recently, combining a photopharmacology approach with the multitarget-directed ligand (MTDL) design strategy, we [...] Read more.
The multitarget therapeutic strategy, as opposed to the more traditional ‘one disease-one target-one drug’, may hold promise in treating multifactorial neurodegenerative syndromes, such as Alzheimer’s disease (AD) and related dementias. Recently, combining a photopharmacology approach with the multitarget-directed ligand (MTDL) design strategy, we disclosed a novel donepezil-like compound, namely 2-(4-((diethylamino)methyl)benzylidene)-5-methoxy-2,3-dihydro-1H-inden-1-one (1a), which in the E isomeric form (and about tenfold less in the UV-B photo-induced isomer Z) showed the best activity as dual inhibitor of the AD-related targets acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B). Herein, we investigated further photoisomerizable 2-benzylideneindan-1-one analogs 1bh with the unconjugated tertiary amino moiety bearing alkyls of different bulkiness and lipophilicity. For each compound, the thermal stable E geometric isomer, along with the E/Z mixture as produced by UV-B light irradiation in the photostationary state (PSS, 75% Z), was investigated for the inhibition of human ChEs and MAOs. The pure E-isomer of the N-benzyl(ethyl)amino analog 1h achieved low nanomolar AChE and high nanomolar MAO-B inhibition potencies (IC50s 39 and 355 nM, respectively), whereas photoisomerization to the Z isomer (75% Z in the PSS mixture) resulted in a decrease (about 30%) of AChE inhibitory potency, and not in the MAO-B one. Molecular docking studies were performed to rationalize the different E/Z selectivity of 1h toward the two target enzymes. Full article
Show Figures

Figure 1

13 pages, 1310 KiB  
Article
Benzenesulfonamide Analogs: Synthesis, Anti-GBM Activity and Pharmacoprofiling
by Akshaya Murugesan, Saravanan Konda Mani, Ramesh Thiyagarajan, Suresh Palanivel, Atash V. Gurbanov, Fedor I. Zubkov and Meenakshisundaram Kandhavelu
Int. J. Mol. Sci. 2023, 24(15), 12276; https://doi.org/10.3390/ijms241512276 - 31 Jul 2023
Cited by 4 | Viewed by 2135
Abstract
The tropomyosin receptor kinase A (TrkA) family of receptor tyrosine kinases (RTKs) emerge as a potential target for glioblastoma (GBM) treatment. Benzenesulfonamide analogs were identified as kinase inhibitors possessing promising anticancer properties. In the present work, four known and two novel benzenesulfonamide derivatives [...] Read more.
The tropomyosin receptor kinase A (TrkA) family of receptor tyrosine kinases (RTKs) emerge as a potential target for glioblastoma (GBM) treatment. Benzenesulfonamide analogs were identified as kinase inhibitors possessing promising anticancer properties. In the present work, four known and two novel benzenesulfonamide derivatives were synthesized, and their inhibitory activities in TrkA overexpressing cells, U87 and MEF cells were investigated. The cytotoxic effect of benzenesulfonamide derivatives and cisplatin was determined using trypan blue exclusion assays. The mode of interaction of benzenesulfonamides with TrkA was predicted by docking and structural analysis. ADMET profiling was also performed for all compounds to calculate the drug likeness property. Appropriate QSAR models were developed for studying structure–activity relationships. Compound 4-[2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfon-amide (AL106) and 4-[2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide (AL107) showed acceptable binding energies with the active sites for human nerve growth factor receptor, TrkA. Here, AL106 was identified as a potential anti-GBM compound, with an IC50 value of 58.6 µM with a less toxic effect in non-cancerous cells than the known chemotherapeutic agent, cisplatin. In silico analysis indicated that AL106 formed prominent stabilizing hydrophobic interactions with Tyr359, Ser371, Ile374 and charged interactions with Gln369 of TrkA. Furthermore, in silico analysis of all benzenesulfonamide derivatives revealed that AL106 has good pharmacokinetics properties, drug likeness and toxicity profiles, suggesting the compound may be suitable for clinical trial. Thus, benzenesulfonamide analog, AL106 could potentially induce GBM cell death through its interaction with TrkA and might be an attractive strategy for developing a drug targeted therapy to treat glioblastoma. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Graphical abstract

23 pages, 6129 KiB  
Article
Insights into the Corrosion Inhibition Performance of Isonicotinohydrazide Derivatives for N80 Steel in 15% HCl Medium: An Experimental and Molecular Level Characterization
by Abdelkarim Ait Mansour, Badr El-Haitout, Raihana Jannat Adnin, Hassane Lgaz, Rachid Salghi, Han-seung Lee, Mustafa R. Alhadeethi, Mouslim Messali, Khadija Haboubi and Ismat H. Ali
Metals 2023, 13(4), 797; https://doi.org/10.3390/met13040797 - 18 Apr 2023
Cited by 39 | Viewed by 3075
Abstract
In this work, two compounds of isonicotinohydrazide organic class, namely (E)-N′-(1-(4-(dimethylamino)phenyl)ethylidene) isonicotinohydrazide (MAPEI) and (Z)-N′-(2-oxo-2, 3-dihydro-1H-inden-1-ylidene) isonicotinohydrazide (OHEI) were synthesized and evaluated for corrosion protection of N80 steel in a concentrated acidic medium (15 wt.% HCl) at a temperature [...] Read more.
In this work, two compounds of isonicotinohydrazide organic class, namely (E)-N′-(1-(4-(dimethylamino)phenyl)ethylidene) isonicotinohydrazide (MAPEI) and (Z)-N′-(2-oxo-2, 3-dihydro-1H-inden-1-ylidene) isonicotinohydrazide (OHEI) were synthesized and evaluated for corrosion protection of N80 steel in a concentrated acidic medium (15 wt.% HCl) at a temperature of 303 K. The weight loss method (gravimetric method) and electrochemical techniques, i.e., electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves (PPC), were used to evaluate the inhibition and adsorption characteristics of tested compounds. Further, surface characterization using a scanning electron microscope (SEM) was used to assess the surface morphology of steel before and after inhibition. Weight loss experiments at 303 K and 363 K showed that tested compounds’ performance decreased with the increase in temperature, particularly at low concentrations of inhibitors whereas they exhibited good stability at higher concentrations. Electrochemical tests showed that MAPEI and OHEI inhibitors were effective at 5 × 10−3 mol/L, reaching an inhibition efficiency above 90%. It was also determined that the adsorption of both inhibitors followed the Langmuir adsorption isotherm model. Furthermore, SEM analysis showed that the investigated compounds can form a protective layer against steel corrosion in an acidic environment. On the other hand, the corrosion inhibition mechanism was established from density functional theory (DFT), and the self-consistent-charge density-functional tight-binding (SCC-DFTB) method which revealed that both inhibitors exerted physicochemical interactions by charge transfer between the s- and p-orbitals of tested molecules and the d-orbital of iron. The results of this work are intended to deepen the research on the products of this family to control the problem of corrosion. Full article
(This article belongs to the Topic Green Corrosion Inhibitors for Metallic Materials)
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

13 pages, 5018 KiB  
Article
Synthesis of a Novel Hydrazone of Thieno[2,3-d]pyrimidine Clubbed with Ninhydrin: X-ray Crystal Structure and Computational Investigations
by Mezna Saleh Altowyan, Matti Haukka, Saied M. Soliman, Assem Barakat, Ahmed T. A. Boraei and Manar Sopaih
Crystals 2023, 13(3), 384; https://doi.org/10.3390/cryst13030384 - 23 Feb 2023
Cited by 1 | Viewed by 2663
Abstract
The novel hydrazone-containing thieno[2,3-d]pyrimidine, namely, N′-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)-2-(4-oxo-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-3(4H)-yl)acetohydrazide 4 was synthesized in a very good yield from the reaction of the triketoester 1 or ninhydrin 2 with the exocyclic acetohydrazide 3 in methanol. Good-quality crystals of [...] Read more.
The novel hydrazone-containing thieno[2,3-d]pyrimidine, namely, N′-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)-2-(4-oxo-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-3(4H)-yl)acetohydrazide 4 was synthesized in a very good yield from the reaction of the triketoester 1 or ninhydrin 2 with the exocyclic acetohydrazide 3 in methanol. Good-quality crystals of 4 were obtained by recrystallization of the compound from the DMF/MeOH solvent mixture. The target product 4 crystallized in the triclinic crystal system and P-1 space group. The topology analysis of molecular packing indicated that the H…H (30.4%), O…H (22.0%) and H…C (17.0%) contacts are the most dominant intermolecular interactions in the crystal of 4, while the O…H, N…H, H…C, N…C, O…C, C…C and O…O are the only contacts which have shorter interaction distances than the vdWs radii sum of the interacting atoms. The structure of 4 is optimized and the calculated structure showed good agreement with the experimental one. Additionally, MEP, HOMO, LUMO and the reactivity descriptors were calculated. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

5 pages, 328 KiB  
Short Note
Dibenzyl-(1S*,2S*)-2,3-dihydro-1H-indene-1,2-dicarboxylate
by Diego Olivieri, Riccardo Tarroni and Carla Carfagna
Molbank 2023, 2023(1), M1586; https://doi.org/10.3390/M1586 - 15 Feb 2023
Viewed by 1594
Abstract
The synthesis of dibenzyl-(1S*,2S*)-2,3-dihydro-1H-indene-1,2-dicarboxylate has been realized through a diastereospecific bis-alkoxycarbonylation reaction, which starts from the cheap and easily available 1H-indene, benzyl alcohol, and carbon monoxide. The catalyst is formed in situ by mixing Pd(TFA) [...] Read more.
The synthesis of dibenzyl-(1S*,2S*)-2,3-dihydro-1H-indene-1,2-dicarboxylate has been realized through a diastereospecific bis-alkoxycarbonylation reaction, which starts from the cheap and easily available 1H-indene, benzyl alcohol, and carbon monoxide. The catalyst is formed in situ by mixing Pd(TFA)2, the ligand N2,N3-bis(2,6-dimethylphenyl)butane-2,3-diimine, p-benzoquinone is used as an oxidant, and benzyl alcohol acts both as a nucleophile and as the main solvent. Full article
Show Figures

Graphical abstract

12 pages, 30628 KiB  
Article
Alkyl Chain Engineering of Low Bandgap Non-Fullerene Acceptors for High-Performance Organic Solar Cells: Branched vs. Linear Alkyl Side Chains
by Youngwan Lee, Telugu Bhim Raju, Hyerim Yeom, Peddaboodi Gopikrishna, Kwangmin Kim, Hye Won Cho, Jung Woo Moon, Jeong Ho Cho, Jin Young Kim and BongSoo Kim
Polymers 2022, 14(18), 3812; https://doi.org/10.3390/polym14183812 - 12 Sep 2022
Cited by 2 | Viewed by 3282
Abstract
In this work, we report the synthesis and photovoltaic properties of IEBICO-4F, IEHICO-4F, IOICO-4F, and IDICO-4F non-fullerene acceptors (NFAs) bearing different types of alkyl chains (2-ehtylhexyl (EH), 2-ethylbutyl (EB), n-octyl (O), and n-decyl (D), respectively). These NFAs are based on the [...] Read more.
In this work, we report the synthesis and photovoltaic properties of IEBICO-4F, IEHICO-4F, IOICO-4F, and IDICO-4F non-fullerene acceptors (NFAs) bearing different types of alkyl chains (2-ehtylhexyl (EH), 2-ethylbutyl (EB), n-octyl (O), and n-decyl (D), respectively). These NFAs are based on the central indacenodithiophene (IDT) donor core and the same terminal group of 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC-2F), albeit with different side chains appended to the thiophene bridge unit. Although the side chains induced negligible differences between the NFAs in terms of optical band gaps and molecular energy levels, they did lead to changes in their melting points and crystallinity. The NFAs with branched alkyl chains exhibited weaker intermolecular interactions and crystallinity than those with linear alkyl chains. Organic solar cells (OSCs) were fabricated by blending these NFAs with the p-type polymer PTB7-Th. The NFAs with appended branched alkyl chains (IEHICO-4F and IEBICO-4F) possessed superior photovoltaic properties than those with appended linear alkyl chains (IOICO-4F and IDICO-4F). This result can be ascribed mainly to the thin-film morphology. Furthermore, the NFA-based blend films with appended branched alkyl chains exhibited the optimal degree of aggregation and miscibility, whereas the NFA-based blend films with appended linear alkyl chains exhibited higher levels of self-aggregation and lower miscibility between the NFA molecule and the PTB7-Th polymer. We demonstrate that changing the alkyl chain on the π-bridging unit in fused-ring-based NFAs is an effective strategy for improving their photovoltaic performance in bulk heterojunction-type OSCs. Full article
(This article belongs to the Special Issue Polymers for Energy Conversion and Storage)
Show Figures

Graphical abstract

9 pages, 1760 KiB  
Article
A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells
by Xin Wang, Zongtao Wang, Mingwei Li, Lijun Tu, Ke Wang, Dengping Xiao, Qiang Guo, Ming Zhou, Xianwen Wei, Yongqiang Shi and Erjun Zhou
Polymers 2022, 14(17), 3590; https://doi.org/10.3390/polym14173590 - 30 Aug 2022
Cited by 8 | Viewed by 2791
Abstract
The molecular design of a wide-bandgap polymer donor is critical to achieve high-performance organic photovoltaic devices. Herein, a new dibenzo-fused quinoxalineimide (BPQI) is successfully synthesized as an electron-deficient building block to construct donor–acceptor (D–A)-type polymers, namely P(BPQI-BDT) and P(BPQI-BDTT), using benzodithiophene and its [...] Read more.
The molecular design of a wide-bandgap polymer donor is critical to achieve high-performance organic photovoltaic devices. Herein, a new dibenzo-fused quinoxalineimide (BPQI) is successfully synthesized as an electron-deficient building block to construct donor–acceptor (D–A)-type polymers, namely P(BPQI-BDT) and P(BPQI-BDTT), using benzodithiophene and its derivative, which bears different side chains, as the copolymerization units. These two polymers are used as a donor, and the narrow bandgap (2,20-((2Z,20Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo [3,4-e]thieno[2,″30′:4′,50]thieno[20,30:4,5]pyrrolo[3,2g]thieno[20,30:4,5]thieno[3,2-b]indole-2,10 diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) Y6 is used as an acceptor to fabricate bulk heterojunction polymer solar cell devices. Y6, as a non-fullerene receptor (NFA), has excellent electrochemical and optical properties, as well as a high efficiency of over 18%. The device, based on P(BPQI-BDTT):Y6, showed power conversion efficiencies (PCEs) of 6.31% with a JSC of 17.09 mA cm−2, an open-circuit voltage (VOC) of 0.82 V, and an FF of 44.78%. This study demonstrates that dibenzo-fused quinoxalineimide is a promising building block for developing wide-bandgap polymer donors. Full article
(This article belongs to the Special Issue Polymers/Their Hybrid Materials for Optoelectronic Applications)
Show Figures

Figure 1

Back to TopTop