Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = 16S rRNA gene pyrosequencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3706 KiB  
Article
Variation in Structure and Functional Diversity of Surface Bacterioplankton Communities in the Eastern East China Sea
by Zuochun Wang, Pengfei Xie, Jun Dai, Lei Zhang, Qiao Yang, Xiaoling Zhang and Xi Yang
J. Mar. Sci. Eng. 2024, 12(1), 69; https://doi.org/10.3390/jmse12010069 - 27 Dec 2023
Cited by 6 | Viewed by 1518
Abstract
Bacterioplankton communities are critical components of varied ecosystems in the oceans. Their occurrences represent a variety of connections between environmental and ecological elements. However, our current knowledge about the shaping factors of surface bacterioplankton communities in the eastern East China Sea (ECS) is [...] Read more.
Bacterioplankton communities are critical components of varied ecosystems in the oceans. Their occurrences represent a variety of connections between environmental and ecological elements. However, our current knowledge about the shaping factors of surface bacterioplankton communities in the eastern East China Sea (ECS) is still limited. In this study, we reveal the spatial patterns of the taxonomic and functional profiles of the surface bacterioplankton communitiesies in the nearshore and offshore areas in the eastern ECS, based on 16S rRNA gene pyrosequencing and functional annotation analysis. The obtained results show that the surface bacterioplankton communities in the nearshore areas are mainly dominated by the firmicutes (85.9%), actinobacteria (8.1%), and proteobacteria (5.4%), which are mainly involved in organic compound metabolism. Meanwhile, different bacteria predominate the composition of the offshore group, namely proteobacteria (71.1%) and bacteroidetes (22.0%) responsible for nitrogen and sulfur metabolism. Furthermore, their distribution pattern is shown to be spatially determined, along with a modest finding of functional diversity when comparing the bacterial species. The primary two shaping factors of bacterioplankton diversity are found to be the offshore distance and temperature. Overall, these findings add to those previously published on bacterial species and offer up functional information on the surface bacterioplankton communities in the eastern ECS. To extend our research, we propose that, in the future, it may be beneficial to monitor the dynamics of the ecosystem in this sea area. Full article
(This article belongs to the Special Issue Marine Microbiology: Biodiversity and Ecology)
Show Figures

Figure 1

13 pages, 2915 KiB  
Article
Short-Chain Fatty-Acid-Producing Micro-Organisms Regulate the Pancreatic FFA2-Akt/PI3K Signaling Pathway in a Diabetic Rat Model Affected by Pumpkin Oligosaccharides
by Guimei Liu, Bin Yu, Jianpeng Li, Zheng Zhang, Haiteng Tao, Haibo Zhao, Yanmin Lu, Chao Yuan, Quanhong Li and Bo Cui
Foods 2023, 12(19), 3559; https://doi.org/10.3390/foods12193559 - 25 Sep 2023
Viewed by 1648
Abstract
Herein, we applied the Illumina MiSeq pyrosequencing platform to amplify the V3–V4 hypervariable regions of the 16 S rRNA gene of the gut microbiota (GM) and a gas chromatograph–mass spectrometer to detect the metabolites after supplementation with pumpkin oligosaccharides (POSs) to determine the [...] Read more.
Herein, we applied the Illumina MiSeq pyrosequencing platform to amplify the V3–V4 hypervariable regions of the 16 S rRNA gene of the gut microbiota (GM) and a gas chromatograph–mass spectrometer to detect the metabolites after supplementation with pumpkin oligosaccharides (POSs) to determine the metabolic markers and mechanisms in rats with type 2 diabetes (T2D). The POSs alleviated glucolipid metabolism by decreasing the serum low-density lipoprotein (LDL), total cholesterol (TC), and glucose levels. These responses were supported by a shift in the gut microbiota, especially in the butyric-acid-producing communities. Meanwhile, elevated total short-chain fatty acid (SCFA), isovaleric acid, and butyric acid levels were observed after supplementation with POSs. Additionally, this work demonstrated that supplementation with POSs could reduce TNF-α and IL-6 secretion via the FFA2-Akt/PI3K pathway in the pancreas. These results suggested that POSs alleviated T2D by changing the SCFA-producing gut microbiota and SCFA receptor pathways. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 3635 KiB  
Article
Pep27 Mutant Immunization Inhibits Caspase-14 Expression to Alleviate Inflammatory Bowel Disease via Treg Upregulation
by Hamid Iqbal, Gyu-Lee Kim, Ji-Hoon Kim, Prachetash Ghosh, Masaud Shah, Wonsik Lee and Dong-Kwon Rhee
Microorganisms 2022, 10(9), 1871; https://doi.org/10.3390/microorganisms10091871 - 19 Sep 2022
Cited by 3 | Viewed by 2513
Abstract
Inflammatory bowel disease (IBD) is a highly prevalent gut inflammatory disorder. Complicated clinical outcomes prolong the use of conventional therapy and often lead to compromised immunity followed by adverse events and high relapse rates. Thus, a profound medical intervention is required. Previously, intranasal [...] Read more.
Inflammatory bowel disease (IBD) is a highly prevalent gut inflammatory disorder. Complicated clinical outcomes prolong the use of conventional therapy and often lead to compromised immunity followed by adverse events and high relapse rates. Thus, a profound medical intervention is required. Previously, intranasal immunization of pneumococcal pep27 mutant (Δpep27) exhibited long-lasting protection against immune-related disorders. System biology analysis has predicted an inverse correlation between Δpep27 immunization and gastroenteritis. Recently, we established that Δpep27-elicited Tregs repressed Wnt5a expression and enhanced barrier integrity, suggesting the restoration of immunological tolerance. Therefore, we evaluated whether Δpep27 can alleviate IBD. Δpep27 dose-dependent response was analyzed in dextran sulfate sodium-induced mice using transcriptome analysis. Pro- and anti-inflammatory signatures were cross-correlated by quantitative PCR and western blot analyses. To address the hierarchy regulating the activity of caspase-14, an undefined marker in IBD, and regulatory T cells (Tregs), antibody-based neutralization studies were conducted. Fecal microbiome profiles were analyzed by 16S rRNA pyrosequencing. Δpep27 significantly attenuated dextran sulfate sodium-induced oxidative stress parameters, proinflammatory cytokines, caspase-14 expression level, and upregulated tight junction, anti-inflammatory genes IL-10 and TGF-β1 via upregulation of Tregs to restore healthy gut microbiota. Neutralization studies unveiled that ∆pep27 had a remedial effect via Treg upregulation. Caspase-14, being an important mediator in the pathogenesis of IBD, can be an alternate therapeutic target in IBD. ∆pep27-increased Tregs repressed caspase-14 expression and reversed gut microbial dysbiosis, aiding to re-establish immunological tolerance. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

13 pages, 1341 KiB  
Article
Oral Absorbent AST-120 Is Associated with Compositional and Functional Adaptations of Gut Microbiota and Modification of Serum Short and Medium-Chain Fatty Acids in Advanced CKD Patients
by Cheng-Kai Hsu, Shih-Chi Su, Lun-Ching Chang, Kai-Jie Yang, Chin-Chan Lee, Heng-Jung Hsu, Yih-Ting Chen, Chiao-Yin Sun and I-Wen Wu
Biomedicines 2022, 10(9), 2234; https://doi.org/10.3390/biomedicines10092234 - 8 Sep 2022
Cited by 14 | Viewed by 2894
Abstract
Background: Animal studies have demonstrated that an oral absorbent AST-120 modulates gut environment. However, this phenomenon remains unclear in humans. This study aimed to assess the effects of AST-120 on the gut microbiota, related functional capability and metabolomic profiling in advanced chronic kidney [...] Read more.
Background: Animal studies have demonstrated that an oral absorbent AST-120 modulates gut environment. However, this phenomenon remains unclear in humans. This study aimed to assess the effects of AST-120 on the gut microbiota, related functional capability and metabolomic profiling in advanced chronic kidney diseases (CKD) patients. Methods: Eight advanced CKD patients with AST-120 (CKD+AST), 24 CKD patients (CKD), and 24 non-CKD controls were enrolled. We analyzed 16S rRNA pyrosequencing of feces and serum metabolomics profiling. Results: The CKD+AST group exhibited dispersed microbial community structure (β-diversity, p < 0.001) compared to other groups. The relative abundances of at least 16 genera were significantly different amongst the three groups. Increases of fatty acids-producing bacteria (Clostridium_sensu_stricto_1, Ruminococcus_2, Eubacterium_nodatum and Phascolarctobacterium) associated with elevated serum acetic acid and octanoic acid levels were found in CKD+AST group. Analysis of microbial gene function indicated that pathway modules relevant to metabolisms of lipids, amino acids and carbohydrates were differentially enriched between CKD+AST and CKD groups. Specifically, enrichments of gene markers of the biosynthesis of fatty acids were noted in the CKD+AST group. Conclusion: Advanced CKD patients exhibited significant gut dysbiosis. AST-120 can partially restore the gut microbiota and intervenes in a possible signature of short- and medium-chain fatty acids metabolism. Full article
(This article belongs to the Special Issue Pathogenesis and Treatment Progress of Chronic Kidney Diseases)
Show Figures

Figure 1

11 pages, 2969 KiB  
Article
Effects of Intravenous Antimicrobial Drugs on the Equine Fecal Microbiome
by Rachel S. Liepman, Jacob M. Swink, Greg G. Habing, Prosper N. Boyaka, Benjamin Caddey, Marcio Costa, Diego E. Gomez and Ramiro E. Toribio
Animals 2022, 12(8), 1013; https://doi.org/10.3390/ani12081013 - 13 Apr 2022
Cited by 18 | Viewed by 4625
Abstract
Alterations in the gastrointestinal microbiota after antimicrobial therapy in horses can result in loss of colonization resistance and changes in bacterial metabolic function. It is hypothesized that these changes facilitate gastrointestinal inflammation, pathogen expansion and the development of diarrhea. The objectives of this [...] Read more.
Alterations in the gastrointestinal microbiota after antimicrobial therapy in horses can result in loss of colonization resistance and changes in bacterial metabolic function. It is hypothesized that these changes facilitate gastrointestinal inflammation, pathogen expansion and the development of diarrhea. The objectives of this study were to determine the effect of intravenous administration of antimicrobial drugs (ceftiofur, enrofloxacin, oxytetracycline) on equine fecal bacterial communities over time, to investigate whether those changes are detectable after 5 days of treatment and whether they persist over time (30 days). Sixteen horses were randomly assigned into 4 treatment groups: group 1 (enrofloxacin, n = 4); group 2 (ceftiofur sodium, n = 4); group 3 (oxytetracycline, n = 4); group 4 (0.9% saline solution, placebo, n = 4). Antimicrobial therapy was administered for 5 days. Fecal samples were obtained before (day 0) and at 3, 5 and 30 days of the study period. Bacterial DNA was amplified using specific primers to the hypervariable region V1–V3 of the 16S rRNA gene using a 454 FLX-Titanium pyrosequencer. Antimicrobial therapy failed to cause any changes in physical examination parameters, behavior, appetite or fecal output or consistency throughout the study in any horse. There was a significant effect of treatment on alpha diversity indices (richness) over the treatment interval for ceftiofur on days 0 vs. 3 (p < 0.05), but not for other antimicrobials (p > 0.05). Microbial composition was significantly different (p < 0.05) across treatment group and day, but not for interactions between treatment and day, regardless of taxonomic level and beta-diversity distance metric. The most significant antimicrobial effects on relative abundance were noted after intravenous administration of ceftiofur and enrofloxacin. The relative abundance of Fibrobacteres was markedly lower on day 3 compared to other days in the ceftiofur and enrofloxacin treatment groups. There was an increase in Clostridia and Lachnospiraceae from day 0 to days 3 and 5 in ceftiofur and enrofloxacin treated groups. These findings showed the negative effect of antimicrobial drugs on bacterial communities associated with gut health (Fibrobacteres and Lachnospiraceae) and indicate that changes in specific taxa could predispose horses to gastrointestinal inflammation and the development of diarrhea. Full article
(This article belongs to the Special Issue Equine Microbiota)
Show Figures

Figure 1

13 pages, 1583 KiB  
Article
Enhancement of PHA Production by a Mixed Microbial Culture Using VFA Obtained from the Fermentation of Wastewater from Yeast Industry
by Carolina Ospina-Betancourth, Sergio Echeverri, Claudia Rodriguez-Gonzalez, Julien Wist, Marianny Y. Combariza and Janeth Sanabria
Fermentation 2022, 8(4), 180; https://doi.org/10.3390/fermentation8040180 - 11 Apr 2022
Cited by 19 | Viewed by 6890
Abstract
Wastewater from the yeast production industry (WWY) is potentially harmful to surface water due to its high nitrogen and organic matter content; it can be used to produce compounds of higher commercial value, such as polyhydroxyalkanoates (PHA). PHA are polyester-type biopolymers synthesized by [...] Read more.
Wastewater from the yeast production industry (WWY) is potentially harmful to surface water due to its high nitrogen and organic matter content; it can be used to produce compounds of higher commercial value, such as polyhydroxyalkanoates (PHA). PHA are polyester-type biopolymers synthesized by bacteria as energy reservoirs that can potentially substitute petrochemical-derived plastics. In this exploratory work, effluent from WWY was used to produce PHA, using a three-step setup of mixed microbial cultures involving one anaerobic and two aerobic reactors. First, volatile fatty acids (VFA; 2.5 g/L) were produced on an anaerobic batch reactor (reactor A) fed with WWY, using a heat pretreated sludge inoculum to eliminate methanogenic activity. Concurrently, PHA-producing bacteria were enriched using synthetic VFA in a sequencing batch reactor (SBR, reactor C) operated for 78 days. Finally, a polyhydroxybutyrate (PHB)-producing reactor (reactor B) was assembled using the inoculum enriched with PHA-producing bacteria and the raw and distilled effluent from the anaerobic reactor as a substrate. A maximum accumulation of 17% of PHB based on cell dry weight was achieved with a yield of 1.2 g PHB/L when feeding with the distilled effluent. Roche 454 16S rRNA gene amplicon pyrosequencing of the PHA-producing reactor showed that the microbial community was dominated by the PHA-producing bacterial species Paracoccus alcalophilus (32%) and Azoarcus sp. (44%). Our results show promising PHB accumulation rates that outperform previously reported results obtained with real substrates and mixed cultures, demonstrating a sustainable approach for the production of PHA less prone to contamination than a pure culture. Full article
(This article belongs to the Topic Bioreactors: Control, Optimization and Applications)
Show Figures

Figure 1

12 pages, 20272 KiB  
Article
Metagenomic Analysis of Plasma Microbial Extracellular Vesicles in Patients Receiving Mechanical Ventilation: A Pilot Study
by Jinkyeong Park, Jae Jun Lee, Yoonki Hong, Hochan Seo, Tae-Seop Shin and Ji Young Hong
J. Pers. Med. 2022, 12(4), 564; https://doi.org/10.3390/jpm12040564 - 2 Apr 2022
Cited by 4 | Viewed by 2567
Abstract
Background: Previous studies reported a significant association between pneumonia outcome and the respiratory microbiome. There is increasing interest in the roles of bacterial extracellular vesicles (EVs) in various diseases. We studied the composition and function of microbiota-derived EVs in the plasma of patients [...] Read more.
Background: Previous studies reported a significant association between pneumonia outcome and the respiratory microbiome. There is increasing interest in the roles of bacterial extracellular vesicles (EVs) in various diseases. We studied the composition and function of microbiota-derived EVs in the plasma of patients receiving mechanical ventilation to evaluate whether they can be used as a diagnostic marker and to predict clinical outcomes. Methods: Plasma samples (n = 111) from 59 mechanically ventilated patients (41 in the pneumonia group; 24 in the nursing home and hospital-associated infection [NHAI] group) were prospectively collected on days one and seven. After isolating the bacterial EVs from plasma samples, nucleic acid was extracted for 16S rRNA gene pyrosequencing. The samples were evaluated to determine the α and β diversity, bacterial composition, and predicted functions. Results: Principal coordinates analysis revealed significantly different clustering of microbial EVs between the pneumonia and non-pneumonia groups. The proportions of Lactobacillus, Cutibacterium, and Sphingomonas were significantly different between the pneumonia and non-pneumonia groups. In addition, the abundances of Lactobacillus and Bifidobacterium were significantly higher in the non-NHAI than the NHAI group. In the analysis of β diversity, the structure of microbial EVs differed significantly different between 28-day survivors and non-survivors (Bray-Curtis distance, p = 0.014). Functional profiling revealed significant differences between the pneumonia and non-pneumonia groups. The longitudinal change in predicted functions of microbial EV genes showed a significant difference between 28-day survivors and non-survivors. Conclusions: Bacterial microbiota–derived EVs in the plasma have potential as diagnostic and prognostic markers for patients receiving mechanical ventilation. Further large prospective studies are needed to determine the clinical utility of plasma microbiota-EVs in intubated patients. Full article
(This article belongs to the Special Issue Application of Microbiome in Disease Diagnosis and Treatment)
Show Figures

Graphical abstract

10 pages, 1191 KiB  
Article
A Novel Bio-Fertilizer Produced by Prickly Ash Seeds with Biochar Addition Induces Soil Suppressiveness against Black Shank Disease on Tobacco
by Xifen Zhang, Yaochen Wang, Xiaobin Han, Jianyu Gou, Wei Li and Chengsheng Zhang
Appl. Sci. 2021, 11(16), 7261; https://doi.org/10.3390/app11167261 - 6 Aug 2021
Cited by 8 | Viewed by 2721
Abstract
A novel bio-fertilizer, produced from prickly ash seeds (PAS), Bacillus subtilis and biochar, was evaluated for its disease-preventing potential on tobacco black shank caused by Phytophthora nicotianae. The results showed that biochar promoted the growth of Tpb55 in PAS and increased the [...] Read more.
A novel bio-fertilizer, produced from prickly ash seeds (PAS), Bacillus subtilis and biochar, was evaluated for its disease-preventing potential on tobacco black shank caused by Phytophthora nicotianae. The results showed that biochar promoted the growth of Tpb55 in PAS and increased the pH of the organic fertilizer. The final concentration of B. subtilis could reach 1.7 × 1010 cfu g−1 in the biological organic fertilizer (PBB) under the optimal medium under conditions of solid-state fermentation. PBB exhibited a strong fumigation effect on P. nicotianae, including inhibiting mycelium growth, reducing the disease severity and decreasing the pathogen population in rhizospheric soil. PBB treatment also could significantly increase the pH of acidified soil and improve soil nutrition content such as available K, alkali hydrolysable N and organic carbon. High-throughput pyrosequencing of 16S and 18S rRNA genes revealed that 4% PBB addition in soil had significant effects on the diversity and richness of fungi but not on that of bacteria. The microbial community structure was also shifted after PBB treatment. Some potentially beneficial microbes such as Bacillus, Mucor, Cunninghamella, Chitinophaga and Phenylobacterium were enriched, while potential pathogen Fusarium was significantly decreased. In conclusion, the agricultural waste PAS combined with biochar can replace soybean as a source for the production of biocontrol B. subtilis Tpb55, and the novel bio-fertilizer could effectively control tobacco black shank by pathogen inhibition, soil nutrient improvement and shifting the rhizomicrobial community. Full article
(This article belongs to the Special Issue Biochar: Preparation, Properties and Applications)
Show Figures

Figure 1

19 pages, 2908 KiB  
Article
Variation in Sodic Soil Bacterial Communities Associated with Different Alkali Vegetation Types
by Andrea K. Borsodi, Márton Mucsi, Gergely Krett, Attila Szabó, Tamás Felföldi and Tibor Szili-Kovács
Microorganisms 2021, 9(8), 1673; https://doi.org/10.3390/microorganisms9081673 - 6 Aug 2021
Cited by 12 | Viewed by 3189
Abstract
In this study, we examined the effect of salinity and alkalinity on the metabolic potential and taxonomic composition of microbiota inhabiting the sodic soils in different plant communities. The soil samples were collected in the Pannonian steppe (Hungary, Central Europe) under extreme dry [...] Read more.
In this study, we examined the effect of salinity and alkalinity on the metabolic potential and taxonomic composition of microbiota inhabiting the sodic soils in different plant communities. The soil samples were collected in the Pannonian steppe (Hungary, Central Europe) under extreme dry and wet weather conditions. The metabolic profiles of microorganisms were analyzed using the MicroResp method, the bacterial diversity was assessed by cultivation and next-generation amplicon sequencing based on the 16S rRNA gene. Catabolic profiles of microbial communities varied primarily according to the alkali vegetation types. Most members of the strain collection were identified as plant associated and halophilic/alkaliphilic species of Micrococcus, Nesterenkonia, Nocardiopsis, Streptomyces (Actinobacteria) and Bacillus, Paenibacillus (Firmicutes) genera. Based on the pyrosequencing data, the relative abundance of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes and Bacteroidetes also changed mainly with the sample types, indicating distinctions within the compositions of bacterial communities according to the sodic soil alkalinity-salinity gradient. The effect of weather extremes was the most pronounced in the relative abundance of the phyla Actinobacteria and Acidobacteria. The type of alkali vegetation caused greater shifts in both the diversity and activity of sodic soil microbial communities than the extreme aridity and moisture. Full article
(This article belongs to the Special Issue Microbial Community Response to Climate and Environmental Changes)
Show Figures

Figure 1

19 pages, 16703 KiB  
Article
Effects of Probiotic NVP-1704 on Mental Health and Sleep in Healthy Adults: An 8-Week Randomized, Double-Blind, Placebo-Controlled Trial
by Hyuk Joo Lee, Jung Kyung Hong, Jeon-Kyung Kim, Dong-Hyun Kim, Seok Won Jang, Seung-Won Han and In-Young Yoon
Nutrients 2021, 13(8), 2660; https://doi.org/10.3390/nu13082660 - 30 Jul 2021
Cited by 100 | Viewed by 22891
Abstract
The human gut microbiome is closely linked to mental health and sleep. We aimed to verify the efficacy and safety of probiotic NVP-1704, a mixture of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98, in improving stress, depression, anxiety, and sleep disturbances, along with [...] Read more.
The human gut microbiome is closely linked to mental health and sleep. We aimed to verify the efficacy and safety of probiotic NVP-1704, a mixture of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98, in improving stress, depression, anxiety, and sleep disturbances, along with the measurement of some blood biomarkers. A total of 156 healthy adults with subclinical symptoms of depression, anxiety, and insomnia were retrospectively registered and randomly assigned to receive either NVP-1704 (n = 78) or a placebo (n = 78) for eight weeks. Participants completed the Stress Response Inventory, Beck’s Depression and Anxiety Inventory, Pittsburg Sleep Quality Index, and Insomnia Severity Index at baseline, at four and eight weeks of treatment. Pre- and post-treatment blood tests for biomarkers were conducted. After intervention, gut microbiota composition was quantified by pyrosequencing the bacterial 16S rRNA gene. The NVP-1704 group had a more significant reduction in depressive symptoms at four and eight weeks of treatment, and anxiety symptoms at four weeks compared to the placebo group. Those receiving NVP-1704 also experienced an improvement in sleep quality. NVP-1704 treatment led to a decrease in serum interleukin-6 levels. Furthermore, NVP-1704 increased Bifidobacteriaceae and Lactobacillacea, whereas it decreased Enterobacteriaceae in the gut microbiota composition. Our findings suggest that probiotic NVP-1704 could be beneficial for mental health and sleep. Full article
Show Figures

Graphical abstract

20 pages, 7037 KiB  
Review
Microbial Diversity of Terrestrial Geothermal Springs in Armenia and Nagorno-Karabakh: A Review
by Ani Saghatelyan, Armine Margaryan, Hovik Panosyan and Nils-Kåre Birkeland
Microorganisms 2021, 9(7), 1473; https://doi.org/10.3390/microorganisms9071473 - 9 Jul 2021
Cited by 32 | Viewed by 5326
Abstract
The microbial diversity of high-altitude geothermal springs has been recently assessed to explore their biotechnological potential. However, little is known regarding the microbiota of similar ecosystems located on the Armenian Highland. This review summarizes the known information on the microbiota of nine high-altitude [...] Read more.
The microbial diversity of high-altitude geothermal springs has been recently assessed to explore their biotechnological potential. However, little is known regarding the microbiota of similar ecosystems located on the Armenian Highland. This review summarizes the known information on the microbiota of nine high-altitude mineralized geothermal springs (temperature range 25.8–70 °C and pH range 6.0–7.5) in Armenia and Nagorno-Karabakh. All these geothermal springs are at altitudes ranging from 960–2090 m above sea level and are located on the Alpide (Alpine–Himalayan) orogenic belt, a seismically active region. A mixed-cation mixed-anion composition, with total mineralization of 0.5 mg/L, has been identified for these thermal springs. The taxonomic diversity of hot spring microbiomes has been examined using culture-independent approaches, including denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene library construction, 454 pyrosequencing, and Illumina HiSeq. The bacterial phyla Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes are the predominant life forms in the studied springs. Archaea mainly include the phyla Euryarchaeota, Crenarchaeota, and Thaumarchaeota, and comprise less than 1% of the prokaryotic community. Comparison of microbial diversity in springs from Karvachar with that described for other terrestrial hot springs revealed that Proteobacteria, Bacteroidetes, Actinobacteria, and Deinococcus–Thermus are the common bacterial groups in terrestrial hot springs. Contemporaneously, specific bacterial and archaeal taxa were observed in different springs. Evaluation of the carbon, sulfur, and nitrogen metabolism in these hot spring communities has revealed diversity in terms of metabolic activity. Temperature seems to be an important factor in shaping the microbial communities of these springs. Overall, the diversity and richness of the microbiota are negatively affected by increasing temperature. Other abiotic factors, including pH, mineralization, and geological history, also impact the structure and function of the microbial community. More than 130 bacterial and archaeal strains (Bacillus, Geobacillus, Parageobacillus, Anoxybacillus, Paenibacillus, Brevibacillus Aeribacillus, Ureibacillus, Thermoactinomyces, Sporosarcina, Thermus, Rhodobacter, Thiospirillum, Thiocapsa, Rhodopseudomonas, Methylocaldum, Desulfomicrobium, Desulfovibrio, Treponema, Arcobacter, Nitropspira, and Methanoculleus) have been reported, some of which may be representative of novel species (sharing 91–97% sequence identity with their closest matches in GenBank) and producers of thermozymes and biomolecules with potential biotechnological applications. Whole-genome shotgun sequencing of T. scotoductus K1, as well as of the potentially new Treponema sp. J25 and Anoxybacillus sp. K1, were performed. Most of the phyla identified by 16S rRNA were also identified using metagenomic approaches. Detailed characterization of thermophilic isolates indicate the potential of the studied springs as a source of biotechnologically valuable microbes and biomolecules. Full article
Show Figures

Figure 1

19 pages, 5877 KiB  
Article
Bacterial Communities in Alkaline Saline Soils Amended with Young Maize Plants or Its (Hemi)Cellulose Fraction
by Valentín Pérez-Hernández, Mario Hernández-Guzmán, Marco Luna-Guido, Yendi E. Navarro-Noya, Elda M. Romero-Tepal and Luc Dendooven
Microorganisms 2021, 9(6), 1297; https://doi.org/10.3390/microorganisms9061297 - 15 Jun 2021
Cited by 3 | Viewed by 3010
Abstract
We studied three soils of the former lake Texcoco with different electrolytic conductivity (1.9 dS m−1, 17.3 dS m−1, and 33.4 dS m−1) and pH (9.3, 10.4, and 10.3) amended with young maize plants and their neutral [...] Read more.
We studied three soils of the former lake Texcoco with different electrolytic conductivity (1.9 dS m−1, 17.3 dS m−1, and 33.4 dS m−1) and pH (9.3, 10.4, and 10.3) amended with young maize plants and their neutral detergent fibre (NDF) fraction and aerobically incubated in the laboratory for 14 days while the soil bacterial community structure was monitored by means of 454-pyrosequencing of their 16S rRNA marker gene. We identified specific bacterial groups that showed adaptability to soil salinity, i.e., Prauseria in soil amended with young maize plants and Marinobacter in soil amended with NDF. An increase in soil salinity (17.3 dS m−1, 33.4 dS m−1) showed more bacterial genera enriched than soil with low salinity (1.9 dS m−1). Functional prediction showed that members of Alfa-, Gamma-, and Deltaproteobacteria, which are known to adapt to extreme conditions, such as salinity and low nutrient soil content, were involved in the lignocellulose degradation, e.g., Marinimicrobium and Pseudomonas as cellulose degraders, and Halomonas and Methylobacterium as lignin degraders. This research showed that the taxonomic annotation and their functional prediction both highlighted keystone bacterial groups with the ability to degrade complex C-compounds, such as lignin and (hemi)cellulose, in the extreme saline-alkaline soil of the former Lake of Texcoco. Full article
(This article belongs to the Collection Microbial Life in Extreme Environments)
Show Figures

Figure 1

26 pages, 3009 KiB  
Article
Diversity of Bacterioplankton and Bacteriobenthos from the Veracruz Reef System, Southwestern Gulf of Mexico
by Citlali Rodríguez-Gómez, Lorena María Durán-Riveroll, Yuri B. Okolodkov, Rosa María Oliart-Ros, Andrea M. García-Casillas and Allan D. Cembella
Microorganisms 2021, 9(3), 619; https://doi.org/10.3390/microorganisms9030619 - 17 Mar 2021
Cited by 4 | Viewed by 2762
Abstract
Bacterial diversity was explored among field samples and cultured isolates from coral reefs within the Veracruz Reef System. Bacterioplankton and bacteriobenthos were characterized by pyrosequencing 16S rRNA genes. Identified sequences belonged to the kingdom Bacteria and classified into 33 phyla. Proteobacteria (likely SAR11 [...] Read more.
Bacterial diversity was explored among field samples and cultured isolates from coral reefs within the Veracruz Reef System. Bacterioplankton and bacteriobenthos were characterized by pyrosequencing 16S rRNA genes. Identified sequences belonged to the kingdom Bacteria and classified into 33 phyla. Proteobacteria (likely SAR11 clade) dominated in collective field samples, whereas Firmicutes were the most abundant taxa among cultured isolates. Bioinformatic sorting of sequences to family level revealed 223 bacterial families. Pseudomonadaceae, Exiguobacteraceae and Bacillaceae were dominant among cultured isolates. Vibrionaceae, Alteromonadaceae, and Flavobacteriaceae dominated in reef-associated sediments, whereas Rickettsiaceae and Synechoccaceae were more highly represented in the water column. Bacterial communities from sediments were more diverse than from the water column. This study reveals cryptic bacterial diversity among microenvironmental components of marine microbial reef communities subject to differential influence of anthropogenic stressors. Such investigations are critical for constructing scenarios of environmentally induced shifts in bacterial biodiversity and species composition. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

13 pages, 2012 KiB  
Article
Gut Microbiome Prolongs an Inhibitory Effect of Korean Red Ginseng on High-Fat-Diet-Induced Mouse Obesity
by Seo Yeon Lee, Hyun Gyun Yuk, Seong Gyu Ko, Sung-Gook Cho and Gi-Seong Moon
Nutrients 2021, 13(3), 926; https://doi.org/10.3390/nu13030926 - 12 Mar 2021
Cited by 9 | Viewed by 5558
Abstract
Although the anti-obesity effect of Korean red ginseng (Panax ginseng Meyer) has been revealed, its underlying mechanisms are not clearly understood. Here, we demonstrate an involvement of gut microbiome in the inhibitory effect of Korean red ginseng on high-fat-diet (HFD)-induced mouse obesity, [...] Read more.
Although the anti-obesity effect of Korean red ginseng (Panax ginseng Meyer) has been revealed, its underlying mechanisms are not clearly understood. Here, we demonstrate an involvement of gut microbiome in the inhibitory effect of Korean red ginseng on high-fat-diet (HFD)-induced mouse obesity, and further provides information on the effects of saponin-containing red ginseng extract (SGE) and saponin-depleted red ginseng extract (GE). Mice were fed with either SGE or GE every third day for one month, and their food intakes, fat weights, plasma glucose, and insulin and leptin levels were measured. Immunofluorescence assays were conducted to measure pancreatic islet size. Stools from the mice were subjected to metagenomic analysis. Both SGE and GE attenuated HFD-induced gain of body weight, reducing HFD-induced increase of food intakes and fat weights. They also reduced HFD-increased plasma glucose, insulin, and leptin levels, decreased both fasting and postprandial glucose concentrations, and improved both insulin resistance and glucose intolerance. Immunofluorescence assays revealed that they blocked HFD-induced increase of pancreatic islet size. Our pyrosequencing of the 16S rRNA gene V3 region from stools revealed that both SGE and GE modulated HFD-altered composition of gut microbiota. Therefore, we conclude that Korean red ginseng inhibits HFD-induced obesity and diabetes by altering gut microbiome. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

15 pages, 2563 KiB  
Article
Effects of Simulated Nitrogen Deposition on the Bacterial Community of Urban Green Spaces
by Lingzi Mo, Augusto Zanella, Xiaohua Chen, Bin Peng, Jiahui Lin, Jiaxuan Su, Xinghao Luo, Guoliang Xu and Andrea Squartini
Appl. Sci. 2021, 11(3), 918; https://doi.org/10.3390/app11030918 - 20 Jan 2021
Cited by 7 | Viewed by 2989
Abstract
Continuing nitrogen (N) deposition has a wide-ranging impact on terrestrial ecosystems. To test the hypothesis that, under N deposition, bacterial communities could suffer a negative impact, and in a relatively short timeframe, an experiment was carried out for a year in an urban [...] Read more.
Continuing nitrogen (N) deposition has a wide-ranging impact on terrestrial ecosystems. To test the hypothesis that, under N deposition, bacterial communities could suffer a negative impact, and in a relatively short timeframe, an experiment was carried out for a year in an urban area featuring a cover of Bermuda grass (Cynodon dactylon) and simulating environmental N deposition. NH4NO3 was added as external N source, with four dosages (N0 = 0 kg N ha−2 y−1, N1 = 50 kg N ha−2 y−1, N2 = 100 kg N ha−2 y−1, N3 = 150 kg N ha−2 y−1). We analyzed the bacterial community composition after soil DNA extraction through the pyrosequencing of the 16S rRNA gene amplicons. N deposition resulted in soil bacterial community changes at a clear dosage-dependent rate. Soil bacterial diversity and evenness showed a clear trend of time-dependent decline under repeated N application. Ammonium nitrogen enrichment, either directly or in relation to pH decrease, resulted in the main environmental factor related to the shift of taxa proportions within the urban green space soil bacterial community and qualified as a putative important driver of bacterial diversity abatement. Such an impact on soil life induced by N deposition may pose a serious threat to urban soil ecosystem stability and surrounding areas. Full article
(This article belongs to the Special Issue Environmental Factors Shaping the Soil Microbiome)
Show Figures

Figure 1

Back to TopTop