Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (445)

Search Parameters:
Keywords = 16S rDNA gene diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2790 KiB  
Article
AiiA Lactonase Suppresses ETEC Pathogenicity Through 3OC12-HSL Quenching in a Murine Model
by Yang Yang, Ji Shao, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microbiol. Res. 2025, 16(8), 166; https://doi.org/10.3390/microbiolres16080166 - 31 Jul 2025
Viewed by 129
Abstract
This study elucidates how the quorum-sensing (QS) signal 3OC12-HSL exacerbates enterotoxigenic E. coli (ETEC) pathogenicity and intestinal barrier dysfunction. In vitro, 3OC12-HSL enhanced ETEC C83902 growth (66.7% CFU increase at 8 h) and dysregulated stress/growth genes (e.g., eight-fold rmf upregulation under static conditions). [...] Read more.
This study elucidates how the quorum-sensing (QS) signal 3OC12-HSL exacerbates enterotoxigenic E. coli (ETEC) pathogenicity and intestinal barrier dysfunction. In vitro, 3OC12-HSL enhanced ETEC C83902 growth (66.7% CFU increase at 8 h) and dysregulated stress/growth genes (e.g., eight-fold rmf upregulation under static conditions). In synthetic gut microbiota, 3OC12-HSL selectively augmented E. coli colonization (37.6% 16S rDNA increase at 12 h). Murine studies revealed 3OC12-HSL reduced jejunal villus height (381.5 μm vs. 543.2 μm in controls), elevated serum LPS, D-lactate, and DAO, and altered microbial composition (Firmicutes/Bacteroidetes imbalance). The lactonase AiiA reversed these effects by degrading 3OC12-HSL. It abrogated bacterial growth stimulation (in vitro CFU restored to baseline), normalized microbiota diversity (Shannon index recovered to control levels), suppressed pro-inflammatory cytokines (IL-6/TNF-α reduction), and restored intestinal integrity (villus length: 472.5 μm, 20.5% increase vs. ETEC-infected mice). Our findings establish AiiA as a potent quorum-quenching agent that counteracts ETEC virulence via targeted signal inactivation, highlighting its translational value. Full article
Show Figures

Figure 1

17 pages, 1200 KiB  
Article
Biochar-Mediated Effects on Changes in Soil Quality and Microbial Communities
by Mingyu Wu, Mengyuan Wang, Wenxuan Shi, Qian Zhang, Tengfei Guo, Peipei Li, Yanlai Han and Hui Li
Agronomy 2025, 15(8), 1861; https://doi.org/10.3390/agronomy15081861 - 31 Jul 2025
Viewed by 171
Abstract
In a greenhouse experiment, we examined the behavior of biochar in arable soil to demonstrate that these supplements can boost soil carbon storage, as well as to track changes in microbial biomass and identify the microbial communities that use these biochars. In order [...] Read more.
In a greenhouse experiment, we examined the behavior of biochar in arable soil to demonstrate that these supplements can boost soil carbon storage, as well as to track changes in microbial biomass and identify the microbial communities that use these biochars. In order to ascertain if biochar can consistently alter soil microbial activities, we studied the impact of biochar combination treatments on 16S rRNA gene diversity. In soil treated with biochar, there was a rise in the relative abundance of taxa belonging to the phyla Actinobacteria and Gemmatimonadetes, despite the overall diversity decreasing with biochar addition. According to all of these observations, pyrogenic carbon has a major effect on the composition of the soil microbial community and enriches keystone taxa within the parent soil microbial community. Certain species experienced increases throughout the biochar-amended incubation period, despite the total diversity declining following biochar amendments. The phyla Actinobacteria and Gemmatimonadetes increased in the relative abundance of bacteria in soil treated with biochar, according to DNA sequencing of these species. In summary, these findings show that biochar significantly impacts the constitution and composition of the soil microbial community and enriches important taxa within the parent soil microbial community. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 1085 KiB  
Article
Composition and Structure of Gut Microbiota of Wild and Captive Epinephelus morio via 16S rRNA Analysis and Functional Prediction
by Grecia Montalvo-Fernández, Joanna M. Ortiz-Alcantara, Claudia Durruty-Lagunes, Laura Espinosa-Asuar, Mariela Beatriz Reyes-Sosa and María Leticia Arena-Ortiz
Microorganisms 2025, 13(8), 1792; https://doi.org/10.3390/microorganisms13081792 - 31 Jul 2025
Viewed by 208
Abstract
The gut microbiota plays an essential role in the host’s metabolism. Its composition and structure depend on biological and environmental factors. This work was designed to identify the composition and structure of the wild and captive red grouper (Epinephelus morio) microbiota [...] Read more.
The gut microbiota plays an essential role in the host’s metabolism. Its composition and structure depend on biological and environmental factors. This work was designed to identify the composition and structure of the wild and captive red grouper (Epinephelus morio) microbiota and make predictions regarding its metabolic functions. Our hypothesis stated that wild and captive individuals would share the most abundant taxonomic groups, forming a core microbiota, and individuals in captivity might have exclusive taxonomic groups. Metagenomic DNA was extracted from the intestinal contents of wild and captive individuals. The 16S rRNA gene was amplified and sequenced using Illumina pair-end technology. QIIME2 pipeline was used for sequence analysis and alpha and beta diversity assessment. PICRUSt was used to infer metabolic functions. Twenty-nine phyla were identified; the most abundant were Pseudomonadota, Bacillota, Fusobacteriota, and Actinomycetota. The dominant genera were Photobacterium, Vibrio, Cetobacterium, and Escherichia-Shigella. The metabolic prediction analysis suggested that the Epinephelus morio gut microbiota is related to food digestion, the immune system, antioxidant enzymes, antibiotic resistance, and vitamin B12 transport. We concluded that the microbiota of E. morio established in captivity is sensitive to environmental changes such as water pollution, which can cause a decrease in diversity. Full article
(This article belongs to the Special Issue Aquatic Microorganisms and Their Application in Aquaculture)
Show Figures

Figure 1

30 pages, 2062 KiB  
Article
Building a DNA Reference for Madagascar’s Marine Fishes: Expanding the COI Barcode Library and Establishing the First 12S Dataset for eDNA Monitoring
by Jean Jubrice Anissa Volanandiana, Dominique Ponton, Eliot Ruiz, Andriamahazosoa Elisé Marcel Fiadanamiarinjato, Fabien Rieuvilleneuve, Daniel Raberinary, Adeline Collet, Faustinato Behivoke, Henitsoa Jaonalison, Sandra Ranaivomanana, Marc Leopold, Roddy Michel Randriatsara, Jovial Mbony, Jamal Mahafina, Aaron Hartmann, Gildas Todinanahary and Jean-Dominique Durand
Diversity 2025, 17(7), 495; https://doi.org/10.3390/d17070495 - 18 Jul 2025
Viewed by 476
Abstract
Madagascar harbors a rich marine biodiversity, yet detailed knowledge of its fish species remains limited. Of the 1689 species listed in 2018, only 22% had accessible cytochrome oxidase I (COI) sequences in public databases. In response to growing pressure on fishery resources, [...] Read more.
Madagascar harbors a rich marine biodiversity, yet detailed knowledge of its fish species remains limited. Of the 1689 species listed in 2018, only 22% had accessible cytochrome oxidase I (COI) sequences in public databases. In response to growing pressure on fishery resources, this study aims to strengthen biodiversity monitoring tools. Its objectives were to enrich the COI database for Malagasy marine fishes, create the first 12S reference library, and evaluate the taxonomic resolution of different 12S metabarcodes for eDNA analysis, namely MiFish, Teleo1, AcMDB, Ac12S, and 12SF1/R1. An integrated approach combining morphological, molecular, and phylogenetic analyses was applied for specimen identification of fish captured using various types of fishing gear in Toliara and Ranobe Bays from 2018 to 2023. The Malagasy COI database now includes 2146 sequences grouped into 502 Barcode Index Numbers (BINs) from 82 families, with 14 BINs newly added to BOLD (The Barcode of Life Data Systems), and 133 cryptic species. The 12S library comprises 524 sequences representing 446 species from 78 families. Together, the genetic datasets cover 514 species from 84 families, with the most diverse being Labridae, Apogonidae, Gobiidae, Pomacentridae, and Carangidae. However, the two markers show variable taxonomic resolution: 67 species belonging to 35 families were represented solely in the COI dataset, while 10 species from nine families were identified exclusively in the 12S dataset. For 319 species with complete 12S gene sequences associated with COI BINs (Barcode Index Numbers), 12S primer sets were used to evaluate the taxonomic resolution of five 12S metabarcodes. The MiFish marker proved to be the most effective, with an optimal similarity threshold of 98.5%. This study represents a major step forward in documenting and monitoring Madagascar’s marine biodiversity and provides a valuable genetic reference for future environmental DNA (eDNA) applications. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

14 pages, 1743 KiB  
Article
Unravelling Metazoan and Fish Community Patterns in Yujiang River, China: Insights from Beta Diversity Partitioning and Co-Occurrence Network
by Yusen Li, Dapeng Wang, Yuying Huang, Jun Shi, Weijun Wu, Chang Yuan, Shiqiong Nong, Chuanbo Guo, Wenjian Chen and Lei Zhou
Diversity 2025, 17(7), 488; https://doi.org/10.3390/d17070488 - 17 Jul 2025
Viewed by 335
Abstract
Understanding the biodiversity of aquatic communities and the underlying mechanisms that shape biodiversity patterns and community dynamics is crucial for the effective conservation and management of freshwater ecosystems. However, traditional survey methods often fail to comprehensively capture species diversity, particularly for low-abundance taxa. [...] Read more.
Understanding the biodiversity of aquatic communities and the underlying mechanisms that shape biodiversity patterns and community dynamics is crucial for the effective conservation and management of freshwater ecosystems. However, traditional survey methods often fail to comprehensively capture species diversity, particularly for low-abundance taxa. Moreover, studies integrating both metazoan and fish communities at fine spatial scales remain limited. To address these gaps, we employed a multi-marker eDNA metabarcoding approach, targeting both the 12S and 18S rRNA gene regions, to comprehensively investigate the composition of metazoan and fish communities in the Yujiang River. A total of 12 metazoan orders were detected, encompassing 15 families, 21 genera, and 19 species. For the fish community, 32 species were identified, belonging to 25 genera, 10 families, and 7 orders. Among these, Adula falcatoides and Coptodon zillii were identified as the most prevalent and abundant metazoan and fish species, respectively. Notably, the most prevalent fish species, C. zillii and Oreochromis niloticus, are both recognized as invasive species. The Bray–Curtis distance of metazoa (average: 0.464) was significantly lower than that of fish communities (average: 0.797), suggesting higher community heterogeneity among fish assemblages. Beta-diversity decomposition indicated that variations in the metazoan and fish communities were predominantly driven by species replacement (turnover) (65.4% and 70.9% for metazoa and fish, respectively) rather than nestedness. Mantel tests further revealed that species turnover in metazoan communities was most strongly influenced by water temperature, while fish community turnover was primarily affected by water transparency, likely reflecting the physiological sensitivity of metazoans to thermal gradients and the dependence of fish on visual cues for foraging and habitat selection. In addition, a co-occurrence network of metazoan and fish species was constructed, highlighting potential predator-prey interactions between native species and Corbicula fluminea, which emerged as a potential keystone species. Overall, this study demonstrates the utility of multi-marker eDNA metabarcoding in characterizing aquatic community structures and provides new insights into the spatial dynamics and species interactions within river ecosystems. Full article
Show Figures

Figure 1

25 pages, 3057 KiB  
Article
Phylogenetic Diversity and Symbiotic Effectiveness of Bradyrhizobium Strains Nodulating Glycine max in Côte d’Ivoire
by Marie Ange Akaffou, Romain Kouakou Fossou, Anicet Ediman Théodore Ebou, Zaka Ghislaine Claude Kouadjo-Zézé, Chiguié Estelle Raïssa-Emma Amon, Clémence Chaintreuil, Saliou Fall and Adolphe Zézé
Agronomy 2025, 15(7), 1720; https://doi.org/10.3390/agronomy15071720 - 17 Jul 2025
Viewed by 581
Abstract
Soybean (Glycine max) is a protein-rich legume crop that plays an important role in achieving food security. The aim of this study was to isolate soybean-nodulating rhizobia from Côte d’Ivoire soils and evaluate their potential as efficient strains in order to [...] Read more.
Soybean (Glycine max) is a protein-rich legume crop that plays an important role in achieving food security. The aim of this study was to isolate soybean-nodulating rhizobia from Côte d’Ivoire soils and evaluate their potential as efficient strains in order to develop local bioinoculants. For this objective, 38 composite soil samples were collected from Côte d’Ivoire’s five major climatic zones. These soils were used as substrate to trap the nodulating rhizobia using the promiscuous soybean variety R2-231. A total of 110 bacterial strains were isolated and subsequently identified. The analysis of ITS (rDNA16S-23S), glnII and recA sequences revealed a relatively low genetic diversity of these native rhizobia. Moreover, the ITS phylogeny showed that these were scattered into two Bradyrhizobium clades dominated by the B. elkanii supergroup, with ca. 75% of all isolates. Concatenated glnII-recA sequence phylogeny confirmed that the isolates belong in the majority to ‘B. brasilense’, together with B. vignae and some putative genospecies of Bradyrhizobium that needs further elucidation. The core gene phylogeny was found to be incongruent with nodC and nifH phylogenies, probably due to lateral gene transfer influence on the symbiotic genes. The diversity and composition of the Bradyrhizobium species varied significantly among different sampling sites, and the key explanatory variables identified were carbon (C), magnesium (Mg), nitrogen (N), pH, and annual precipitation. Based on both shoot biomass and leaf relative chlorophyll content, three isolates consistently showed a higher symbiotic effectiveness than the exotic inoculant strain Bradyrhizobium IRAT-FA3, demonstrating their potential to serve as indigenous elite strains as bioinoculants. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

13 pages, 2110 KiB  
Article
Comparison of Rhizosphere Microbial Diversity in Soybean and Red Kidney Bean Under Continuous Monoculture and Intercropping Systems
by Huibin Qin, Aohui Li, Shuyu Zhong, Yingying Zhang, Chuhui Li, Zhixin Mu, Haiping Zhang and Jing Wu
Agronomy 2025, 15(7), 1705; https://doi.org/10.3390/agronomy15071705 - 15 Jul 2025
Viewed by 348
Abstract
The long-term monocropping of red kidney beans in agricultural fields can lead to the occurrence of soil-borne diseases. Alterations in the composition of the soil microbial community are a primary cause of soil-borne diseases and a key factor in continuous cropping obstacles. Research [...] Read more.
The long-term monocropping of red kidney beans in agricultural fields can lead to the occurrence of soil-borne diseases. Alterations in the composition of the soil microbial community are a primary cause of soil-borne diseases and a key factor in continuous cropping obstacles. Research exploring how different cultivation modes can modify the diversity and composition of the rhizosphere microbial community in red kidney beans, and thus mitigate the effects of continuous cropping obstacles, is ongoing. This study employed three cultivation modes: the continuous monocropping of red kidney beans, continuous monocropping of soybeans, and red kidney bean–soybean intercropping. To elucidate the composition and diversity of rhizosphere microbial communities, we conducted amplicon sequencing targeting the V3-V4 hypervariable regions of the bacterial 16S rRNA gene and the ITS1 region of fungal ribosomal DNA across distinct growth stages. The obtained sequencing data provide a robust basis for estimating soil microbial diversity. We observed that, under the intercropping mode, the composition of both bacteria and fungi more closely resembled that of soybean monocropping. The monocropping of red kidney beans increased the richness of rhizosphere bacteria and fungi and promoted the accumulation of pathogenic microorganisms. In contrast, intercropping cultivation and soybean monocropping favored the accumulation of beneficial bacteria such as Bacillus and Streptomyce, reduced pathogenic fungi including Alternaria and Mortierell, and exhibited less microbial variation across different growth stages. Compared to the monocropping of red kidney beans, these systems demonstrated more stable microbial structure and composition. The findings of this study will inform sustainable agricultural practices and soil management strategies. Full article
Show Figures

Figure 1

19 pages, 1686 KiB  
Article
Could Horizontal Gene Transfer Explain 5S rDNA Similarities Between Frogs and Worm Parasites?
by Kaleb Pretto Gatto, Cintia Pelegrineti Targueta, Stenio Eder Vittorazzi and Luciana Bolsoni Lourenço
Biomolecules 2025, 15(7), 1001; https://doi.org/10.3390/biom15071001 - 12 Jul 2025
Viewed by 439
Abstract
Horizontal gene transfer (HGT), the non-Mendelian transfer of genetic material between organisms, is relatively frequent in prokaryotes, whereas its extent among eukaryotes remains unclear. Here, we raise the hypothesis of a possible cross-phylum HGT event involving 5S ribosomal DNA (rDNA). A specific type [...] Read more.
Horizontal gene transfer (HGT), the non-Mendelian transfer of genetic material between organisms, is relatively frequent in prokaryotes, whereas its extent among eukaryotes remains unclear. Here, we raise the hypothesis of a possible cross-phylum HGT event involving 5S ribosomal DNA (rDNA). A specific type of 5S rDNA sequence from the anuran Xenopus laevis was highly similar to a 5S rDNA sequence of the genome of its flatworm parasite Protopolystoma xenopodis. A maximum likelihood analysis revealed phylogenetic incongruence between the gene tree and the species trees, as the 5S rDNA sequence from Pr. xenopodis was grouped along with the sequences from the anurans. Sequence divergence analyses of the gene region and non-transcribed spacer also agree with an HGT event from Xenopus to Pr. xenopodis. Additionally, we examined whether contamination of the Pr. xenopodis genome assembly with frog DNA could explain our findings but found no evidence to support this hypothesis. These findings highlight the possible contribution of HGT to the high diversity observed in the 5S rDNA family. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1565 KiB  
Article
Spatial and Seasonal Analysis of Phyllosphere Bacterial Communities of the Epiphytic Gymnosperm Zamia pseudoparasitica
by Lilisbeth Rodríguez-Castro, Adriel M. Sierra, Juan Carlos Villarreal Aguilar and Kristin Saltonstall
Appl. Biosci. 2025, 4(3), 35; https://doi.org/10.3390/applbiosci4030035 - 11 Jul 2025
Viewed by 264
Abstract
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during [...] Read more.
Phyllosphere microbial communities influence the growth and productivity of plants, particularly in epiphytic plants, which are disconnected from nutrients available in the soil. We characterized the phyllosphere of 30 individuals of the epiphytic cycad, Zamia pseudoparasitica, collected from three forest sites during the rainy and dry seasons in the Republic of Panama. We used DNA metabarcoding to describe the total bacteria community with the 16S rRNA gene and the diazotrophic community with nifH gene. Common taxa included members of the Rhizobiales, Frankiales, Pseudonocardiales, Acetobacteriales, and the diazotrophic community was dominated by Cyanobacateria. We observed similar patterns of alpha diversity across sites and seasons, and no community differences were seen within sites between the rainy and dry seasons for either the 16S rRNA or nifH genes. However, pairwise comparisons showed some statistically significant differences in community composition between sites and seasons, but these explained only a small portion of the variation. Beta diversity partitioning indicated that communities were more phylogenetically closely related than expected by chance, indicative of strong environmental or host filtering shaping these phyllosphere communities. These results highlight the influence of host-driven selection and habitat stability in shaping phyllosphere microbiota, offering new insights into microbial assembly in tropical canopy ecosystems. Full article
Show Figures

Figure 1

20 pages, 1502 KiB  
Article
Influence of Different Litter Regimens on Ceca Microbiota Profiles in Salmonella-Challenged Broiler Chicks
by Deji A. Ekunseitan, Scott H. Harrison, Ibukun M. Ogunade and Yewande O. Fasina
Animals 2025, 15(14), 2039; https://doi.org/10.3390/ani15142039 - 11 Jul 2025
Viewed by 422
Abstract
A 14-day study was conducted to evaluate the effect of litter type (dirty litter, DL; fresh litter, FL) and Salmonella Enteritidis SE challenge (no challenge, NC; challenge, SE) on the growth performance and cecal microbial composition of neonate chicks. Day-old chicks (n [...] Read more.
A 14-day study was conducted to evaluate the effect of litter type (dirty litter, DL; fresh litter, FL) and Salmonella Enteritidis SE challenge (no challenge, NC; challenge, SE) on the growth performance and cecal microbial composition of neonate chicks. Day-old chicks (n = 240, Ross 708 male) were allocated to a 2 × 2 factorial design consisting of four treatments: chicks raised on dirty litter (CONDL), chicks raised on fresh litter (CONFL); and chicks raised on litter types similar to CONDL and CONFL but inoculated with 7.46 × 108 CFU SE/mL at d 1 (CONDLSE and CONFLSE). The performance indices measured included body weight (BW), body weight gain (BWG), feed intake (FI), mortality, and feed conversion ratio (FCR). Cecal SE concentration was assessed on d 3 and 14, and ceca were collected from chicks on day 14 for DNA extraction. The Illumina Miseq platform was used for microbiome analysis of the V3–V4 region of the 16S rRNA gene. The interaction of litter type and SE influenced FCR and FI. CONDL recorded the poorest FCR (1.832). FI was highest and similar in CONFLSE, CONDL, and CONDLSE (0.655, 0.692, and 0.677, respectively). Cecal SE concentration was significantly reduced in CONDLSE at d 3 and 14. Alpha diversity was higher (p < 0.05) in the DL compared to that in NC. Beta diversity showed a separation (p < 0.05) between the DL and the FL. Comparative tree analysis revealed 21 differential significant genera, with 14 prevalent in the DL and 7 in the FL, specifically, bacteria genera such as Lactobacillus, Clostridia_vadinBB60_group, Lachnospira, Oscillospiraceae UCG_005, and Marvinbryantia, which play significant roles relating to improved growth performance, metabolic homeostasis within the gut, energy metabolism, and short-chain fatty acid (SCFA) utilization. Our results concluded that litter management regimen differentially alters the microbiome of chicks, which accounts for the improved performance and exclusion of pathogens in the study. Full article
Show Figures

Figure 1

12 pages, 4263 KiB  
Article
Characterization of a Novel Lentzea Species Isolated from the Kumtagh Desert and Genomic Insights into the Secondary Metabolite Potential of the Genus
by Ying Wen, Jiahui Li, Fujun Qiao, Wanyin Luo, Tuo Chen, Guangxiu Liu and Wei Zhang
Microorganisms 2025, 13(7), 1628; https://doi.org/10.3390/microorganisms13071628 - 10 Jul 2025
Viewed by 307
Abstract
A novel actinobacterial strain, designated E54T, was isolated from a hyper-arid desert soil sample collected from the Kumtagh Desert in Dunhuang, Gansu Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain E54T within the genus Lentzea, [...] Read more.
A novel actinobacterial strain, designated E54T, was isolated from a hyper-arid desert soil sample collected from the Kumtagh Desert in Dunhuang, Gansu Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain E54T within the genus Lentzea, showing highest similarity to Lentzea waywayandensis DSM 44232T (98.9%) and Lentzea flava NBRC 15743T (98.5%). However, whole-genome comparisons revealed that the average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between E54T and these related strains were below the thresholds for species delineation. Strain E54T exhibited typical morphological characteristics of the genus Lentzea, forming a branched substrate. It grew optimally at 28–30 °C, pH 7.0–9.0, and tolerated up to 10% NaCl. The cell wall contained meso-diaminopimelic acid, the predominant menaquinone was MK-9(H4), and major fatty acids included iso-C16:0. The polar lipid profile comprised diphosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, hydroxyphosphatidyl ethanolamine, and an unidentified lipid. The characteristic amino acid type of the cell wall was meso-DAP. Whole-cell hydrolysis experiments revealed the characteristic cell wall sugar fractions: ribose and galactose. The genome of strain E54T is approximately 8.0 Mb with a DNA G+C content of 69.38 mol%. Genome mining revealed 39 biosynthetic gene clusters (BGCs), including non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), terpenes, and siderophores. Comparative antiSMASH-based genome analysis across 38 Lentzea strains further demonstrated the genus’ remarkable biosynthetic diversity. NRPS and type I PKS (T1PKS) were the most prevalent BGC types, indicating a capacity to synthesize structurally complex and pharmacologically relevant metabolites. Together, these findings underscore the untapped biosynthetic potential of the genus Lentzea and support the proposal of strain E54T as a novel species. The strain E54T (=JCM 34936T = GDMCC 4.216T) should represent a novel species, for which the name Lentzea xerophila sp. nov. is proposed. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 7674 KiB  
Article
Foliar Application of Bacillus thuringiensis Enhances Tea Quality and Plant Defense via Phyllosphere Microbiome Modulation
by Yulin Xiong, He Liu, Dongliang Li, Wei Xie, Zhong Wang, Xiaohong Fang, Jizhou Wang, Wei Chen, Xi Du, Yanyan Li, Chuanpeng Nie, Chuanhua Yin, Pumo Cai and Yongcong Hong
Agriculture 2025, 15(13), 1386; https://doi.org/10.3390/agriculture15131386 - 27 Jun 2025
Viewed by 320
Abstract
The plant microbiome plays a crucial role in the health of the tea plant, while Bacillus thuringiensis (Bt) is widely utilized as a biological pesticide in tea gardens, promoting sustainable agricultural practices. However, the effects of Bt spraying on tea quality and the [...] Read more.
The plant microbiome plays a crucial role in the health of the tea plant, while Bacillus thuringiensis (Bt) is widely utilized as a biological pesticide in tea gardens, promoting sustainable agricultural practices. However, the effects of Bt spraying on tea quality and the structure and function of the phyllosphere microbiome remain unclear. This study evaluated the effects of Bt spraying on tea quality, microbiome composition, diversity, and potential functions using tea leaf quality measurements and high-throughput sequencing of the 16S/ITS rDNA genes. Results showed that spraying Bt1 significantly increased the contents of free amino acids (by 15.27%), flavonoids (by 18.00%), soluble sugars (by 62.55%), and key compounds such as epicatechin gallate (by 10.50%), gallocatechin gallate (by 122.52%), and epigallocatechin gallate (by 61.29%), leading to improved leaf quality. Co-occurrence network analysis indicated that the community structure of both epiphytic and endophytic microbes became more complex after Bt treatment. The abundance of beneficial bacteria, such as Novosphingobium, Methylobacterium, and Sphingomonas, increased significantly, while pathogenic fungi like Aspergillus and Phyllosticta decreased. Functional prediction indicated enhanced amino acid metabolism, secondary metabolism, and carbohydrate metabolism, particularly the biosynthesis of flavonoids, which supports disease resistance and boosts secondary metabolite levels. Furthermore, Bt application reduced pathogenic fungi, enhancing the tea plant’s resistance to diseases. Overall, foliar spraying of Bt can positively alter the phyllosphere microbiome by enriching beneficial bacteria and improving metabolic functions, ultimately enhancing tea plant resistance and quality, and providing a scientific basis for sustainable pest management in tea cultivation. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Graphical abstract

21 pages, 2790 KiB  
Article
To Clamp or Not to Clamp: Enhancing Seed Endophyte Metabarcoding Success
by Allison A. Mertin, Linda L. Blackall, Douglas R. Brumley, Edward C. Y. Liew and Marlien M. van der Merwe
Seeds 2025, 4(3), 28; https://doi.org/10.3390/seeds4030028 - 27 Jun 2025
Viewed by 296
Abstract
Seed microbes play crucial roles in plant health, but studying their diversity is challenging due to host DNA contamination. This study aimed to optimise methodologies for investigating seed microbiomes across diverse plant species, focusing on the efficacy of peptide nucleic acid (PNA) clamps [...] Read more.
Seed microbes play crucial roles in plant health, but studying their diversity is challenging due to host DNA contamination. This study aimed to optimise methodologies for investigating seed microbiomes across diverse plant species, focusing on the efficacy of peptide nucleic acid (PNA) clamps to reduce host DNA amplification. We tested PNA clamps on three plant species: Melaleuca quinquenervia (tree), Microlaena stipoides, and Themeda triandra (grasses). The effectiveness of PNA clamps was assessed through in silico analysis, axenic tissue culture, and metabarcoding techniques. In silico analysis confirmed the specificity of PNA clamps to the 16S rRNA gene V4 region of chloroplasts in the grass species. Axenic tissue culture experiments showed that applying PNA clamps at both 1 µM and 0.25 µM concentrations significantly reduced plant DNA amplification. Metabarcoding analyses further confirmed that PNA clamps effectively suppressed host DNA, enhancing microbial diversity estimates across all three species while preserving core microbial taxa. The efficacy of the clamps varied among host species, with T. triandra exhibiting the highest blocking efficacy, and chloroplast clamps outperforming mitochondrial ones. This study demonstrates that PNA clamps are a useful for improving seed endophyte metabarcoding datasets, although they require optimisation for some plant species. This knowledge will contribute to enhancing our understanding of seed microbiome diversity and its ecological implications. Full article
Show Figures

Figure 1

17 pages, 11403 KiB  
Article
Comparative Analysis of Chloroplast Genomes of 19 Saxifraga Species, Mostly from the European Alps
by Zhenning Leng, Zhe Pang, Zaijun He and Qingbo Gao
Int. J. Mol. Sci. 2025, 26(13), 6015; https://doi.org/10.3390/ijms26136015 - 23 Jun 2025
Viewed by 351
Abstract
Complete chloroplast genome sequences are widely used in the analyses of phylogenetic relationships among angiosperms. As a species-rich genus, species diversity centers of Saxifraga L. include mountainous regions of Eurasia, such as the Alps and the Qinghai–Tibetan Plateau (QTP) sensu lato. However, [...] Read more.
Complete chloroplast genome sequences are widely used in the analyses of phylogenetic relationships among angiosperms. As a species-rich genus, species diversity centers of Saxifraga L. include mountainous regions of Eurasia, such as the Alps and the Qinghai–Tibetan Plateau (QTP) sensu lato. However, to date, datasets of chloroplast genomes of Saxifraga have been concentrated on the QTP species; those from European Alps are largely unavailable, which hinders comprehensively comparative and evolutionary analyses of chloroplast genomes in this genus. Here, complete chloroplast genomes of 19 Saxifraga species were de novo sequenced, assembled and annotated, and of these 15 species from Alps were reported for the first time. Subsequent comparative analysis and phylogenetic reconstruction were also conducted. Chloroplast genome length of the 19 Saxifraga species range from 149,217 bp to 152,282 bp with a typical quadripartite structure. All individual chloroplast genome included in this study contains 113 unique genes, including 79 protein-coding genes, four rRNAs and 30 tRNAs. The IR boundaries keep relatively conserved with minor expansion in S. consanguinea. mVISTA analysis and identification of polymorphic loci for molecular markers shows that six intergenic regions (ndhC-trnV, psbE-petL, rpl32-trnL, rps16-trnQ, trnF-ndhJ, trnS-trnG) can be selected as the potential DNA barcodes. A total of 1204 SSRs, 433 tandem repeats and 534 Large sequence repeats were identified in the 19 Saxifraga chloroplast genomes. The codon usage analysis revealed that Saxifraga chloroplast genome codon prefers to end in A/T. Phylogenetic reconstruction of 33 species (31 Saxifraga species included) based on 75 common protein coding genes received high bootstrap support values for nearly all identified nodes, and revealed a tree topology similar to previous studies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 972 KiB  
Article
Tracking Drug Resistance in Plasmodium falciparum: Genetic Diversity of Key Resistance Markers in Brazilian Malaria Hotspots
by Rebecca de Abreu-Fernandes, Lucas Tavares de Queiroz, Natália Ketrin Almeida-de-Oliveira, Aline Rosa de Lavigne Mello, Jacqueline de Aguiar Barros, Lilian Rose Pratt-Riccio, Gisely Cardoso de Melo, Patrícia Brasil, Cláudio Tadeu Daniel-Ribeiro, Didier Menard and Maria de Fátima Ferreira-da-Cruz
Int. J. Mol. Sci. 2025, 26(13), 5977; https://doi.org/10.3390/ijms26135977 - 21 Jun 2025
Viewed by 529
Abstract
Malaria remains a health problem, with Plasmodium falciparum accounting for 96% of cases in Africa and 15% in Brazil. The growing threat of drug resistance to artemisinin-based combination therapies (ACTs) jeopardizes progress toward elimination. This study examined P. falciparum samples collected from 141 [...] Read more.
Malaria remains a health problem, with Plasmodium falciparum accounting for 96% of cases in Africa and 15% in Brazil. The growing threat of drug resistance to artemisinin-based combination therapies (ACTs) jeopardizes progress toward elimination. This study examined P. falciparum samples collected from 141 patients in Brazil (2013–2023) by PCR and DNA sequencing to identify single-nucleotide polymorphisms in the pfcrt, pfmdr1, and pfk13 genes. Half of the samples carried the SVMNTMCGI haplotype in pfcrt, and none of the samples showed C350R mutations. In pfmdr1, the NYCDY haplotype was dominant (70%), with low occurrences of N86Y (4%) and no Y184F polymorphisms. No mutations linked to artemisinin partial resistance were detected in pfk13. Only one Amazonas sample exhibited wild-type haplotypes across all genes. Genetic diversity was more pronounced in pfcrt than pfmdr1, reflecting selective drug pressure. Significant linkage disequilibrium (LD) was observed within pfcrt (C72S and K76T) and pfmdr1 (S1034C and N1042D), but not between the two genes. The absence of pfk13-resistant mutations and the low prevalence of key pfmdr1 markers support the efficacy of ACTs. The persistence of diverse haplotypes and intragenic LD reflects ongoing drug pressure, underscoring the need for continuous genetic surveillance to anticipate emerging resistance. Full article
Show Figures

Figure 1

Back to TopTop