Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (848)

Search Parameters:
Keywords = 15N dilution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1056 KiB  
Article
Biomarkers of Metabolism and Inflammation in Individuals with Obesity and Normal Weight: A Comparative Analysis Exploring Sex Differences
by Eveline Gart, Jessica Snabel, Jelle C. B. C. de Jong, Lars Verschuren, Anita M. van den Hoek, Martine C. Morrison and Robert Kleemann
Int. J. Mol. Sci. 2025, 26(15), 7576; https://doi.org/10.3390/ijms26157576 - 5 Aug 2025
Abstract
Blood-based biomarkers allow monitoring of an individual’s health status and provide insights into metabolic and inflammatory processes in conditions like obesity, cardiovascular, and liver diseases. However, selecting suitable biomarkers and optimizing analytical assays presents challenges, is time-consuming and laborious. Moreover, knowledge of potential [...] Read more.
Blood-based biomarkers allow monitoring of an individual’s health status and provide insights into metabolic and inflammatory processes in conditions like obesity, cardiovascular, and liver diseases. However, selecting suitable biomarkers and optimizing analytical assays presents challenges, is time-consuming and laborious. Moreover, knowledge of potential sex differences remains incomplete as research is often carried out in men. This study aims at enabling researchers to make informed choices on the type of biomarkers, analytical assays, and dilutions being used. More specifically, we analyzed plasma concentrations of >90 biomarkers using commonly available ELISA or electrochemiluminescence-based multiplex methods, comparing normal weight (BMI < 25; n = 40) with obese (BMI > 30; n = 40) adult blood donors of comparable age. To help choose optimal biomarker sets, we grouped frequently employed biomarkers into biological categories (e.g., adipokines, acute-phase proteins, complement factors, cytokines, myokines, iron metabolism, vascular inflammation), first comparing normal-weight with obese persons, and thereafter exploratively comparing women and men within each BMI group. Many biomarkers linked to chronic inflammation and dysmetabolism were elevated in persons with obesity, including several adipokines, interleukins, chemokines, acute-phase proteins, complement factors, and oxidized LDL. Further exploration suggests sex disparities in biomarker levels within both normal-weight and obese groups. This comprehensive dataset of biomarkers across diverse biological domains constitutes a reference resource that may provide valuable guidance for researchers in selecting appropriate biomarkers and analytical assays for own studies. Moreover, the dataset highlights the importance of taking possible sex differences into account. Full article
Show Figures

Graphical abstract

22 pages, 2192 KiB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

18 pages, 7363 KiB  
Article
Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources
by María Jesús Puy-Alquiza, Miren Yosune Miranda Puy, Raúl Miranda-Avilés, Pooja Vinod Kshirsagar and Cristina Daniela Moncada Sanchez
Recycling 2025, 10(4), 156; https://doi.org/10.3390/recycling10040156 - 5 Aug 2025
Abstract
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, [...] Read more.
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, Mg, and S), micronutrients (Fe, Zn, B, Cu, Mn, Mo, and Ni), organic matter (OM), and the carbon-to-nitrogen (C/N) ratio. All composts exhibited neutral pH values (7.38–7.52), high OM content (38.5–48.4%), and optimal C/N ratios (10.5–13.9), indicating maturity and chemical stability. Nitrogen ranged from 19 to 21 kg·t−1, while potassium and calcium were present in concentrations beneficial for crop development. However, EC values (3.43–3.66 dS/m) and boron levels (>160 ppm) were moderately high, requiring caution in saline soils or with boron-sensitive crops. A semi-quantitative Compost Quality Index (CQI) ranked BFS3 highest due to elevated OM and potassium content, followed by BFS1. BFS2, while rich in nitrogen, scored lower due to excessive boron. One-way ANOVA revealed no significant difference in nitrogen (p > 0.05), but it did reveal significant differences in potassium (p < 0.01) and boron (p < 0.001) among formulations. These results confirm the potential of mining tailings—microbial mat composts are low-cost, nutrient-rich biofertilizers. They are suitable for field crops or as components in nursery substrates, particularly when EC and boron are managed through dilution. This study promotes the circular reuse of geothermal and industrial residues and contributes to sustainable soil restoration practices in mining-affected regions through innovative composting strategies. Full article
Show Figures

Figure 1

24 pages, 6246 KiB  
Article
Anti-Herpes Simplex Virus Type 1 Activity of Rosa damascena Mill Essential Oil and Floral Water in Retinal Infection In Vitro and In Silico
by Neli Vilhelmova-Ilieva, Rayna Nenova, Kalin Kalinov, Ana Dobreva, Dimitar Peshev and Ivan Iliev
Int. J. Mol. Sci. 2025, 26(15), 7521; https://doi.org/10.3390/ijms26157521 - 4 Aug 2025
Abstract
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena [...] Read more.
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena Mill against herpes simplex virus type 1 (HSV-1) infection in rabbit retinal cells (RRCs). The composition of the main chemical components in the rose essential oil was determined by means of gas chromatographic analysis. The effect on the viral replication cycle was determined using the cytopathic effect (CPE) inhibition assay. The virucidal activity, the effect on the adsorption stage of the virus to the host cell, and the protective effect on healthy cells were evaluated using the endpoint dilution method. The effects were determined as deviation in the viral titer, Δlg, for the treated cells from the one for the untreated viral control. The identified main active components of rose oil are geraniol (28.73%), citronellol (21.50%), nonadecane (13.13%), nerol (5.51%), heneicosane (4.87%), nonadecene (3.93), heptadecane (2.29), farnesol (2.11%), tricosane (1.29%), eicosane (1.01%), and eugenol (0.85%). The results demonstrated that both rose products do not have a significant effect on the virus replication but directly affect the viral particles and reduce the viral titer by Δlg = 3.25 for floral water and by Δlg = 3.0 for essential oil. Significant inhibition of the viral adsorption stage was also observed, leading to a decrease in the viral titers by Δlg = 2.25 for floral water and by Δlg = 2.0 for essential oil. When pretreating healthy cells with rose products, both samples significantly protected them from subsequent infection with HSV-1. This protective effect was more pronounced for the oil (Δlg = 2.5) compared to the one for the floral water (Δlg = 2.0). We used the in silico molecular docking method to gain insight into the mechanism of hindrance of viral adsorption by the main rose oil compounds (geraniol, citronellol, nerol). These components targeted the HSV-1 gD interaction surface with nectin-1 and HVEM (Herpesvirus Entry Mediator) host cell receptors, at N-, C-ends, and N-end, respectively. These findings could provide a structural framework for further development of anti-HSV-1 therapeutics. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

12 pages, 639 KiB  
Article
Clinical Relevance of PCR Versus Culture in Urinary Tract Infections Diagnosis: Quantification Cycle as a Predictor of Bacterial Load
by Pallavi Upadhyay, Arjuna Vallabhaneni, Edward Ager, Barbara Alexander, Adriana Rosato and Vijay Singh
Diagnostics 2025, 15(15), 1939; https://doi.org/10.3390/diagnostics15151939 - 1 Aug 2025
Viewed by 217
Abstract
Background: Unambiguous clinical interpretation of PCR results for urinary tract infections (UTIs) remains a challenge. Here we compare and correlate multiplex qPCR results (quantification cycle values) with traditional microbial culture results (colony forming units) for clinical samples. Methods: Serial dilutions [10 [...] Read more.
Background: Unambiguous clinical interpretation of PCR results for urinary tract infections (UTIs) remains a challenge. Here we compare and correlate multiplex qPCR results (quantification cycle values) with traditional microbial culture results (colony forming units) for clinical samples. Methods: Serial dilutions [108 to 100 colony forming units (CFU)/mL] were performed on five Gram-negative and two Gram-positive UTI-causing bacterial pathogens. For each dilution, quantitative cultures on solid media to confirm CFU/mL values and a real-time PCR UTI panel employing a nanofluidic Open ArrayTM platform producing quantification cycle (Cq) values were performed. Cq values were correlated with CFU/mL values, generating a semi-quantitative interpretive scale for clinical samples. The clinical utility of the scale was then assessed using PCR and culture data from 168 clinical urine samples. Results: For Gram-negative bacteria, Cq values of <23, 23 to 28, and >28 corresponded with ≥105 CFU/mL, <105 CFU/mL and negative cultures, respectively. For Gram-positive bacteria, Cq values of <26, 26 to 30, and >30 corresponded with ≥105 CFU/mL, <105 CFU/mL and negative cultures, respectively. Among 168 urine specimens (including 138 Gram-negative and 30 Gram-positive bacteria), there was 83.3% agreement (n = 140/168) and 16.6% non-agreement (n = 28/168) between culture CFU/mL and qPCR Cq. Gram-negative bacteria had higher agreement (87.6%, 121/138) than Gram-positive bacteria (63.3%, 19/30). Conclusions: This study demonstrates that qPCR Cq results can be directly correlated with traditional urine quantitative culture results and reliably identify the clinically relevant cutoff of 105 CFU/mL for detected uropathogens. Full article
(This article belongs to the Special Issue Urinary Tract Infections: Advances in Diagnosis and Management)
Show Figures

Figure 1

9 pages, 1157 KiB  
Article
Center Degenerated Walking-Primer PCR: A Novel and Universal Genome-Walking Method
by Dandan Gao, Zhenkang Pan, Hao Pan, Yinwei Gu and Haixing Li
Curr. Issues Mol. Biol. 2025, 47(8), 602; https://doi.org/10.3390/cimb47080602 - 1 Aug 2025
Viewed by 109
Abstract
Enhancing the specificity and applicability of PCR-based genome-walking methods is highly desirable. A new and universal genome-walking tool, called center degenerated walking-primer PCR (CDWP-PCR), is presented in this study. CDWP-PCR involves adopting a center degenerated walking primer (cdWP) in the secondary/tertiary round of [...] Read more.
Enhancing the specificity and applicability of PCR-based genome-walking methods is highly desirable. A new and universal genome-walking tool, called center degenerated walking-primer PCR (CDWP-PCR), is presented in this study. CDWP-PCR involves adopting a center degenerated walking primer (cdWP) in the secondary/tertiary round of amplification. This cdWP is generated by degenerating the seven central nucleotides of the normal walking primer (nWP) used in primary PCR to NNNNNNN (where N includes the bases A, T, C, and G). Clearly, a partially complementary structure is formed between the two primers. Accordingly, the primary CDWP-PCR non-target products defined by the nWP are diluted in secondary/tertiary CDWP-PCR, as these non-targets have difficulty in annealing with the cdWP; conversely, the primary target product can still be efficiently amplified. The working performance of the proposed CDWP-PCR is verified through cloning of the unknown flanks of three known genes. All the clear DNA bands in the tertiary CDWP-PCRs are confirmed to be correct, and the largest DNA band is 8.0 kb. Overall, CDWP-PCR can be considered as a reliable supplement to existing genome-walking methods. Full article
(This article belongs to the Special Issue Technological Advances Around Next-Generation Sequencing Application)
Show Figures

Figure 1

23 pages, 15718 KiB  
Article
Trace and Rare-Earth-Element Chemistry of Quartz from the Tuztaşı Low-Sulfidation Epithermal Au-Ag Deposit, Western Türkiye: Implications for Gold Exploration from Quartz Mineral Chemistry
by Fatih Özbaş, Essaid Bilal and Ahmed Touil
Minerals 2025, 15(7), 758; https://doi.org/10.3390/min15070758 - 19 Jul 2025
Viewed by 449
Abstract
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two [...] Read more.
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two fluid stages. Early fluids were cold, dilute meteoric waters (δ18O₍H2O₎ ≈ −6.8 to +0.7‰), whereas later fluids circulated deeper, interacted with felsic basement rocks, and evolved in composition. Mineralized quartz displays marked enrichment in As (raw mean = 2854 ± 6821 ppm; filtered mean = 70 ± 93 ppm; one spot 16,775 ppm), K (498 ± 179 ppm), and Sb (57.8 ± 113 ppm), coupled with low Ti/Al (<0.005) and elevated Ge/Si (0.14–0.65 µmol mol−1). Chondrite-normalized REE patterns show pronounced but variable LREE enrichment ((La/Yb)n ≤ 45.3; ΣLREE/ΣHREE up to 10.8) and strongly positive Eu anomalies (δEu ≤ 9.3) with slightly negative Ce anomalies (δCe ≈ 0.29); negligible Ce–Eu covariance (r2 ≈ 0.05) indicates discrete redox pulses. These signatures indicate chemically evolved, reducing fluids conducive to Au–Ag deposition. By contrast, barren quartz is characterized by lower pathfinder-element contents, less fractionated REE profiles, higher Ti/Al, and weaker Eu anomalies. A composite exploration toolkit emerges: As > 700 ppm, As/Sb > 25, Ti/Al < 0.005, Ge/Si > 0.15 µmol mol−1, and δEu ≫ 1 reliably identify ore-bearing zones when integrated with δ18O data and fluid-inclusion microthermometry from earlier studies on the same vein system. This study provides one of the first systematic applications of integrated trace-element and REE analysis of quartz to a Turkish low-sulfidation epithermal system, offering an applicable model for vectoring mineralization in analogous settings worldwide. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

20 pages, 594 KiB  
Article
Experiences in Formulating Insect-Based Feeds: Selected Physicochemical Properties of Dog Food Containing Yellow Mealworm Meal
by Remigiusz Gałęcki, Bartosz Pszczółkowski and Łukasz Zielonka
Animals 2025, 15(14), 2087; https://doi.org/10.3390/ani15142087 - 15 Jul 2025
Viewed by 298
Abstract
Yellow mealworm (Tenebrio molitor) meal is a promising sustainable protein for pet food, yet its effect on nutrient balance and granule texture is incompletely defined. Five dry dog food formulas containing 25%, 30%, 35%, 40%, and 45% of T. molitor meal [...] Read more.
Yellow mealworm (Tenebrio molitor) meal is a promising sustainable protein for pet food, yet its effect on nutrient balance and granule texture is incompletely defined. Five dry dog food formulas containing 25%, 30%, 35%, 40%, and 45% of T. molitor meal were extruded and analyzed for proximate composition, fatty-acid and amino-acid profiles, and compressive mechanical properties. Crude-protein concentration remained stable, whereas fat and ash increased (p < 0.01) and carbohydrates decreased as the inclusion level rose. Tenebrio molitor meal enriches granules in oleic, linoleic, and α-linolenic acids, improving the ω-6:ω-3 ratio from 8.0 to 5.4. Essential amino acid levels were conserved, although lysine and methionine fell modestly (≤11%). Mechanical testing showed a linear decline in hardness (331 → 300 N) and stiffness (46 → 41 N mm−1), indicating softer, more deformable granules at higher inclusion levels. The inclusion of up to 45% T. molitor meal can be incorporated without compromising protein quality while enhancing unsaturated fat content. Minor lysine/methionine dilution can be offset by targeted supplementation. These data support wider adoption of insect protein in hypoallergenic and eco-friendly canine diets. Full article
(This article belongs to the Special Issue Animal Health: Potential Benefits of Edible Insects)
Show Figures

Figure 1

15 pages, 2579 KiB  
Article
Photo-Scanning Capacitance Microscopy and Spectroscopy Study of Epitaxial GaAsN Layers and GaAsN P-I-N Solar Cell Structures
by Adam Szyszka, Wojciech Dawidowski, Damian Radziewicz and Beata Ściana
Nanomaterials 2025, 15(14), 1066; https://doi.org/10.3390/nano15141066 - 9 Jul 2025
Viewed by 365
Abstract
This work presents a novel approach to investigating epitaxial GaAsN layers and GaAsN-based p-i-n solar cell structures using light-assisted scanning capacitance microscopy (SCM) and spectroscopy. Due to the technological challenges in growing high-quality GaAsN with controlled nitrogen incorporation, the epitaxial layers often exhibit [...] Read more.
This work presents a novel approach to investigating epitaxial GaAsN layers and GaAsN-based p-i-n solar cell structures using light-assisted scanning capacitance microscopy (SCM) and spectroscopy. Due to the technological challenges in growing high-quality GaAsN with controlled nitrogen incorporation, the epitaxial layers often exhibit inhomogeneity in their opto-electrical properties. By combining localized cross-section SCM measurements with wavelength-tunable optical excitation (800–1600 nm), we resolved carrier concentration profiles, internal electric fields, and deep-level transitions across the device structure at a nanoscale resolution. A comparative analysis between electrochemical capacitance–voltage (EC-V) profiling and photoluminescence spectroscopy confirmed multiple localized transitions, attributed to compositional fluctuations and nitrogen-induced defects within GaAsN. The SCM method revealed spatial variations in energy states, including discrete nitrogen-rich regions and gradual variations in the nitrogen content throughout the layer depth, which are not recognizable using standard characterization methods. Our results demonstrate the unique capability of the photo-scanning capacitance microscopy and spectroscopy technique to provide spatially resolved insights into complex dilute nitride structures, offering a universal and accessible tool for semiconductor structures and optoelectronic devices evaluation. Full article
(This article belongs to the Special Issue Spectroscopy and Microscopy Study of Nanomaterials)
Show Figures

Graphical abstract

15 pages, 912 KiB  
Article
Weaker Association Between Financial Security and Health in the Global South
by Shervin Assari
Societies 2025, 15(7), 192; https://doi.org/10.3390/soc15070192 - 8 Jul 2025
Viewed by 358
Abstract
Background: Subjective socioeconomic status (SES) is a powerful determinant of health and well-being, capturing individuals’ perceptions of their material conditions and security. While higher perceived financial and basic needs security are generally linked to better health outcomes, little is known about how these [...] Read more.
Background: Subjective socioeconomic status (SES) is a powerful determinant of health and well-being, capturing individuals’ perceptions of their material conditions and security. While higher perceived financial and basic needs security are generally linked to better health outcomes, little is known about how these associations differ across global contexts. Drawing on data from 23 countries, this study tests whether these relationships are systematically weaker in Global South countries. Methods: Cross-sectional data from Wave 1 of the Global Flourishing Study (n = 207,000) were used to examine associations between subjective SES indicators—financial security and security in basic needs (food, housing, safety)—and two outcomes: self-rated physical health and mental health. All variables were measured on 0–10 scales. Linear regression models were estimated separately by Global South and Global North country status, adjusting for age and sex. Global South classification was based on standard development and geopolitical frameworks. Results: In both global regions, individuals with higher perceived financial and basic needs security reported significantly better mental and physical health. However, the strength of these associations was consistently weaker in Global South countries. Interaction terms confirmed that Global South status moderated the association between subjective SES and health outcomes. Conclusions: These findings suggest global-scale “diminished returns” of subjective SES on health, echoing patterns previously observed within countries. Structural inequalities, weaker public systems, and contextual adversity may dilute the health benefits of perceived security in Global South settings. Global health equity efforts must therefore move beyond individual-level interventions to address the broader systems that constrain the translation of socioeconomic resources into health. Full article
Show Figures

Figure 1

10 pages, 1137 KiB  
Article
Assessing the Reliability of D-Dimer Measurement in EDTA Plasma: A Comparison to the Established Citrate Method
by Daniel Pfingst, Adriana Méndez, Peter Neyer, Henning Nilius, Nicole Schaub, Patricia Keusch, Michael Nagler and Angelika Hammerer-Lercher
Diagnostics 2025, 15(13), 1720; https://doi.org/10.3390/diagnostics15131720 - 6 Jul 2025
Viewed by 447
Abstract
Background: D-dimer determined in citrated plasma is a well-established and efficient biomarker, particularly for ruling out venous thromboembolism. In certain clinical settings, the availability of citrated plasma may pose challenges when not readily available. To address this issue, we investigated the feasibility of [...] Read more.
Background: D-dimer determined in citrated plasma is a well-established and efficient biomarker, particularly for ruling out venous thromboembolism. In certain clinical settings, the availability of citrated plasma may pose challenges when not readily available. To address this issue, we investigated the feasibility of using ethylenediaminetetraacetic acid (EDTA) plasma as an alternative specimen for D-dimer measurement. Methods: Our study evaluated anonymized plasma samples (n = 99, for both citrate and EDTA) using the INNOVANCE® D-dimer assay, an automated particle-enhanced immunoassay, and the INNOVANCE® LOCI hs D-dimer assay, leveraging the luminescent oxygen channeling assay (LOCI) method. Results: The assays demonstrated a correlation of r ≥ 0.97 (95% CI 0.96 to 0.98) within citrated plasma and maintained a similar correlation r ≥ 0.96 (95% CI 0.94 to 0.97) between citrate and EDTA plasma upon correction for the dilution effect of the sodium citrate solution. Conclusions: These results indicate that the utilization of EDTA instead of citrate plasma is feasible and may provide similar diagnostic information. However, the observed variance could have an impact on clinical interpretation and risk assessment. Therefore, future studies are needed to confirm the results and, if necessary, determine cut-off values and clinical performance. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

28 pages, 3496 KiB  
Article
Production of 5-Hydroxymethylfurfural (HMF) from Sucrose in Aqueous Phase Using S, N-Doped Hydrochars
by Katarzyna Morawa Eblagon, Rafael G. Morais, Anna Malaika, Manuel Alejandro Castro Bravo, Natalia Rey-Raap, M. Fernando R. Pereira and Mieczysław Kozłowski
Catalysts 2025, 15(7), 656; https://doi.org/10.3390/catal15070656 - 5 Jul 2025
Viewed by 440
Abstract
5-Hydroxymethylfurfural (HMF) is a versatile platform molecule with the potential to replace many fossil fuel derivatives. It can be obtained through the dehydration of carbohydrates. In this study, we present a simple and cost-effective microwave-assisted method for producing HMF. This method involves the [...] Read more.
5-Hydroxymethylfurfural (HMF) is a versatile platform molecule with the potential to replace many fossil fuel derivatives. It can be obtained through the dehydration of carbohydrates. In this study, we present a simple and cost-effective microwave-assisted method for producing HMF. This method involves the use of readily available sucrose as a substrate and glucose-derived bifunctional hydrochars as carbocatalysts. These catalysts were produced via hydrothermal carbonisation using thiourea and urea as nitrogen and sulphur sources, respectively, to introduce Brønsted acidic and basic sites into the materials. Using a microwave reactor, we found that the S, N-doped hydrochars were active in sucrose dehydration in water. Catalytic results showed that HMF yield depended on the balance between acidic and basic sites as well as the types of S and N species present on the surfaces of these hydrochars. The best-performing catalyst achieved an encouraging HMF yield of 37%. The potential of N, S-co-doped biochar as a green solid catalyst for various biorefinery processes was demonstrated. A simple kinetic model was developed to elucidate the kinetics of the main reaction pathways of this cascade process, showing a very good fit with the experimental results. The calculated rate constants revealed that reactions with a 5% sucrose loading exhibited significantly higher fructose dehydration rates and produced fewer side products than reactions using a more diluted substrate. No isomerisation of glucose into fructose was observed in an air atmosphere. On the contrary, a limited rate of isomerisation of glucose into fructose was recorded in an oxygen atmosphere. Therefore, efforts should focus on achieving a high glucose-to-fructose isomerisation rate (an intermediate reaction step) to improve HMF selectivity by reducing humin formation. Full article
(This article belongs to the Special Issue Carbon-Based Catalysts to Address Environmental Challenges)
Show Figures

Graphical abstract

18 pages, 3950 KiB  
Article
Optimization of Irrigation Amount and Nitrogen Rate of Drip-Fertigated Sugar Beet Based on Sugar Yield, Nitrogen Use Efficiency, and Critical Nitrogen Dilution Curve in the Arid Southern Xinjiang of China
by Ying Wang, Fulai Yan, Junliang Fan and Fucang Zhang
Plants 2025, 14(13), 2055; https://doi.org/10.3390/plants14132055 - 4 Jul 2025
Viewed by 397
Abstract
The critical nitrogen (N) dilution curve is widely used to diagnose crop N status, but no such model has been developed for sugar beet. This study evaluated the effects of irrigation amount and N rate on sugar yield, N use efficiency, and soil [...] Read more.
The critical nitrogen (N) dilution curve is widely used to diagnose crop N status, but no such model has been developed for sugar beet. This study evaluated the effects of irrigation amount and N rate on sugar yield, N use efficiency, and soil nitrate-N (NO3-N) residue of drip-fertigated sugar beet in the arid southern Xinjiang of China. A reliable N nutrition index (NNI) for sugar yield was also established based on a critical N dilution curve derived from the dry matter of sugar beet. A three-year field experiment was established with six N rates (25–480 kg N ha−1) and three irrigation levels based on crop evapotranspiration (ETc) (0.6, 0.8, and 1.0 ETc in 2019 and 2020, and 0.4, 0.6, and 0.8 ETc in 2021). Results showed that sugar yield and N uptake increased and then generally stabilized with increasing N rate, while N use efficiency decreased. Most soil NO3-N was mainly distributed in the 0–60 cm soil layer, but increasing irrigation amount reduced residual NO3-N in the 0–80 cm soil layer. Additionally, the established critical N dilution curve of sugar beet was considered stable (Normalized RMSE = 16.6%), and can be used to calculate plant N requirements and further N rates during sugar beet growth. The results indicated that the optimal NNI was 0.97 under 0.6 ETc for sugar yield production of sugar beet in this study. This study provides a basis for efficient water and N management in sugar beet production in arid and semi-arid regions globally. Full article
Show Figures

Figure 1

16 pages, 328 KiB  
Article
Evaluation of Anti-HPV18 Antibody Titers Preceding an Incident Cervical HPV18/45 Infection
by Fanua Wiek, Viswanathan Shankar, Ana Gradissimo, Angela Diaz, Ligia A. Pinto, Nicolas F. Schlecht and Robert D. Burk
Vaccines 2025, 13(7), 722; https://doi.org/10.3390/vaccines13070722 - 2 Jul 2025
Viewed by 524
Abstract
Background: The Human Papillomavirus (HPV) vaccine generates high antibody titers against targeted HPV types. This study investigated vaccine-induced anti-HPV18 immunoglobulin (IgG) antibody titers and subsequent HPV18/45 infections. Methods: We performed a nested matched case-control study leveraging a prospective longitudinal cohort of adolescent and [...] Read more.
Background: The Human Papillomavirus (HPV) vaccine generates high antibody titers against targeted HPV types. This study investigated vaccine-induced anti-HPV18 immunoglobulin (IgG) antibody titers and subsequent HPV18/45 infections. Methods: We performed a nested matched case-control study leveraging a prospective longitudinal cohort of adolescent and young adult women (AYW) vaccinated with the quadrivalent HPV vaccine (4vHPV) attending the Mount Sinai Adolescent Health Center (MSAHC) in Manhattan, NY. The case individuals included AYW who had an incident detection of cervical HPV18 (n = 3) or HPV45 (n = 34) DNA after vaccination and were compared to two vaccinated control individuals (HPV18/45-negative); one random control (RC, n = 37) and one high-risk control (HRC, n = 37) selected from the upper quartile of a sexual risk behavior score. Serological titers against HPV18 were measured by end-point dilution and enzyme-linked immunosorbent assay (ELISA) in serum collected before the incident detection of HPV. Matching was performed based on age at first dose, follow-up time, and sexual risk behavior score. Conditional logistic regression was used to assess the association between case-control status and anti-HPV antibody titers, consistent with the matched-pair design. Results: Antibody titers for HPV18 were most different between AYW who developed an HPV18/45 infection compared to high-risk controls OR = 1.66, 95% CI: 0.96–2.85 (p = 0.1629). Analyses of pooled data from vaccinated recipients including who developed HPV16/31 or HPV18/45 infections demonstrated that the odds of a one-log unit increase in anti-HPV16 or 18 antibody titers, respectively, were 40% higher in the combined control groups (RC + HRC, n = 160) (OR = 1.40, 95% CI: 1.09–1.79, p = 0.0135) and 73% higher in the HRC (n = 80) (OR 1.73, 95% CI: 1.34, 2.52, p = 0.0117) compared to HPV16/18/31/45 cases (n = 80). Conclusions: Overall, these findings suggest that higher IgG antibodies to HPV16/18 after vaccination represent an increased likelihood of protection from homologous and cross-reactive HPV types (HPV16/18/31/45). These results show that differences in antibody titers are associated with breakthrough infection after vaccination, suggesting that further study of long-term antibody titers and infection should be pursued. Full article
(This article belongs to the Special Issue Prevention of Human Papillomavirus and Vaccines Strategies)
Show Figures

Figure 1

34 pages, 10519 KiB  
Article
A Remote Sensing Image Object Detection Model Based on Improved YOLOv11
by Aili Wang, Zhijia Fu, Yanran Zhao and Haisong Chen
Electronics 2025, 14(13), 2607; https://doi.org/10.3390/electronics14132607 - 27 Jun 2025
Viewed by 469
Abstract
Due to the challenges posed by high resolution, substantial background noise, significant object scale variation, and long-tailed data distribution in remote sensing images, traditional techniques often struggle to maintain both high accuracy and low latency. This paper proposes YOLO11-FSDAT, an advanced object detection [...] Read more.
Due to the challenges posed by high resolution, substantial background noise, significant object scale variation, and long-tailed data distribution in remote sensing images, traditional techniques often struggle to maintain both high accuracy and low latency. This paper proposes YOLO11-FSDAT, an advanced object detection framework tailored for remote sensing imagery, which integrates not only modular enhancements but also theoretical and architectural innovations to address these limitations. First, we propose the frequency–spatial feature extraction fusion module (Freq-SpaFEFM), which breaks the conventional paradigm of spatial-domain-dominated feature learning by introducing a multi-branch architecture that fuses frequency- and spatial-domain features in parallel. This design provides a new processing paradigm for multi-scale object detection, particularly enhancing the model’s capability in handling dense and small-object scenarios with complex backgrounds. Second, we introduce the deformable attention-based global–local fusion module (DAGLF), which combines fine-grained local features with global context through deformable attention and residual connections. This enables the model to adaptively capture irregularly oriented objects (e.g., tilted aircraft) and effectively mitigates the issue of information dilution in deep networks. Third, we develop the adaptive threshold focal loss (ATFL), which is the first loss function to systematically address the long-tailed distribution in remote sensing datasets by dynamically adjusting focus based on sample difficulty. Unlike traditional focal loss with fixed hyperparameters, ATFL decouples hard and easy samples and automatically adapts to varying class distributions. Experimental results on the public DOTAv1, SIMD, and DIOR datasets demonstrated that YOLO11-FSDAT achieved 75.22%, 82.79%, and 88.01% mAP, respectively, outperforming baseline YOLOv11n by up to 4.11%. These results confirm the effectiveness, robustness, and broader theoretical value of the proposed framework in addressing key challenges in remote sensing object detection. Full article
(This article belongs to the Special Issue Machine Learning and Computational Intelligence in Remote Sensing)
Show Figures

Figure 1

Back to TopTop