Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (962)

Search Parameters:
Keywords = 1.0 M HCl

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3151 KiB  
Article
Towards a Consensus for the Analysis and Exchange of TFA as a Counterion in Synthetic Peptides and Its Influence on Membrane Permeation
by Vanessa Erckes, Alessandro Streuli, Laura Chamera Rendueles, Stefanie Dorothea Krämer and Christian Steuer
Pharmaceuticals 2025, 18(8), 1163; https://doi.org/10.3390/ph18081163 - 5 Aug 2025
Abstract
Background: With the increasing shift in drug design away from classical drug targets towards the modulation of protein-protein interactions, synthetic peptides are gaining increasing relevance. The synthesis and purification of peptides via solid-phase peptide synthesis (SPPS) strongly rely on trifluoroacetic acid (TFA) as [...] Read more.
Background: With the increasing shift in drug design away from classical drug targets towards the modulation of protein-protein interactions, synthetic peptides are gaining increasing relevance. The synthesis and purification of peptides via solid-phase peptide synthesis (SPPS) strongly rely on trifluoroacetic acid (TFA) as a cleavage agent and ion-pairing reagent, respectively, resulting in peptides being obtained as TFA salts. Although TFA has excellent properties for peptide production, numerous studies highlight the negative impact of using peptides from TFA salts in biological assays. Methods: Investigated peptides were synthesized via SPPS and the TFA counterion was exchanged for Cl via freeze-drying in different concentrations of HCl. Detection and quantification of residual TFA were carried out via FT-IR, 19F-NMR, and HPLC using an evaporative light-scattering detector (ELSD). A liposomal fluorescence assay was used to test for the influence of the counterion on the peptides’ passive membrane permeability. Results: All TFA detection methods were successfully validated according to ICH guidelines. TFA removal with 10 mM HCl was determined to be the optimal condition. No impact on peptide purity was observed at all HCl concentrations. Influences on permeability coefficients depending on peptide sequence and salt form were found. Conclusions: This study presents a systematic investigation of the removal of TFA counterions from synthetic peptides and their replacement with Cl counterions. Detected counterion contents were used to understand the impact of sequence differences, especially positive charges, on the amount and potential localization of counterions. Our findings emphasize the importance of counterion quantification and specification in assays with synthetic peptides. Full article
Show Figures

Graphical abstract

21 pages, 3812 KiB  
Article
Recovery of Iron, Silver and Lead from Zinc Ferrite Residue
by Peter Iliev, Biserka Lucheva, Nadezhda Kazakova and Vladislava Stefanova
Materials 2025, 18(15), 3522; https://doi.org/10.3390/ma18153522 - 27 Jul 2025
Viewed by 337
Abstract
The present article aims to develop a technological scheme for processing zinc ferrite residue, which typically forms during the leaching of zinc calcine. This semi-product is currently processed through the Waelz process, the main disadvantage of which is the loss of precious metals [...] Read more.
The present article aims to develop a technological scheme for processing zinc ferrite residue, which typically forms during the leaching of zinc calcine. This semi-product is currently processed through the Waelz process, the main disadvantage of which is the loss of precious metals with the Waelz clinker. The experimental results of numerous experiments and analyses have verified a technological scheme including the following operations: sulfuric acid leaching of zinc ferrite residue under atmospheric conditions; autoclave purification of the resulting productive solution to obtain hematite; chloride leaching of lead and silver from the insoluble residue, which was produced in the initial operation; and cementation with zinc powder of lead and silver from the chloride solution. Utilizing such an advanced methodology, the degree of zinc leaching is 98.30% at a sulfuric acid concentration of 200 g/L, with a solid-to-liquid ratio of 1:10 and a temperature of 90 °C. Under these conditions, 96.40% Cu and 92.72% Fe form a solution. Trivalent iron in the presence of seeds at a temperature of 200 °C precipitates as hematite. In chloride extraction with 250 g/L NaCl, 1 M HCl, and a temperature of 60 °C, the leaching degree of lead is 96.79%, while that of silver is 84.55%. In the process of cementation with zinc powder, the degree of extraction of lead and silver in the cement precipitate is 98.72% and 97.27%, respectively. When implementing this scheme, approximately 15% of the insoluble residue remains, containing 1.6% Pb and 0.016% Ag. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

23 pages, 5262 KiB  
Article
Designing Gel-Inspired Food-Grade O/W Pickering Emulsions with Bacterial Nanocellulose–Chitosan Complexes
by Antiopi Vardaxi, Eftychios Apostolidis, Ioanna G. Mandala, Stergios Pispas, Aristeidis Papagiannopoulos and Erminta Tsouko
Gels 2025, 11(8), 577; https://doi.org/10.3390/gels11080577 - 24 Jul 2025
Viewed by 324
Abstract
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH [...] Read more.
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH combined with BNC derived via H2SO4 (BNC1) or H2SO4-HCl (BNC2) hydrolysis. Increasing BNC content improved stability by reducing phase separation and enhancing viscosity, while CH contributed interfacial activity and electrostatic stabilization. CH/BNC125:75 emulsions showed the highest stability, maintaining an emulsion stability index (ESI) of up to 100% after 3 days, with minimal change in droplet size (Rh ~8.5–8.8 μm) and a positive ζ-potential (15.1–29.8 mV), as confirmed by dynamic/electrophoretic light scattering. pH adjustment to 4 and 10 had little effect on their ESI, while ionic strength studies showed that 0.1 M NaCl caused only a slight increase in droplet size combined with the highest ζ-potential (−35.2 mV). Higher salt concentrations led to coalescence and disruption of their gel-like structure. Rheological analysis of CH/BNC125:75 emulsions revealed shear-thinning behavior and dominant elastic properties (G′ > G″), indicating a soft gel network. Incorporating sunflower-seed protein isolates into CH/BNC1 (25:75) emulsions led to coacervate formation (three-layer system), characterized by a decrease in droplet size and an increase in ζ-potential (up to 32.8 mV) over 7 days. These findings highlight CH/BNC complexes as sustainable stabilizers for food-grade Pickering emulsions, supporting the development of biopolymer-based emulsifiers aligned with bioeconomy principles. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

14 pages, 1015 KiB  
Article
Optimization of Chromosome Preparation and Karyotype Analysis of Winter Turnip Rape (Brassica rape L.)
by Tingting Fan, Xiucun Zeng, Yaozhao Xu, Fei Zhang, Li Ma, Yuanyuan Pu, Lijun Liu, Wangtian Wang, Junyan Wu, Wancang Sun and Gang Yang
Int. J. Mol. Sci. 2025, 26(15), 7127; https://doi.org/10.3390/ijms26157127 - 24 Jul 2025
Viewed by 307
Abstract
To explore the dyeing technique and karyotype analysis of winter turnip rape (Brassica rape L.), the root tip of winter turnip rape Longyou 7 was used as the experimental material. Chromosome preparation technology was optimized, and karyotype analysis was carried out by [...] Read more.
To explore the dyeing technique and karyotype analysis of winter turnip rape (Brassica rape L.), the root tip of winter turnip rape Longyou 7 was used as the experimental material. Chromosome preparation technology was optimized, and karyotype analysis was carried out by changing the conditions of material collection time, pretreatment, fixation, and dissociation. The results showed that the optimal conditions for the preparation of dyeing winter turnip rape were as follows: the sampling time was 8:00–10:00, the ice–water mixture was pretreated at 4 °C for 20 h, the Carnot’s fixative solution I and 4 °C were fixed for 12 h, and the 1 mol/L HCl solution was bathed in a water bath at 60 °C for 10~15 min. Karyotype analysis showed that the number of chromosomes in winter turnip rape cells was 2n = 20, and the karyotype analysis formula was 2n = 2x = 20 = 16m + 4sm. The karyotype asymmetry coefficient was 58.85%, and the karyotype type belonged to type 2A, which may belong to the primitive type in terms of evolution. The results of this study provide a theoretical basis for further in-depth study of the phylogenetic evolution and genetic trend of Brassica rapa. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 16101 KiB  
Article
A Poly(Acrylic Acid)-Based Hydrogel Crosslinked with Hydroxypropylcellulose as a Clarifying Agent in Nickel(II) Solutions
by Rubén Octavio Muñoz-García, Cesar Alexis Ruiz-Casillas, Diego Alberto Lomelí-Rosales, Jorge Alberto Cortés-Ortega, Juan Carlos Sánchez-Díaz and Luis Emilio Cruz-Barba
Gels 2025, 11(7), 560; https://doi.org/10.3390/gels11070560 - 21 Jul 2025
Viewed by 297
Abstract
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 [...] Read more.
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 to 5 g H2O/g) than homo PAA hydrogels synthesized in water as the solvent. They were swollen in a 0.1 M NaOH solution and subsequently used to remove Ni2+ ions from aqueous solutions with concentrations ranging from 1000 to 4000 ppm. The absorption capacity of these hydrogels ranged from 91 to 340 mg of Ni2+/g in a rapid 1 h process, and from 122 to 435 mg of Ni2+/g in a 24 h process, demonstrating an improvement in Ni2+ absorption compared to previously reported hydrogels. The colored 1000 and 2000 ppm Ni2+ solutions became clear after treatment, while the PAA-HPC hydrogels turned green due to the uptake of Ni2+ ions, which were partially chelated by carboxylate groups as nickel polyacrylate and partially precipitated as Ni(OH)2, resulting in an average absorption efficiency of 80%. The hydrogel was able to release the absorbed Ni2+ upon immersion in an HCl solution, with an average release percentage of 76.4%, indicating its potential for reuse. These findings support the use of PAA-HPC hydrogels for cleaning Ni2+-polluted water. The cost of producing 1 g of these hydrogels in laboratory conditions is approximately 0.2 USD. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

19 pages, 4839 KiB  
Article
Corrosion Inhibition of C38 Steel in 1 M HCl Using Benzoxazole-2-Thione: Electrochemical, SEM-EDX, and Theoretical Studies
by Mohamed Omari, Khalid Bouiti, Said Jebbari, Nabil Lahrache, Ali Barhoumi, Najoua Labjar, Souad El Hajjaji, Mahado Said-Ahmed, Mounim Lebrini, Hamid Nasrellah, Mohammed El Idrissi and Abdessamad Tounsi
Metals 2025, 15(7), 810; https://doi.org/10.3390/met15070810 - 19 Jul 2025
Viewed by 506
Abstract
This study explores the corrosion inhibition of C38 steel in a 1 M hydrochloric acid (HCl) solution using a novel benzoxazole-2-thione compound. The inhibitor was synthesized and structurally characterized by both 1H NMR (DMSO-d6/TMS) and 13C NMR spectroscopy. Electrochemical [...] Read more.
This study explores the corrosion inhibition of C38 steel in a 1 M hydrochloric acid (HCl) solution using a novel benzoxazole-2-thione compound. The inhibitor was synthesized and structurally characterized by both 1H NMR (DMSO-d6/TMS) and 13C NMR spectroscopy. Electrochemical techniques, including Tafel polarization and electrochemical impedance spectroscopy, were employed to evaluate the inhibition performance. The results indicate that the benzoxazole-2-thione significantly reduces the corrosion rate, achieving a maximum inhibition efficiency of 95.25% at a concentration of 10−4 M. To gain deeper insights into the inhibition mechanism, theoretical methods such as density functional theory, Monte Carlo simulations, and molecular dynamics were applied to investigate the adsorption behavior of the compound on the steel surface. The adsorption process follows the Langmuir isotherm model, suggesting the coexistence of physisorption and chemisorption interactions. Surface morphology and elemental composition analyses using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX) confirm the formation of a protective inhibitor film on the steel surface. Full article
Show Figures

Figure 1

27 pages, 40365 KiB  
Article
Formation of Hybrid Spherical Silica Particles Using a Novel Alkoxy-Functional Polysilsesquioxane Macromonomer as a Precursor in an Acid-Catalyzed Sol-Gel Process
by Anna Kowalewska, Kamila Majewska-Smolarek, Agata S. Herc, Sławomir Kaźmierski and Joanna Bojda
Materials 2025, 18(14), 3357; https://doi.org/10.3390/ma18143357 - 17 Jul 2025
Viewed by 370
Abstract
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a [...] Read more.
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a new kind of polyalkoxysilane macromonomer–linear polysilsesquioxane (LPSQ) of ladder-like backbone, functionalized in side chains with trimethoxysilyl groups (LPSQ-R-Si(OMe)3), was designed following this approach. It was obtained by photoinitiated thiol-ene addition of 3-mercaptopropyltrimethoxysilane to the vinyl-functionalized polysilsesquioxane precursor, carried out in situ in tetraethoxysilane (TEOS). The mixture of LPSQ-R-Si(OMe)3 and TEOS (co-monomers) was used in a sol–gel process conducted under acidic conditions (0.5 M HCl/NaCl) in the presence of Pluronic® F-127 triblock copolymer as a template. LPSQ-R-Si(OMe)3 played a key role for the formation of microparticles of a spherical shape that were formed under the applied conditions, while their size (as low as 3–4 µm) was controlled by the stirring rate. The hybrid materials were hydrophobic and showed good thermal and oxidative stability. Introduction of zinc acetate (Zn(OAc)2) as an additive in the sol–gel process influenced the pH of the reaction medium, which resulted in structural reinforcement of the hybrid microparticles owing to more effective condensation of silanol groups and a relative increase of the content of SiO2. The proposed method shows directions in designing the properties of hybrid materials and can be translated to other silicon–organic polymers and oligomers that could be used to produce hollow silica particles. The established role of various factors (macromonomer structure, pH, and stirring rate) allows for the modulation of particle morphology. Full article
Show Figures

Graphical abstract

14 pages, 2816 KiB  
Article
A Colorimetric/Ratiometric Fluorescent Probe Based on Aggregation-Induced Emission Effect for Detecting Hypochlorous Acid in Real Samples and Bioimaging Applications
by Junliang Chen, Pingping Xiong, Huawei Niu, Weiwei Cao, Wenfen Zhang and Shusheng Zhang
Foods 2025, 14(14), 2491; https://doi.org/10.3390/foods14142491 - 16 Jul 2025
Viewed by 318
Abstract
Hypochlorous acid (HClO) serves as a biological mediator and is widely utilized as a disinfectant in food processing and water treatment. However, excessive HClO residues in food and environmental water raise concerns due to the potential formation of carcinogenic chlorinated byproducts and disinfection [...] Read more.
Hypochlorous acid (HClO) serves as a biological mediator and is widely utilized as a disinfectant in food processing and water treatment. However, excessive HClO residues in food and environmental water raise concerns due to the potential formation of carcinogenic chlorinated byproducts and disinfection byproducts (DBPs). Despite its importance, traditional methods for HClO detection often involve complex sample preparation, sophisticated instrumentation, and skilled operators. Herein, we report an aggregation-induced emission (AIE) small molecule fluorescent probe (NYV) that integrates colorimetric and ratiometric fluorescence responses for the detection of HClO. This probe exhibits high sensitivity, with a detection limit of 0.35 μM, a rapid response time of 1 min, and a wide linear range (0–142.5 μM), along with anti-interference capabilities, making it suitable for real-time monitoring. Furthermore, we have developed a portable solid-state sensor based on probe NYV for the rapid visual detection of HClO. The potential applications of this probe in real sample analysis and bioimaging experiments are demonstrated. Our findings contribute to the development of innovative fluorescent probes for HClO detection, with broad applications in food safety, environmental monitoring, and biomedical research on oxidative stress and ferroptosis. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

14 pages, 1213 KiB  
Article
Development of a Microfluidic Paper-Based Analytical Device for Myeloperoxidase Detection in Periodontitis
by Juliane Caroline Leão, Thiago Mazzu, Vitor Leão, Paola Gomes Souza, Nathalya Maria Vilela Moura, Emanuel Carrilho and Mario Taba
Dent. J. 2025, 13(7), 321; https://doi.org/10.3390/dj13070321 - 15 Jul 2025
Viewed by 312
Abstract
Objectives: To develop a microfluidic paper-based analytical device (μPAD) that identifies myeloperoxidase (MPO) levels in the saliva of healthy patients and those with periodontal disease. Materials and Methods: A platform similar to a 96-well plate was printed on Watman® chromatography paper to [...] Read more.
Objectives: To develop a microfluidic paper-based analytical device (μPAD) that identifies myeloperoxidase (MPO) levels in the saliva of healthy patients and those with periodontal disease. Materials and Methods: A platform similar to a 96-well plate was printed on Watman® chromatography paper to run the experimental analysis with unstimulated saliva samples were collected from two groups of patients: those with periodontal health (H, n = 15) and established periodontitis (PD, n = 15). Then, three types of chromophore substrates were pipetted into the wells of the prototype: (1) Guaiacol; (2) Guaiacol, 4,4 ′-diaminodifenilsulfon (DAB) and hydrogen peroxide in Tris-HCl buffer; and (3) 3,3′,5,5′-Tetramethylbenzidine (TMB), followed by saliva samples. The reaction images were analyzed by numbering according to the intensity scale. Results: The comparative results of the reactions using μPAD demonstrated that both the H and PD groups were compatible with each other without differences among the chromophore substrates (p > 0.05). However, the protocol with TMB showed a faster reaction and better color difference when comparing 15.62 ng/mL and 7.81 ng/mL of MPO in the plate embedded with Guaiacol; 1000 ng/mL and 62.5 ng/mL on the Guaiacol and DAB plate; and 62.5 ng/mL of TMB. The average detectable concentrations of MPO in saliva using TMB were H = 21.2 ± 10.4 ng/mL and PD = 28.9 ± 12.8 ng/mL (p = 0.08). Conclusions: The developed microfluidic paper-based analytical device has been tested for identifying the myeloperoxidase saliva levels of healthy patients and those with periodontal disease. This rapid test demonstrated its possible applicability mainly when associated with the TMB chromophore, but further studies are required with different biomarkers to explore this promising diagnostic platform. Full article
(This article belongs to the Special Issue New Perspectives in Periodontology and Implant Dentistry)
Show Figures

Figure 1

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 440
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

16 pages, 2024 KiB  
Article
Recovering Immunogenic Orthohantavirus puumalaense N Protein from Pellets of Recombinant Escherichia coli
by Natalya Andreeva, Ekaterina Martynova, Polina Elboeva, Milana Mansurova, Ilnur Salafutdinov, Aleksandr Aimaletdinov, Rafil Khairullin, Diksha Sharma, Manoj Baranwal, Sara Chandy, Dilbar Dalimova, Alisher Abdullaev, Mirakbar Yakubov, Albert Rizvanov, Svetlana Khaiboullina, Yuriy Davidyuk and Emmanuel Kabwe
Vaccines 2025, 13(7), 744; https://doi.org/10.3390/vaccines13070744 - 10 Jul 2025
Viewed by 511
Abstract
(1) Background: Hemorrhagic fever with renal syndrome (HFRS) remains a prevalent zoonosis in Eurasia. Orthohantavirus puumalaense (PUUV), carried by bank voles (Myodes glareolus), is the principal zoonotic pathogen of HFRS in this region. Despite ongoing efforts to develop effective drugs and [...] Read more.
(1) Background: Hemorrhagic fever with renal syndrome (HFRS) remains a prevalent zoonosis in Eurasia. Orthohantavirus puumalaense (PUUV), carried by bank voles (Myodes glareolus), is the principal zoonotic pathogen of HFRS in this region. Despite ongoing efforts to develop effective drugs and vaccines against PUUV, this challenge remains. (2) Aim: In this study, we aimed to express a large quantity of the PUUV recombinant N (rN) protein using E. coli. We also sought to develop a protocol for extracting the rN protein from pellets, solubilizing, and refolding it to restore its native form. This protocol is crucial for producing a large quantity of rN protein to develop vaccines and diagnostic tools for HFRS. (3) Methods; PUUV S segment open reading frame (ORF) coding for N protein was synthesized and cloned into the plasmid vector pET-28 (A+). The ORF was transformed, expressed and induced in BL21(DE3) pLysS E. coli strain. Subsequently, rN protein was purified using immobilized metal affinity and ion chromatography. Immune reactivity of rN protein was tested by employing in house and commercial VektoHanta-IgG kit ELISA methods (both in vitro and in vivo). (4) Results: The best conditions for scaling up the expression of the PUUV rN protein were an incubation temperature of 20 °C during a 20 h incubation period, followed by induction with 0.5 mM IPTG. The most significant protein yield was achieved when the pellets were incubated in denaturing buffer with 8M urea. The highest yield of refolded proteins was attained using non-denaturing buffer (50 mM Tris-HCl) supplemented with arginine. A final 50 μL of PUUV rN protein solution with a concentration of 7 mg/mL was recovered from 1 L of culture. The rN protein elicited an antibody response in vivo and reacted with serum taken from patients with HFRS by ELISA in vitro. (5) Conclusion: Therefore, the orthohantavirus N protein’s ability to elicit immune response in vivo suggests that it can be used to develop vaccines against PUUV after conducting in vitro and in vivo studies to ascertain neutralising antibodies. Full article
(This article belongs to the Special Issue Protein- and Subunit-Based Vaccines)
Show Figures

Figure 1

12 pages, 7657 KiB  
Article
Cation Vacancies Anchored Transition Metal Dopants Based on a Few-Layer Ti3C2Tx Catalyst for Enhanced Hydrogen Evolution
by Xiangjie Liu, Xiaomin Chen, Chunlan Huang, Sihan Sun, Ding Yuan and Yuhai Dou
Catalysts 2025, 15(7), 663; https://doi.org/10.3390/catal15070663 - 7 Jul 2025
Viewed by 413
Abstract
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ [...] Read more.
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ LiF/HCl etching process, the aluminum layers in Ti3AlC2 were precisely removed, resulting in a few-layer Ti3C2Tx MXene with an increased interlayer spacing of 12.3 Å. Doping with the transition metals Fe, Co, Ni, and Cu demonstrated that Fe@Ti3C2 provided the optimal HER performance, characterized by an overpotential (η10) of 81 mV at 10 mA cm−2, a low Tafel slope of 33.03 mV dec−1, and the lowest charge transfer resistance (Rct = 5.6 Ω cm2). Mechanistic investigations revealed that Fe’s 3d6 electrons induce an upward shift in the d-band center of MXene, improving hydrogen adsorption free energy and reducing lattice distortion. This research lays a solid foundation for the design of non-precious metal catalysts using MXenes and highlights future avenues in bimetallic synergy and scalability. Full article
Show Figures

Graphical abstract

28 pages, 6945 KiB  
Article
Exploring the Structural Effects of Benzaldehyde Derivatives as Corrosion Inhibitors on Mild Steel in Acidic Medium Using Computational and Experimental Approaches
by Tumelo Hope Baloyi, Motsie Elija Mashuga, Abdelilah El-Khlifi, Mohammad Salman and Indra Bahadur
Corros. Mater. Degrad. 2025, 6(3), 29; https://doi.org/10.3390/cmd6030029 - 5 Jul 2025
Viewed by 426
Abstract
In a recent investigation the corrosion-fighting potential of five benzaldehyde derivatives were explored: 4-Formylbenzonitrile (BA1), 4-Nitrobenzaldehyde (BA2), 2-Hydroxy-5-methoxy-3-nitrobenzaldehyde (BA3), 3,5-Bis(trifluoromethyl)benzaldehyde (BA4), and 4-Fluorobenzaldehyde (BA5). Benzaldehyde derivative (BA-2) showed a maximum inhibition efficiency of 93.3% at 500 ppm. Several techniques were used to evaluate [...] Read more.
In a recent investigation the corrosion-fighting potential of five benzaldehyde derivatives were explored: 4-Formylbenzonitrile (BA1), 4-Nitrobenzaldehyde (BA2), 2-Hydroxy-5-methoxy-3-nitrobenzaldehyde (BA3), 3,5-Bis(trifluoromethyl)benzaldehyde (BA4), and 4-Fluorobenzaldehyde (BA5). Benzaldehyde derivative (BA-2) showed a maximum inhibition efficiency of 93.3% at 500 ppm. Several techniques were used to evaluate these compounds’ ability to protect mild steel from corrosion in a 1 M HCl solution, including potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), adsorption isotherms, and computational methods. Supporting techniques Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV-Vis) spectroscopy were also employed to validate the results. Despite sharing a common benzene ring, the molecules differ in their substituents, allowing for a comprehensive examination of the substituents’ impact on corrosion inhibition. PDP analysis disclosed that the inhibitors exhibited mixed-type inhibition behavior, interacting with anodic as well as cathodic reactions, influencing the corrosion process. EIS analysis revealed that benzaldehyde derivatives formed a protective passive film on the metal, exhibiting high corrosion resistance by shielding the alloy from corrosive attacks. The benzaldehyde inhibitors followed the Langmuir adsorption isotherm, with high R² values near one, indicating a monolayer adsorption mechanism. DFT results indicate that BA 2 is the most effective inhibitor. FTIR and UV-vis spectroscopy revealed the molecular interactions between metal and benzaldehyde derivative molecules, providing insight into the binding mechanism. Experimental results support the outcomes obtained from the molecular dynamic (MD) simulations. Full article
Show Figures

Figure 1

29 pages, 5081 KiB  
Article
Production, Characterization, and Application of KOH-Activated Biochar from Rice Straw for Azo Dye Adsorption
by Megananda Eka Wahyu, Damayanti Damayanti and Ho Shing Wu
Biomass 2025, 5(3), 40; https://doi.org/10.3390/biomass5030040 - 1 Jul 2025
Viewed by 430
Abstract
This study explored the production and activation of biochar from rice straw residue for dye adsorption applications. Rice straw, a widely available but underutilized biomass, was processed to isolate lignin and generate biochar through pyrolysis at 450 °C and 550 °C. Activation using [...] Read more.
This study explored the production and activation of biochar from rice straw residue for dye adsorption applications. Rice straw, a widely available but underutilized biomass, was processed to isolate lignin and generate biochar through pyrolysis at 450 °C and 550 °C. Activation using chemical agents (e.g., KOH and NaOH) was performed to enhance surface area and porosity. Among the tested conditions, KOH activation at a char-to-agent ratio of 1:3 produced activated carbon at 800 °C with the highest BET surface area (835.2 m2/g), and high fixed carbon (44.4%) after HCl washing. Thermogravimetric analysis was used to investigate pyrolysis kinetics, with activation energies determined using the Kissinger, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose models. The brown solid showed a higher activation energy (264 kJ/mol) compared to isolated lignin (194 kJ/mol), indicating that more energy is required for decomposition. The AC was evaluated for the adsorption of methylene blue (MB) and methyl orange (MO) from aqueous solutions. Both dyes followed the Langmuir isotherm model, indicating that monolayer adsorption occurred. The maximum adsorption capacities reached 222 mg/g for MB and 244 mg/g for MO at 303 K, with higher values at elevated temperatures. Adsorption followed a pseudo-second-order kinetic model and was governed by a physisorption mechanism, as supported by thermodynamic analysis (ΔH < 20 kJ/mol and Ea < 40 kJ/mol). These findings demonstrate that KOH-activated biochar from rice straw residue is a high-performance, low-cost adsorbent for dye removal, contributing to sustainable biomass utilization and wastewater treatment. Full article
Show Figures

Figure 1

11 pages, 1722 KiB  
Communication
Comparative Study of Corrosion Inhibition Properties of Q345 Steel by Chitosan MOF and Chitosan Schiff Base
by Lizhen Huang, Jingwen Liu, Li Wan, Bojie Li, Xianwei Wang, Silin Kang and Lei Zhu
Materials 2025, 18(13), 3031; https://doi.org/10.3390/ma18133031 - 26 Jun 2025
Viewed by 397
Abstract
This study synthesized two eco-friendly inhibitors—a chitosan–copper metal–organic framework (CS@Cu MOF) and chitosan–Schiff base–Cu complex (Schiff–CS@Cu)—for Q345 steel protection in 3.5% NaCl/1M HCl. Electrochemical and weight loss analyses demonstrated exceptional corrosion inhibition: untreated specimens showed a 25.889 g/(m2·h) corrosion rate, while [...] Read more.
This study synthesized two eco-friendly inhibitors—a chitosan–copper metal–organic framework (CS@Cu MOF) and chitosan–Schiff base–Cu complex (Schiff–CS@Cu)—for Q345 steel protection in 3.5% NaCl/1M HCl. Electrochemical and weight loss analyses demonstrated exceptional corrosion inhibition: untreated specimens showed a 25.889 g/(m2·h) corrosion rate, while 100 mg/L of CS@Cu MOF and Schiff–CS@Cu reduced rates to 2.50 g/(m2·h) (90.34% efficiency) and 1.67 g/(m2·h) (93.56%), respectively. Schiff–CS@Cu’s superiority stemmed from its pyridine–Cu2+ chelation forming a dense coordination barrier that impeded Cl/H+ penetration, whereas CS@Cu MOF relied on physical adsorption and micro-galvanic interactions. Surface characterization revealed that Schiff–CS@Cu suppressed pitting nucleation through chemical coordination, contrasting with CS@Cu MOF’s porous film delaying uniform corrosion. Both inhibitors achieved optimal performance at 100 mg/L concentration. This work establishes a molecular design strategy for green inhibitors, combining metal–organic coordination chemistry with biopolymer modification, offering practical solutions for marine infrastructure and acid-processing equipment protection. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

Back to TopTop