Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (203)

Search Parameters:
Keywords = ω–Fe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

12 pages, 7657 KiB  
Article
Cation Vacancies Anchored Transition Metal Dopants Based on a Few-Layer Ti3C2Tx Catalyst for Enhanced Hydrogen Evolution
by Xiangjie Liu, Xiaomin Chen, Chunlan Huang, Sihan Sun, Ding Yuan and Yuhai Dou
Catalysts 2025, 15(7), 663; https://doi.org/10.3390/catal15070663 - 7 Jul 2025
Viewed by 413
Abstract
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ [...] Read more.
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ LiF/HCl etching process, the aluminum layers in Ti3AlC2 were precisely removed, resulting in a few-layer Ti3C2Tx MXene with an increased interlayer spacing of 12.3 Å. Doping with the transition metals Fe, Co, Ni, and Cu demonstrated that Fe@Ti3C2 provided the optimal HER performance, characterized by an overpotential (η10) of 81 mV at 10 mA cm−2, a low Tafel slope of 33.03 mV dec−1, and the lowest charge transfer resistance (Rct = 5.6 Ω cm2). Mechanistic investigations revealed that Fe’s 3d6 electrons induce an upward shift in the d-band center of MXene, improving hydrogen adsorption free energy and reducing lattice distortion. This research lays a solid foundation for the design of non-precious metal catalysts using MXenes and highlights future avenues in bimetallic synergy and scalability. Full article
Show Figures

Graphical abstract

13 pages, 2154 KiB  
Article
Electrochemical Performance and Time Stability of the Solid Oxide Cells with a (La,Sr)(Ga,Fe,Mg)O3−δ Electrolyte and (La,Sr)(Fe,Ga,Mg)O3−δ Electrodes
by Egor Gordeev, Ekaterina Antonova and Denis Osinkin
Nanomaterials 2025, 15(12), 935; https://doi.org/10.3390/nano15120935 - 16 Jun 2025
Cited by 1 | Viewed by 832
Abstract
Electrochemical devices on solid electrolytes are closely considered from the point of view of efficient utilization of environmental resources in order to obtain a variety of products, including those with high added cost. This study provides insight into the functionality of electrochemical cells [...] Read more.
Electrochemical devices on solid electrolytes are closely considered from the point of view of efficient utilization of environmental resources in order to obtain a variety of products, including those with high added cost. This study provides insight into the functionality of electrochemical cells that have been designed with a specific configuration. These cells have the same ionic composition of the anode, cathode, and electrolyte. This was achieved by iron doping of highly conductive (La,Sr)(Ga,Mg)O3−δ electrolyte, and gallium and magnesium doping of the electrode material based on (La,Sr)FeO3−δ. The main focus in this study is on the electrochemical behavior of such cells depending on the oxygen partial pressure in the gas phase, as well as the stability of the electrochemical performance over time for more than 950 h of testing. According to the obtained results, the electrochemical cell with a completely identical ionic composition of electrodes La0.6Sr0.4Fe0.85Ga0.1Mg0.05O3−δ and electrolyte (La0.8Sr0.2)0.98Ga0.7Fe0.1Mg0.2O3−δ demonstrated the best set of optimal performances. This consists of excellent chemical compatibility, high electrochemical activity (0.08 Ω cm2 in air at 800 °C), and a minor degradation rate. Full article
Show Figures

Graphical abstract

14 pages, 6740 KiB  
Article
High-Entropy Sulfide Nanoarchitectures with Triple-Shelled Hollow Design for Durable Sodium–Ion Batteries
by Mingyang Chen, Yan Liu, Zhenchun Fang, Yinan Wang, Shaonan Gu and Guowei Zhou
Nanomaterials 2025, 15(12), 881; https://doi.org/10.3390/nano15120881 - 7 Jun 2025
Viewed by 535
Abstract
Metal sulfides are promising anode candidates for sodium–ion batteries (SIBs) due to their high theoretical capacities. However, their practical application is limited by significant volume extension and sluggish Na+ diffusion during cycling, which lead to rapid capacity degradation and poor long-term stability. [...] Read more.
Metal sulfides are promising anode candidates for sodium–ion batteries (SIBs) due to their high theoretical capacities. However, their practical application is limited by significant volume extension and sluggish Na+ diffusion during cycling, which lead to rapid capacity degradation and poor long-term stability. In this work, we report the rational design of a hollow triple-shelled high-entropy sulfide (NaFeZnCoNiMn)9S8, synthesized through sequential templating method under hydrothermal conditions. Transmission electron microscopy confirms its well-defined three-shelled architecture. The inter-shell voids effectively buffer Na+ insertion/desertion-induced volume extension, while the tailored high-entropy matrix enhances electronic conductivity and accelerates Na+ transport. This synergistic design yields outstanding performance, including a high initial Coulombic efficiency (ICE) of 94.1% at 0.1 A g−1, low charge-transfer resistance (0.32~2.54 Ω), fast Na+ diffusion efficiency (10−8.5–10−10.5 cm2 s−1), and reversible capacity of 582.6 mAh g−1 after 1600 cycles at 1 A g−1 with 91.2% capacity retention. These results demonstrate the potential of high-entropy, multi-shelled architectures as a robust platform for next-generation durable SIB anodes. Full article
Show Figures

Figure 1

16 pages, 5189 KiB  
Article
Analysis of Precipitation Control Process and Mechanical Properties of Ti-2Al-9.2Mo-2Fe Alloy
by Su-Hong Shin and Dong-Geun Lee
Materials 2025, 18(11), 2448; https://doi.org/10.3390/ma18112448 - 23 May 2025
Viewed by 345
Abstract
Ti-2Al-9.2Mo-2Fe (2A2F) alloy is a low-cost β-Ti alloy in which the expensive β-stabilizing elements (Ta, Nb, W, Ni) are replaced with relatively inexpensive Mo and Fe for use in low-cost applications in various industries. The 2A2F alloy exhibits excellent mechanical properties such as [...] Read more.
Ti-2Al-9.2Mo-2Fe (2A2F) alloy is a low-cost β-Ti alloy in which the expensive β-stabilizing elements (Ta, Nb, W, Ni) are replaced with relatively inexpensive Mo and Fe for use in low-cost applications in various industries. The 2A2F alloy exhibits excellent mechanical properties such as high specific strength and low elastic modulus compared to conventional steel alloys but is prone to brittleness owing to the formation of the ω phase when heat-treated at relatively low temperatures. Therefore, an appropriate aging treatment should be performed to control the precipitation of the isothermal ω phase and secondary α phase. This study aims to derive the appropriate aging-treatment conditions following a solution treatment at 790 °C for 1 h, which is below the β-transus temperature of 815 °C. The aging treatments are conducted at holding temperatures in the range of 450–600 °C and holding times between 1 and 18 h. At relatively low aging temperatures of 450 °C and 500 °C, the precipitation of the isothermal ω phase resulted in significantly high hardness and compressive strength. As the aging temperature and holding time increased, the ω phase gradually transformed into the secondary α phase, leading to a balanced combination of strength and ductility. However, at excessively high aging temperatures and prolonged durations, excessive precipitation and growth of secondary α phases occurred, which caused a reduction in hardness and compressive strength, accompanied by an increase in ductility. In this study, the effects of precipitation evolution on mechanical properties such as tensile strength and hardness under various heat treatment conditions were comparatively analyzed. Full article
Show Figures

Graphical abstract

13 pages, 2374 KiB  
Article
Preparation of Metal-Hybridized Magnetic Nanocellulose for ω-Transaminase Immobilization
by Jiayao Yang, Xingxing Wang, Hongpeng Wang and Jun Huang
Catalysts 2025, 15(6), 510; https://doi.org/10.3390/catal15060510 - 22 May 2025
Viewed by 528
Abstract
The enzyme ω-transaminase (ω-TA) has garnered significant attention due to its capacity to catalyze the synthesis of chiral amines with high efficiency. Nevertheless, the lack of stability of ω-TA and the difficulty of recycling and reuse are still challenges that limit its application. [...] Read more.
The enzyme ω-transaminase (ω-TA) has garnered significant attention due to its capacity to catalyze the synthesis of chiral amines with high efficiency. Nevertheless, the lack of stability of ω-TA and the difficulty of recycling and reuse are still challenges that limit its application. This study developed a novel magnetic nanocellulose composite carrier (NNC@Fe3O4@Ni), synthesized from microcrystalline cellulose via low-eutectic solvent treatment, amine modification, and metal hybridization. The NNC@Fe3O4@Ni was characterized by FTIR, XPS, XRD, BET, and VSM. Additionally, the performance and catalytic behavior of the immobilized enzyme were investigated. The results revealed that NNC@Fe3O4@Ni exhibited a high specific surface area, superparamagnetism, and dual-site functionality (amine/Ni2⁺). Response Surface Methodology (RSM) optimized the carrier-enzyme interaction parameters, yielding optimal immobilization conditions: a mass ratio of 50.8 mg g−1, temperature of 12.5 °C, and duration of 58.6 min, achieving 82.91% enzyme activity recovery. Compared to free enzymes, the immobilized variant demonstrated enhanced catalytic stability, with expanded optimal pH (9.0) and temperature (30 °C). Thermal stability assessments showed 84.39% activity retention after 5 h at 30 °C and 90.30% residual activity post-120 h storage. The catalyst maintained >80% efficiency over 10 reuse cycles. These findings confirm the efficacy of magnetic nanocellulose carriers in enhancing ω-TA stability, reusability, and catalytic performance, offering a viable strategy for industrial biocatalytic processes. Full article
(This article belongs to the Special Issue Catalyst Immobilization)
Show Figures

Figure 1

16 pages, 4092 KiB  
Article
Observation of Thickness-Modulated Out-of-Plane Spin–Orbit Torque in Polycrystalline Few-Layer Td-WTe2 Film
by Mingkun Zheng, Wancheng Zhang, You Lv, Yong Liu, Rui Xiong, Zhenhua Zhang and Zhihong Lu
Nanomaterials 2025, 15(10), 762; https://doi.org/10.3390/nano15100762 - 19 May 2025
Viewed by 550
Abstract
The low-symmetry Weyl semimetallic Td-phase WTe2 exhibits both a distinct out-of-plane damping torque (τDL) and exceptional charge–spin interconversion efficiency enabled by strong spin-orbit coupling, positioning it as a prime candidate for spin–orbit torque (SOT) applications in two-dimensional transition metal [...] Read more.
The low-symmetry Weyl semimetallic Td-phase WTe2 exhibits both a distinct out-of-plane damping torque (τDL) and exceptional charge–spin interconversion efficiency enabled by strong spin-orbit coupling, positioning it as a prime candidate for spin–orbit torque (SOT) applications in two-dimensional transition metal dichalcogenides. Herein, we report on thickness-dependent unconventional out-of-plane τDL in chemically vapor-deposited (CVD) polycrystalline Td-WTe2 (t)/Ni80Fe20/MgO/Ti (Td-WTN-t) heterostructures. Angle-resolved spin-torque ferromagnetic resonance measurements on the Td-WTN-12 structure showed significant spin Hall conductivities of σSH,y = 4.93 × 103 (ℏ/2e) Ω−1m−1 and σSH,z = 0.81 × 103 (ℏ/2e) Ω−1m−1, highlighting its potential for wafer-scale spin–orbit torque device applications. Additionally, a detailed examination of magnetotransport properties in polycrystalline few-layer Td-WTe2 films as a function of thickness revealed a marked amplification of the out-of-plane magnetoresistance, which can be ascribed to the anisotropic nature of charge carrier scattering mechanisms within the material. Spin pumping measurements in Td-WTN-t heterostructures further revealed thickness-dependent spin transport properties of Td-WTe2, with damping analysis yielding an out-of-plane spin diffusion length of λSD ≈ 14 nm. Full article
Show Figures

Figure 1

20 pages, 3722 KiB  
Article
Enhanced Photoelectrochemical Water Splitting Using a NiFe2O4/NG@MIL-100(Fe)/TiO2 Composite Photoanode: Synthesis, Characterization, and Performance
by Waheed Rehman, Faiq Saeed, Samia Arain, Muhammad Usman, Bushra Maryam and Xianhua Liu
J. Compos. Sci. 2025, 9(5), 250; https://doi.org/10.3390/jcs9050250 - 17 May 2025
Cited by 1 | Viewed by 682
Abstract
NiFe2O4 and TiO2 are widely studied for photoelectrochemical (PEC) applications due to their unique properties. Nitrogen-doped graphene (NG) and metal–organic frameworks (MOFs), such as MIL-100(Fe) (where MIL stands for Materials of Lavoisier Institute), are commonly incorporated to enhance PEC [...] Read more.
NiFe2O4 and TiO2 are widely studied for photoelectrochemical (PEC) applications due to their unique properties. Nitrogen-doped graphene (NG) and metal–organic frameworks (MOFs), such as MIL-100(Fe) (where MIL stands for Materials of Lavoisier Institute), are commonly incorporated to enhance PEC performance by offering a high surface area and facilitating efficient charge transport. Composite systems are commonly employed to overcome the limitations of individual PEC catalysts. In this study, a highly efficient NiFe2O4/NG@MIL-100(Fe)/TiO2 photoanode was developed to enhance photoelectrochemical water-splitting performance. The composite was synthesized via a hydrothermal method with a two-step heating process. X-ray diffraction confirmed the expected crystal structures, with peak broadening in NiFe2O4 indicating reduced crystallite size and increased lattice strain. X-ray photoelectron spectroscopy of the Ni 2p and Fe 2p regions validated the successful integration of NiFe2O4 into the composite. Electrochemical analysis demonstrated excellent performance, with linear sweep voltammetry achieving a peak photocurrent density of 3.5 mA cm−2 at 1.23 V (vs RHE). Electrochemical impedance spectroscopy revealed a reduced charge-transfer resistance of 50 Ω, indicating improved charge transport. Optical and electronic properties were evaluated using UV-Vis spectroscopy and Tauc plots, revealing a direct bandgap of 2.1 eV. The composite exhibited stable photocurrent under amperometric J-t testing for 2000 s, demonstrating its durability. These findings underscore the potential of NiFe2O4/NG@MIL-100(Fe)/TiO2 as a promising material for renewable energy applications, particularly in photoelectrochemical water splitting. Full article
(This article belongs to the Special Issue Advancements in Composite Materials for Energy Storage Applications)
Show Figures

Figure 1

16 pages, 3323 KiB  
Article
The Impact of the Desugarization Process on the Physiochemical Properties of Duck Egg Mélange Powders
by Svetlana Kamanova, Bakhyt Shaimenova, Linara Murat, Saule Saduakhasova, Dina Khamitova, Marat Muratkhan, Baltash Tarabayev and Gulnazym Ospankulova
Foods 2025, 14(9), 1469; https://doi.org/10.3390/foods14091469 - 23 Apr 2025
Viewed by 623
Abstract
Duck eggs are rich in essential nutrients, such as amino acids, vitamins, and polyunsaturated fatty acids. However, their application in the food industry is hindered by glucose, which contributes to undesirable darkening during the Maillard reaction in processing. The present study examined the [...] Read more.
Duck eggs are rich in essential nutrients, such as amino acids, vitamins, and polyunsaturated fatty acids. However, their application in the food industry is hindered by glucose, which contributes to undesirable darkening during the Maillard reaction in processing. The present study examined the effect of the desugarization of duck eggs using baker’s yeast on their chemical composition. The results showed that the desugarization process reduces the content of glucose and minerals (Cu, Fe, and Zn) and alters the vitamin composition depending on the treatment conditions. Changes were also observed in the fatty acid profile, including increased levels of oleic acid (C18:1), palmitoleic acid (C16:1), and linoleic acid (C18:2, ω − 6). A high intragroup correlation among saturated fatty acids indicates the stability of their distribution. An increase in the content of essential amino acids—glycine, leucine, valine, and phenylalanine—was also recorded. Correlation analysis of the amino acid composition revealed significant relationships among both essential and non-essential amino acids. Overall, the desugarization process using baker’s yeast not only improves the nutritional profile of duck egg powder but also enhances its functional properties, positioning it as a promising ingredient for the food processing industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

12 pages, 2211 KiB  
Article
Electrostatic Field Modification Enhances the Electrocatalytic Oxygen Evolution Reaction Stability of CoFe2O4 Catalysts
by Liwen Liang, Jiatong Miao, Xiyuan Feng, Yunlei Zhong and Wei Wang
Micromachines 2025, 16(5), 491; https://doi.org/10.3390/mi16050491 - 22 Apr 2025
Viewed by 514
Abstract
Enhancing the stability of oxygen evolution reaction (OER) catalysts is a critical challenge for realizing efficient water splitting. In this work, we introduce an innovative approach by applying an electric field during the annealing of a CoFe2O4/C catalyst. By [...] Read more.
Enhancing the stability of oxygen evolution reaction (OER) catalysts is a critical challenge for realizing efficient water splitting. In this work, we introduce an innovative approach by applying an electric field during the annealing of a CoFe2O4/C catalyst. By controlling the electric field strength (100 mV) and treatment duration (1 h), we achieved dual optimization of the catalyst’s microstructure and electronic environment, resulting in a significant improvement in catalytic stability. The experimental results demonstrate that the electric field-treated catalyst exhibits a reduced overpotential decay (only 0.8 mV) and enhanced stability (retaining 89.1% of its initial activity after 24 h) during extended OER testing. This performance significantly surpasses that of the untreated sample, which showed an overpotential decay of 1.5 mV and retained only 72.5% of its activity after 24 h. X-ray photoelectron spectroscopy (XPS) analysis confirmed that the electric field treatment promoted the formation of oxygen vacancies, substantially improved electron transfer efficiency, and optimized the local electronic environment of Co2+/Co3+ and Fe2+/Fe3+, leading to a decrease in charge transfer resistance (Rct) from 58.2 Ω to 42.9 Ω. This study not only presents a novel strategy for modulating catalyst stability via electric fields but also broadens the design concepts for OER catalytic materials by establishing a structure–activity relationship between electric field strength, microstructure, and catalytic performance, ultimately providing a theoretical foundation and experimental guidance for the development of highly efficient and stable water splitting catalysts. Full article
Show Figures

Figure 1

20 pages, 3281 KiB  
Article
Effective and High-Performance MgFe2O4/Mg-MOF Composite for Direct Methanol Fuel Cells
by M. R. Hussein, Amna A. Kotp, E. M. Elsayed, A. M. Elseman and Mohamed Sh. Abdel-wahab
Catalysts 2025, 15(4), 394; https://doi.org/10.3390/catal15040394 - 18 Apr 2025
Cited by 1 | Viewed by 750
Abstract
The development of efficient and sustainable electrocatalysts for optimizing methanol oxidation reactions (MORs) in direct methanol fuel cells (DMFCs) is crucial for the innovation of clean electrode energy technologies. This study highlights the synthesis and characterization of magnesium ferrite (MgFe2O4 [...] Read more.
The development of efficient and sustainable electrocatalysts for optimizing methanol oxidation reactions (MORs) in direct methanol fuel cells (DMFCs) is crucial for the innovation of clean electrode energy technologies. This study highlights the synthesis and characterization of magnesium ferrite (MgFe2O4) and magnesium-based metal–organic framework (Mg-MOF) composites, utilizing cost-effective and scalable methods such as co-precipitation and ultrasound-assisted synthesis. The composite material, prepared in a 1:1 ratio, demonstrated enhanced catalytic performance due to the synergistic integration of MgFe2O4 and Mg-MOF. Comprehensive structural and morphological analyses, including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), the Brunauer–Emmett–Teller (BET) technique, and X-ray photoelectron spectroscopy (XPS), confirmed the successful formation of the composite. Also, the modification of magnetic properties, particularly the values of coercive force (Hc), led to a significant enhancement in electrical and catalytic performance. The material exhibited mesoporous characteristics and an improved surface area. Electrochemical evaluations revealed superior MOR activity for the composite electrode, achieving a current density of 31.5 mA∙cm−2 at 1 M methanol with an onset potential of 0.34 V versus Ag/AgCl, measured at a scan rate of 100 mV/s. Remarkably, the composite electrode showed a 75% improvement in current density compared to its components. Additionally, the composite exhibited a low overpotential of 350 mV and favorable Tafel slopes of 22.54 and 4.27 mV∙dec−1 at high and low potentials, respectively, confirming rapid methanol oxidation kinetics on this electrode. It also demonstrated excellent stability, retaining 97.4% of its current density after 1 h. Electrochemical impedance spectroscopy (EIS) further revealed a reduced charge transfer resistance of 9.26 Ω, indicating enhanced conductivity and catalytic efficiency. These findings underscore the potential of MgFe2O4/Mg-MOF composites as cost-effective and high-performance anode materials for DMFCs, paving the way for sustainable energy solutions. Full article
Show Figures

Graphical abstract

23 pages, 6334 KiB  
Article
Nitrogen Modification and Corrosion Analysis of High-Chromium White Iron as Deposited via Welding
by Cedric Tan, Kannoorpatti Krishnan and Naveen Kumar Elumalai
Metals 2025, 15(4), 342; https://doi.org/10.3390/met15040342 - 21 Mar 2025
Viewed by 298
Abstract
High-chromium white iron (HCWI) alloys are often used in industries such as mining which require a high wear resistance. Whilst nitrogen is known as a good austenitic stabiliser, the effects of nitrogen on corrosion properties for welded HCWI have not been studied. Chromium [...] Read more.
High-chromium white iron (HCWI) alloys are often used in industries such as mining which require a high wear resistance. Whilst nitrogen is known as a good austenitic stabiliser, the effects of nitrogen on corrosion properties for welded HCWI have not been studied. Chromium hardfacing alloys were deposited via gas metal arc welding using nitrogen as a shielding gas at flow rates of 5 L/min, 10 L/min, and 15 L/min. The corrosion behaviour of these modified alloys was studied using electrochemical techniques such as potentiodynamic measurements and electrochemical impedance spectroscopy. Higher gas flow rates were found to increase the volume fraction of the eutectic austenite while reducing the amounts of eutectic carbides. Nitrogen did not transform the M7C3 (M = Cr, Fe) carbides into any other form of carbides. The sample without nitrogen as a shielding gas was found to display the worst corrosion resistance after electrochemical testing, such as corrosion resistance parameters in EIS tests. Higher nitrogen shielding gas flow rates were found to produce higher levels of corrosion resistance; this was especially true for the 15 L/min sample with a corrosion resistance parameter to EIS that was more than double that of the sample without nitrogen shielding gas (e.g., 4700 vs. 2325 Ω·cm2 respectively). Full article
(This article belongs to the Special Issue Advances in Corrosion and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

14 pages, 23162 KiB  
Article
Effect of Si Content on Phase Structure, Microstructure, and Corrosion Resistance of FeCrNiAl0.7Cu0.3Six High-Entropy Alloys in 3.5% NaCl Solution
by Xiaolong Shi, Hua Liang and Yanzhou Li
Coatings 2025, 15(3), 342; https://doi.org/10.3390/coatings15030342 - 15 Mar 2025
Cited by 3 | Viewed by 780
Abstract
This study examines the microstructure and corrosion resistance of FeCrNiAl0.7Cu0.3Six (x = 0, 0.1, 0.3, and 0.5) high-entropy alloys (HEAs) in a 3.5% NaCl solution. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and electrochemical testing [...] Read more.
This study examines the microstructure and corrosion resistance of FeCrNiAl0.7Cu0.3Six (x = 0, 0.1, 0.3, and 0.5) high-entropy alloys (HEAs) in a 3.5% NaCl solution. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and electrochemical testing were employed to systematically analyze the alloys’ microstructures and corrosion behavior. The XRD results indicate that the addition of Si affects the phase structure of the alloy. At Si = 0, the alloy exhibits a single BCC phase. By increasing the Si content to 0.1 and 0.3, a BCC2 phase appears. At Si = 0.5, Si-containing intermetallic compounds form. SEM observations reveal that as the Si content increases, the alloy develops a distinct dendritic structure. Polarization tests in the 3.5% NaCl solution show that the corrosion current density first decreases and then increases with increasing Si content. At Si contents of 0.1, 0.3, and 0.5, the corrosion current densities are 4.275 × 10−6 A·cm−2, 4.841 × 10−7 A·cm−2, and 2.137 × 10−6 A·cm−2, respectively. FeCrNiAl0.7Cu0.3S0.3 HEA exhibits the lowest corrosion current density, indicating a lower corrosion rate. Electrochemical impedance spectroscopy (EIS) tests show that at Si = 0.3, the alloy has the largest capacitive arc radius. The charge-transfer resistance (RCT) for the alloys with the Si contents of 0.1, 0.3, and 0.5 are 2.532 × 105 Ω·cm2, 4.088 × 105 Ω·cm2, 4.484 × 105 Ω·cm2, and 2.083 × 105 Ω·cm2, respectively. FeCrNiAl0.7Cu0.3Si0.3 HEA has the highest RCT, which indicates a more stable passivation film and better resistance to chloride ion intrusion. The corrosion morphology observed after polarization testing shows that all alloys exhibit intergranular corrosion characteristics. The Si content alters the distribution of passivation film-forming elements, Cr and Ni. Compared to other alloys, the corrosion morphology of FeCrNiAl0.7Cu0.3Si0.3 HEA is more complete. Combining the polarization, EIS, and corrosion morphology results, it can be concluded that FeCrNiAl0.7Cu0.3Si0.3 HEA exhibits the best corrosion resistance in the 3.5% NaCl solution. Full article
Show Figures

Figure 1

20 pages, 4572 KiB  
Article
Stainless Steel 304 and Carbon Mild Steel A36 Activity in Chloride-Containing Hybrid Pumice-Portland Cement Extract Pore Environment
by David Bonfil, Lucien Veleva and Jose Ivan Escalante-Garcia
Materials 2025, 18(6), 1216; https://doi.org/10.3390/ma18061216 - 9 Mar 2025
Viewed by 827
Abstract
The effect of chlorides on the corrosion activities of SS304 and carbon steel A36 was investigated during immersion in a hybrid pumice–Portland cement extract solution, containing high concentration of chlorides (5 g L1 NaCl), in order to simulate the concrete–pore marine [...] Read more.
The effect of chlorides on the corrosion activities of SS304 and carbon steel A36 was investigated during immersion in a hybrid pumice–Portland cement extract solution, containing high concentration of chlorides (5 g L1 NaCl), in order to simulate the concrete–pore marine environment. The hybrid pumice–Portland cement (HB1) has been considered an alternative “green” cement system. The initial pH of the extract (12.99) decreased to 9.5 after 14 days, inducing a severe corrosion risk for A36, as suggested by the very negative corrosion potential (OCP ≈ −363 mV). Meanwhile, the SS304 tended to passivate and its OCP shifted to positive values (≈+72 mV). Consequently, the surface of the A36 presented a corrosion layer mainly of FeOOH, while that of the SS304 was composed of Cr2O3, Fe3O4 and NiO, according to the SEM-EDS and XPS analysis. An extended area of an almost uniform corrosion attack was observed on the A36 surface, due to the less protective Fe-corrosion products, while the SS304 surface presented some small pits of ≈1 µm. Based on electrochemical impedance measurements, the polarization resistance (Rp) and thickness of the passive layer were calculated. The Rp of the SS304 surface increased by two orders of magnitude up to ≈11,080 kΩ cm2, and the thickness of the layer reached ≈1.5 nm after 30 days of immersion. The Rp of carbon steel was ≈2.5 kΩ cm2  due to the less protective properties of its corrosion products. Full article
(This article belongs to the Special Issue Corrosion Electrochemistry and Protection of Metallic Materials)
Show Figures

Figure 1

23 pages, 2887 KiB  
Article
Red Mullet (Mullus barbatus) Collected from North and South Euboean Gulf, Greece: Fishing Location Effect on Nutritive Quality
by Roxana-Georgiana Nita, Vassilis Athanasiadis, Dimitrios Kalompatsios, Martha Mantiniotou, Aggeliki Alibade, Chrysanthi Salakidou and Stavros I. Lalas
Fishes 2025, 10(3), 115; https://doi.org/10.3390/fishes10030115 - 5 Mar 2025
Viewed by 1459
Abstract
Red mullet (Mullus barbatus), a prominent fish species in the Mediterranean Sea, is a fish with a particular abundance of unsaturated fatty acids and other nutrients, including a substantial quantity of minerals. The nutritive quality parameters (lipid quality indices, fatty acid [...] Read more.
Red mullet (Mullus barbatus), a prominent fish species in the Mediterranean Sea, is a fish with a particular abundance of unsaturated fatty acids and other nutrients, including a substantial quantity of minerals. The nutritive quality parameters (lipid quality indices, fatty acid profiles, and mineral content, along with proximate composition) of 75 red mullet samples collected from five distinct locations (L1–L5) in the North and South Euboean Gulf, Euboea Island (Evia), Greece, were examined. It was hypothesized that the different habitats may have an impact on each fish’s chemical composition. Proximate composition (protein, ash, moisture, fat, and minerals) and bioactive compound determination (total carotenoids, and vitamins A, E, and C) were conducted on the lyophilized fish samples. The protein and lipid content of the wet fillet varied substantially from 10.8 to 14.3 and 13.2 to 16.8% w/w, respectively. The samples exhibited statistically non-significant variation in the total SFAs and MUFAs (p > 0.05). The level of total PUFAs was above 30% in all the samples and no significant differences were observed between them. However, arachidonic acid (20:4 ω-6) was only detected in fish samples from two locations (i.e., L1 and L3). The concentrations of Fe, Na, Mg, K, Ca, Ag, Sr, Li, and Zn varied significantly (p < 0.05) in relation to the size of the fish samples. The highest concentrations of heavy metals were detected at the northern location (L5), indicating a possible negative correlation between size and arsenic concentration. The varied mineral composition and fatty acid content of the samples can be attributed to their distinctive biological characteristics (i.e., length and weight) and dietary environments. Full article
Show Figures

Graphical abstract

Back to TopTop