High-Entropy Sulfide Nanoarchitectures with Triple-Shelled Hollow Design for Durable Sodium–Ion Batteries
Abstract
:1. Introduction
2. Results and Discussions
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, M.; Liu, S.; Wu, J.; Zhu, J. Review of cathode materials for sodium-ion batteries. Prog. Solid State Chem. 2024, 74, 100452. [Google Scholar] [CrossRef]
- Minakshi, M.; Barmi, M.; Mitchell, D.R.G.; Barlow, A.J.; Fichtner, M. Effect of oxidizer in the synthesis of NiO anchored nanostructure nickel molybdate for sodium-ion battery. Mater. Today Energy 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Sun, Z.; Fu, J.; Zhu, J.; Li, R.; Chang, G. Polypyrrole-modified prussian blue for enhanced conductivity and cycling stability in sodium-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2025, 719, 137038. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, G.; Zhang, L.; Tian, Z.; Debroye, E.; Liu, T. Hollow stair-stepping spherical high-entropy prussian blue analogue for high-rate sodium ion batteries. ACS Appl. Mater. 2024, 16, 27684–27693. [Google Scholar] [CrossRef]
- Song, J.; Chai, L.; Kumar, A.; Zhao, M.; Sun, Y.; Liu, X.; Pan, J. Precise tuning of hollow and pore size of bimetallic mofs derivate to construct high-performance nanoscale materials for supercapacitors and sodium-ion batteries. Small 2024, 20, 2306272. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Shi, Q.; Wang, Y.; Li, X.; Jiang, Y.; Xu, H.; Guo, S.; Zhao, L.; Dai, C. Effects of scandium doping on the electrochemical performance of cathode materials Na3MnTi(PO4)3 for sodium-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2023, 662, 130996. [Google Scholar] [CrossRef]
- Minakshi, M.; Mujeeb, A.; Whale, J.; Evans, R.; Aughterson, R.; Shinde, P.A.; Ariga, K.; Shrestha, L.K. Synthesis of porous carbon honeycomb structures derived from hemp for hybrid supercapacitors with improved electrochemistry. ChemPlusChem 2024, 89, e202400408. [Google Scholar] [CrossRef]
- Rao, Y.; Zhu, K.; Zhang, G.; Dang, F.; Chen, J.; Liang, P.; Kong, Z.; Guo, J.; Zheng, H.; Zhang, J.; et al. Interfacial engineering of MoS2/V2O3@C-rGO composites with pseudocapacitance-enhanced Li/Na-Ion storage kinetics. ACS Appl. Mater. Interfaces 2023, 15, 55734.a. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, Z.; Hu, Y.; Li, J.; Xu, J. Recent advances in iron-based heterostructure anode materials for sodium ion batteries. Acta Phys.-Chim. Sin. 2025, 41, 100022. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, G.; Zhang, Y.; Hua, R.; Wang, X.; Wu, N.; Li, J.; Liu, G.; Guo, D.; Cao, A. Introduction of SnS2 to regulate the ferrous disulfide phase evolution for the construction of triphasic heterostructures enabling kinetically accelerated and durable sodium storage. Adv. Funct. Mater. 2024, 34, 2314679. [Google Scholar] [CrossRef]
- Haruna, B.; Wang, L.; Hu, X.; Luo, G.; Muhammad, M.A.; Liu, Y.; Yu, J.; Abdel-Aziz, A.; Bao, H.; Wen, Z. Se-Rich functionalized fesx hollow nanospheres for accelerated and long-lasting sodium storage. Adv. Funct. Mater. 2025, 35, 2414246. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, J.; Hu, J.; Peng, W.; Niu, G.; Li, J.; Cheng, Y.; Feng, X.; Fang, L.; Wang, M. Pressure-stabilized high-entropy (FeCoNiCuRu)S2 sulfide anode toward simultaneously fast and durable lithium/sodium ion storage. Small 2023, 19, 2301915. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tong, L.; Zhang, B.; Fu, X. First-principles study of high-entropy sulfides and their alkali metal-doped modification as cathode material for sodium-ion batteries. Chem. Phys. Chem. 2024, 25, e202300999. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Q.; Jia, D.; Liu, K.; Gao, Z.; Wu, C.; Zhao, Q.; Wu, L.; Zhang, J.; Zhang, X. A high-pressure enabled high-entropy (CrFeCoNiMn)4S5 composite anode for enhanced durability and high-rate sodium-ion batteries. J. Mater. Chem. A 2025, 13, 3413–3423. [Google Scholar] [CrossRef]
- Li, S.; Zhang, R.; Chen, K.; Reece, M. Ecofriendly and low-cost high-entropy sulfides with high thermal stability and ZT>1 via entropy engineering and anion compensation. Nano Energy 2024, 131, 110288. [Google Scholar] [CrossRef]
- Hasanvandian, F.; Fayazi, D.; Kakavandi, B.; Giannakis, S.; Sharghi, M.; Han, N.; Bahadoran, A. Revitalizing CO2 photoreduction: Fine-tuning electronic synergy in ultrathin g-C3N4 with amorphous (CoFeNiMnCu)S2 high-entropy sulfide nanoparticles for enhanced sustainability. Chem. Eng. J. 2024, 496, 153771. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, B.; Han, J.; Chen, G.; Sun, R.; Yang, C.; Shi, Z.; Liu, B.; Tu, W.; Li, S. “Crystallinity wave”-driven synthesis of hollow multi-shell covalent organic frameworks for enhanced supercapacitors. Angew. Chem. Int. Ed. 2025, 64, e202423088. [Google Scholar] [CrossRef]
- Hu, C.; Liu, X.; Han, G.; Chen, C.; Liu, H.; Zhou, W.; Xie, H. Carbon cloth-supported high-entropy transition metal selenides as high-performance oxygen evolution reaction catalysts. Colloids Surf. A Physicochem. Eng. Asp. 2025, 717, 136819. [Google Scholar] [CrossRef]
- Yin, W.; Nie, X.; Shi, X.; Wang, J.; Sun, Z. S-vacancy-rich iron sulfide derived from high-entropy Prussian blue for enhanced sodium-ion storage. J. Power Sources 2025, 629, 236021. [Google Scholar] [CrossRef]
- He, R.; Li, S.; Liu, H.; Zhou, L. Hetero-structured Fe-Cr-O hollow multishelled spheres for stable sodium storage. Mater. Chem. Front. 2022, 6, 1903–1911. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, M.; Wang, J.; Wang, D. Hollow multishelled structural Li-rich cathode with Al doping enabling capacity and voltage stabled Li-ion batteries. Chem. Res. Chin. Univ. 2023, 39, 630–635. [Google Scholar] [CrossRef]
- Wang, F.; Qin, R.; Yang, C.; Wang, Y.; Hou, J.; Zhang, Y.; Li, X.; Su, Y.; Wang, J. Bimetallic sulfides regulate the balance of adsorption and dissociation for polysulfides. Chem. Eng. J. 2024, 501, 157588. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, Y.; Zhang, T.; Hu, C.; Qiao, F.; Wang, J.; Noh, H.; Baek, J. Synthesis of size-controllable, yolk-shell metal sulfide spheres for hybrid supercapacitors. Chem. Eng. J. 2023, 476, 146377. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, B.; Xiao, Z.; Cao, L.; Geng, H.; Ou, X. Inner-stress-dissipative, rapid self-healing core-shell sulfide quantum dots for remarkable potassium-ion storage. Energy Storage Mater. 2023, 56, 96–107. [Google Scholar] [CrossRef]
- Kong, M.; Liu, Y.; Zhou, B.; Yang, K.; Tang, J.; Zhang, P.; Zhang, W. Rational design of Sb@C@TiO2 triple-shell nanoboxes for high-performance sodium-ion batteries. Small 2020, 16, 2001976. [Google Scholar] [CrossRef]
- Yang, C.; Li, X.; Gao, T.; Gu, S.; Wang, X.; Wang, Y.; Wang, Q.; Sun, B.; He, Y.; Zhou, G. Novel quadruple-shelled hollow Zn0.5Mn0.5Co2O4/RGO heterostructure enable rapid and stable lithium storage performance. Chem. Eng. J. 2023, 474, 145818. [Google Scholar] [CrossRef]
- Guan, Y.; Zhou, G.; Jiang, Y.; Dong, J.; Li, L.; Yin, J.; Huang, S.; Zhang, L.; Ang, E.H. Lattice distortion effects in high-entropy oxides: Boosting PMS activation for effective and durable pollutant degradation. Sep. Purif. Technol. 2025, 358, 130267. [Google Scholar] [CrossRef]
- Dong, S.; Ren, R.; Zhang, J.; Bao, X.; Liu, X.; Shi, Q.; Chen, Z.; Shao, H. High-entropy oxides: Emergent materials for electrochemical energy storage and conversion. J. Mater. Sci. Technol. 2025, 227, 192. [Google Scholar] [CrossRef]
- Li, J.; He, Y.; Dai, Y.; Zhang, H.; Zhang, Y.; Gu, S.; Wang, X.; Gao, T.; Zhou, G.; Xu, L. Heterostructure interface construction of cobalt/molybdenum selenides toward ultra-stable sodium-ion half/full batteries. Adv. Funct. Mater. 2024, 34, 2406915. [Google Scholar] [CrossRef]
- Huang, M.; Xu, Z.; Lin, X. Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chin. J. Struct. Chem. 2024, 43, 100309. [Google Scholar] [CrossRef]
- Chen, Y.; You, J.; Zhao, X.; Li, M.; Han, X.; Liu, H.; Sun, H.; Wang, X.; Li, H.; Wang, P.; et al. Porous carbon microspheres assembled by defective nitrogen and sulfur Co-doped nanosheets as anode materials for lithium-/sodium-ion batteries. Sci. China Mater. 2024, 67, 3637. [Google Scholar] [CrossRef]
- Dong, F.; Wang, R.; Lu, Y.; Xu, H.; Zong, Q.; Yan, L.; Meng, X.; Ma, T.; Li, D.; Lu, Q.; et al. Kinetically accelerated lithium storage in (LiFeCoNiMnCr)2O3 enabled by hollow multishelled structure, oxygen vacancies and high entropy engineering. Chem. Eng. J. 2024, 496, 153829. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Wang, Q.; Gu, S.; Wang, L.; Yu, J.; Zhou, G.; Xu, L. SnSe2/NiSe2@N-doped carbon yolk-shell heterostructure construction and selenium vacancies engineering for ultrastable sodium-ion storage. Adv. Energy Mater. 2023, 13, 2302901. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Gu, Z.; Guo, J.; Cao, J.; Liu, Y.; Li, J.; Huang, Z.; Zhang, J.; Wu, X. Unlocking quasi-monophase behavior in NASICON cathode to drive fast-charging toward durable sodium-ion batteries. Adv. Funct. Mater. 2024, 34, 2402447. [Google Scholar] [CrossRef]
- Yuan, S.; Li, J.; Xia, W.; Li, Z.; Tian, W.; Yang, Y.; Ji, X.; Ge, P. Research progress on hard carbon materials in advanced sodium-ion batteries. Energy Storage Mater. 2024, 69, 103386. [Google Scholar]
- Minakshi, M.; Wickramaarachchi, K. Electrochemical aspects of supercapacitors in perspective: From electrochemical configurations to electrode materials processing. Prog. Solid State Chem. 2023, 69, 100390. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, X.; Sun, J.; Zhang, P.; Hou, B.; Zhang, S.; Shang, N.; Song, J.; Ye, H.; Shao, H.; et al. Synergy mechanism of defect engineering in MoS2/FeS2/C heterostructure for high-performance sodium-ion battery. J. Energy Chem. 2023, 82, 268–276. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, L.; Xu, G.; Hu, M.; Peng, M.; Yao, Z. Noble metal-free XFeCoNiCu (X=Cr, Mg, and Mn) high entropy alloys for efficient ORR/OER bifunctional catalysis. Colloids Surf. A Physicochem. Eng. Asp. 2025, 709, 136106. [Google Scholar] [CrossRef]
- Wu, J.; Wang, G.; Li, K.; Guo, X.; Liang, Y.; Li, L.; Wang, L.; Xie, Y.; Guo, C. High entropy Prussian Blue Analogues assisted by reduced graphene oxide for enhancing the lifespan of Sodium-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2024, 702, 135099. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Y.; Li, K.; Li, Y.; Li, X.; Yuan, Z.; Li, H.; Zhang, H.; Gong, M.; Xia, W.; et al. Intergrating hollow multishelled structure and high entropy engineering toward enhanced mechano-electrochemical properties in lithium battery. Adv. Mater. 2024, 36, 2312583. [Google Scholar] [CrossRef]
- Zhang, F.; Gao, T.; Zhang, Y.; Sun, K.; Qu, X.; Luo, Y.; Song, Y.; Fang, F.; Sun, D.; Wang, F. High-entropy metal sulfide nanocrystal libraries for highly reversible sodium storage. Adv. Mater. 2025, 37, 2418890. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.; Jiang, N.; Wen, B.; Yang, C.; Liu, Y. Vacancies-regulated prussian blue analogues through precipitation conversion for cathodes in sodium-ion batteries with energy densities over 500 Wh/kg. Angew. Chem. Inter. Ed. 2024, 136, e202400214. [Google Scholar] [CrossRef]
- Aniskevich, Y.; Yu, J.H.; Kim, J.Y.; Komaba, S.; Myung, S. Tracking sodium cluster dynamics in hard carbon with a low specific surface area for sodium-ion batteries. Adv. Energy Mater. 2024, 14, 2304300. [Google Scholar] [CrossRef]
- Pati, J.; Dhaka, R. Mixed polyanionic NaFe1.6V0.4(PO4)(SO4)2@ CNT cathode for sodium-ion batteries: Electrochemical diffusion kinetics and distribution of relaxation time analysis at different temperatures. J. Power Sources 2024, 609, 234646. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, X.; Sun, Z.; Pan, J.; Han, J.; Wang, Y.; Liu, H.; Shen, Y.; Li, J.; Peng, D. Enhanced fast-charging and longevity in sodium-ion batteries through nitrogen-doped carbon frameworks encasing flower-like bismuth microspheres. Adv. Energy Mater. 2024, 14, 2400132. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Jiang, N.; Yang, J.; Yang, C.; Liu, Y. Highly crystalline multivariate prussian blue analogs via equilibrium chelation strategy for stable and fast charging sodium-ion batteries. Small 2024, 20, 2403211. [Google Scholar] [CrossRef]
- Zhao, S.; Li, G.; Li, Z.; Zhang, K.; Chen, X.; Dong, X.; Wang, Y.; Cao, Y.; Xia, Y. Fast charging sodium-ion full cell operated from −50 °C to 90 °C. Adv. Funct. Mater. 2025, 35, 2411007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Liu, Y.; Fang, Z.; Wang, Y.; Gu, S.; Zhou, G. High-Entropy Sulfide Nanoarchitectures with Triple-Shelled Hollow Design for Durable Sodium–Ion Batteries. Nanomaterials 2025, 15, 881. https://doi.org/10.3390/nano15120881
Chen M, Liu Y, Fang Z, Wang Y, Gu S, Zhou G. High-Entropy Sulfide Nanoarchitectures with Triple-Shelled Hollow Design for Durable Sodium–Ion Batteries. Nanomaterials. 2025; 15(12):881. https://doi.org/10.3390/nano15120881
Chicago/Turabian StyleChen, Mingyang, Yan Liu, Zhenchun Fang, Yinan Wang, Shaonan Gu, and Guowei Zhou. 2025. "High-Entropy Sulfide Nanoarchitectures with Triple-Shelled Hollow Design for Durable Sodium–Ion Batteries" Nanomaterials 15, no. 12: 881. https://doi.org/10.3390/nano15120881
APA StyleChen, M., Liu, Y., Fang, Z., Wang, Y., Gu, S., & Zhou, G. (2025). High-Entropy Sulfide Nanoarchitectures with Triple-Shelled Hollow Design for Durable Sodium–Ion Batteries. Nanomaterials, 15(12), 881. https://doi.org/10.3390/nano15120881