Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,072)

Search Parameters:
Keywords = α-shape

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4972 KiB  
Article
Dispersion of TiB2 Particles in Al–Ni–Sc–Zr System Under Rapid Solidification
by Xin Fang, Lei Hu, Peng Rong and Yang Li
Metals 2025, 15(8), 872; https://doi.org/10.3390/met15080872 (registering DOI) - 4 Aug 2025
Viewed by 102
Abstract
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, [...] Read more.
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, fabricated via wedge-shaped copper mold casting and laser surface remelting. Thermodynamic calculations were employed to optimize alloy composition, ensuring sufficient nucleation driving force under rapid solidification conditions. The results show that the formation of Al3(Sc,Zr)/TiB2 composite interfaces is highly dependent on cooling rate and plays a pivotal role in promoting uniform TiB2 dispersion. At an optimal cooling rate (~1200 °C/s), Al3(Sc,Zr) nucleates heterogeneously on TiB2, forming core–shell structures and enhancing particle engulfment into the α-Al matrix. Orientation relationship analysis reveals a preferred (111)α-Al//(0001)TiB2 alignment in Sc/Zr-containing samples. A classical nucleation model quantitatively explains the observed trends and reveals the critical cooling-rate window for composite interface formation. This work provides a mechanistic foundation for designing high-performance aluminum-based composites with uniformly dispersed reinforcements for additive manufacturing applications. Full article
Show Figures

Figure 1

14 pages, 1813 KiB  
Article
Elevated Antigen-Presenting-Cell Signature Genes Predict Stemness and Metabolic Reprogramming States in Glioblastoma
by Ji-Yong Sung and Kihwan Hwang
Int. J. Mol. Sci. 2025, 26(15), 7411; https://doi.org/10.3390/ijms26157411 - 1 Aug 2025
Viewed by 271
Abstract
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on [...] Read more.
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on tumor-intrinsic phenotypes remains underexplored. We analyzed both bulk- and single-cell RNA sequencing datasets of GBM to investigate the association between APC gene expression and tumor-cell states, including stemness and metabolic reprogramming. Signature scores were computed using curated gene sets related to APC activity, KEGG metabolic pathways, and cancer hallmark pathways. Protein–protein interaction (PPI) networks were constructed to examine the links between immune regulators and metabolic programs. The high expression of APC-related genes, such as HLA-DRA, CD74, CD80, CD86, and CIITA, was associated with lower stemness signatures and enhanced inflammatory signaling. These APC-high states (mean difference = –0.43, adjusted p < 0.001) also showed a shift in metabolic activity, with decreased oxidative phosphorylation and increased lipid and steroid metabolism. This pattern suggests coordinated changes in immune activity and metabolic status. Furthermore, TNF-α and other inflammatory markers were more highly expressed in the less stem-like tumor cells, indicating a possible role of inflammation in promoting differentiation. Our findings revealed that elevated APC gene signatures are associated with more differentiated and metabolically specialized GBM cell states. These transcriptional features may also reflect greater immunogenicity and inflammation sensitivity. The APC metabolic signature may serve as a useful biomarker to identify GBM subpopulations with reduced stemness and increased immune engagement, offering potential therapeutic implications. Full article
(This article belongs to the Special Issue Advanced Research on Cancer Stem Cells)
Show Figures

Figure 1

11 pages, 1521 KiB  
Article
Thermal Treatment Prevents Effects of Downward Loads on the Screw-In Force Generation and Canal-Centering Ability of Nickel–Titanium Rotary Instruments
by Keiichiro Maki, Arata Ebihara, Yanshan Luo, Yuka Kasuga, Hayate Unno, Satoshi Omori, Shunsuke Kimura and Takashi Okiji
Materials 2025, 18(15), 3610; https://doi.org/10.3390/ma18153610 - 31 Jul 2025
Viewed by 228
Abstract
This study aimed to examine how downward load applied during instrumentation affects the stress generation and shaping properties in thermally treated and non-treated NiTi rotary instruments. ProTaper Universal (PTU; non-thermally treated) and ProTaper Gold (PTG; thermally treated) were used to prepare J-shaped canals [...] Read more.
This study aimed to examine how downward load applied during instrumentation affects the stress generation and shaping properties in thermally treated and non-treated NiTi rotary instruments. ProTaper Universal (PTU; non-thermally treated) and ProTaper Gold (PTG; thermally treated) were used to prepare J-shaped canals in resin blocks. Load-controlled automated instrumentation and torque/force sensing devices were employed with preset downward loads of 1, 2, or 3 N (n = 10 each). The torque/force, instrumentation time, and canal-centering ratio were measured and analyzed using two-way or one-way analysis of variance with Tukey’s test (α = 0.05). In the PTU-1N group, instrumentation was not completed because a ledge was formed in all canals. The PTU-3N group showed significantly greater upward force (screw-in force) and clockwise torque, along with a significantly smaller canal-centering ratio (less deviation) at the apical 0 mm level, than the PTU-2N group (p < 0.05). The downward load did not influence the instrumentation time (p > 0.05). In the PTG groups, these effects of downward load on the force generation and canal-centering ratio were not significant (p > 0.05). In the non-thermally treated PTU instruments, greater downward loads enhanced screw-in force while decreasing apical canal deviation; however, these effects were abolished in the thermally treated PTG instruments. This study highlights the importance of adapting the instrumentation technique with instrument characteristics: thermally treated flexible instruments facilitate smoother use, while stiffer, non-thermally treated ones may require precise control of downward loads. Full article
(This article belongs to the Topic Advances in Dental Materials)
Show Figures

Figure 1

28 pages, 1775 KiB  
Review
Forensic Narcotics Drug Analysis: State-of-the-Art Developments and Future Trends
by Petar Ristivojević, Božidar Otašević, Petar Todorović and Nataša Radosavljević-Stevanović
Processes 2025, 13(8), 2371; https://doi.org/10.3390/pr13082371 - 25 Jul 2025
Viewed by 554
Abstract
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has [...] Read more.
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has advanced considerably, improving detection of traditional drugs—such as tetrahydrocannabinol, cocaine, heroin, amphetamine-type stimulants, and lysergic acid diethylamide—as well as emerging new psychoactive substances (NPS), including synthetic cannabinoids (e.g., 5F-MDMB-PICA), cathinones (e.g., α-PVP), potent opioids (e.g., carfentanil), designer psychedelics (e.g., 25I-NBOMe), benzodiazepines (e.g., flualprazolam), and dissociatives (e.g., 3-HO-PCP). Current technologies include colorimetric assays, ambient ionization mass spectrometry, and chromatographic methods coupled with various detectors, all enhancing accuracy and precision. Vibrational spectroscopy techniques, like Raman and Fourier transform infrared spectroscopy, have become essential for non-destructive identification. Additionally, new sensors with disposable electrodes and miniaturized transducers allow ultrasensitive on-site detection of drugs and metabolites. Advanced chemometric algorithms extract maximum information from complex data, enabling faster and more reliable identifications. An important emerging trend is the adoption of green analytical methods—including direct analysis, solvent-free extraction, miniaturized instruments, and eco-friendly chromatographic processes—that reduce environmental impact without sacrificing performance. This review provides a comprehensive overview of innovations over the last five years in forensic drug analysis based on the ScienceDirect database and highlights technological trends shaping the future of forensic toxicology. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

18 pages, 2429 KiB  
Article
Conserved and Specific Root-Associated Microbiome Reveals Close Correlation Between Fungal Community and Growth Traits of Multiple Chinese Fir Genotypes
by Xuan Chen, Zhanling Wang, Wenjun Du, Junhao Zhang, Yuxin Liu, Liang Hong, Qingao Wang, Chuifan Zhou, Pengfei Wu, Xiangqing Ma and Kai Wang
Microorganisms 2025, 13(8), 1741; https://doi.org/10.3390/microorganisms13081741 - 25 Jul 2025
Viewed by 317
Abstract
Plant microbiomes are vital for the growth and health of their host. Tree-associated microbiomes are shaped by multiple factors, of which the host is one of the key determinants. Whether different host genotypes affect the structure and diversity of the tissue-associated microbiome and [...] Read more.
Plant microbiomes are vital for the growth and health of their host. Tree-associated microbiomes are shaped by multiple factors, of which the host is one of the key determinants. Whether different host genotypes affect the structure and diversity of the tissue-associated microbiome and how specific taxa enriched in different tree tissues are not yet well illustrated. Chinese fir (Cunninghamia lanceolata) is an important tree species for both economy and ecosystem in the subtropical regions of Asia. In this study, we investigated the tissue-specific fungal community structure and diversity of nine different Chinese fir genotypes (39 years) grown in the same field. With non-metric multidimensional scaling (NMDS) analysis, we revealed the divergence of the fungal community from rhizosphere soil (RS), fine roots (FRs), and thick roots (TRs). Through analysis with α-diversity metrics (Chao1, Shannon, Pielou, ACE, Good‘s coverage, PD-tree, Simpson, Sob), we confirmed the significant difference of the fungal community in RS, FR, and TR samples. Yet, the overall fungal community difference was not observed among nine genotypes for the same tissues (RS, FR, TR). The most abundant fungal genera were Russula in RS, Scytinostroma in FR, and Subulicystidium in TR. Functional prediction with FUNGuild analysis suggested that ectomycorrhizal fungi were commonly enriched in rhizosphere soil, while saprotroph–parasite and potentially pathogenic fungi were more abundant in root samples. Specifically, genotype N104 holds less ectomycorrhizal and pathogenic fungi in all tissues (RS, FR, TR) compared to other genotypes. Additionally, significant correlations of several endophytic fungal taxa (Scytinostroma, Neonothopanus, Lachnum) with the growth traits (tree height, diameter, stand volume) were observed. This addresses that the interaction between tree roots and the fungal community is a reflection of tree growth, supporting the “trade-off” hypothesis between growth and defense in forest trees. In summary, we revealed tissue-specific, as well as host genotype-specific and genotype-common characters of the structure and functions of their fungal communities. Full article
(This article belongs to the Special Issue Rhizosphere Microbial Community, 4th Edition)
Show Figures

Figure 1

23 pages, 9118 KiB  
Article
Scattering Characteristics of a Circularly Polarized Bessel Pincer Light-Sheet Beam Interacting with a Chiral Sphere of Arbitrary Size
by Shu Zhang, Shiguo Chen, Qun Wei, Renxian Li, Bing Wei and Ningning Song
Micromachines 2025, 16(8), 845; https://doi.org/10.3390/mi16080845 - 24 Jul 2025
Viewed by 197
Abstract
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent [...] Read more.
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent determination of the beam-shape coefficients (BSCs) pmnu and qmnu through multipole expansion in the basis of vector spherical wave functions (VSWFs). The expansion coefficients for the scattered field (AmnsBmns) and interior field (AmnBmn) are derived by imposing boundary conditions. Simulations highlight notable variations in the scattering field, near-surface field distribution, and far-field intensity, strongly influenced by the dimensionless size parameter ka, chirality κ, and beam parameters (beam order l and beam scaling parameter α0). These findings provide insights into the role of chirality in modulating scattering asymmetry and localization effects. The results are particularly relevant for applications in optical manipulation and super-resolution imaging in single-molecule microbiology. Full article
Show Figures

Figure 1

16 pages, 2582 KiB  
Article
Optimization of Scanning Distance for Three Intraoral Scanners from Different Manufacturers: An In Vitro Accuracy Analysis
by Perla Hokayem, Rim Bourgi, Carlos Enrique Cuevas-Suárez, Miguel Ángel Fernández-Barrera, Juan Eliezer Zamarripa-Calderón, Hani Tohme, Adam Saleh, Nicolas Nassar, Monika Lukomska-Szymanska and Louis Hardan
Prosthesis 2025, 7(4), 88; https://doi.org/10.3390/prosthesis7040088 - 23 Jul 2025
Viewed by 323
Abstract
Background: Accuracy of optical impressions—defined by the intraoral scanner (IOS)’s trueness and precision per International Organization for Standardization (ISO) standards—is influenced by both operator- and patient-related factors. Thus, this in vitro study aimed to (1) evaluate how scanning distance affects the accuracy of [...] Read more.
Background: Accuracy of optical impressions—defined by the intraoral scanner (IOS)’s trueness and precision per International Organization for Standardization (ISO) standards—is influenced by both operator- and patient-related factors. Thus, this in vitro study aimed to (1) evaluate how scanning distance affects the accuracy of three different intraoral scanners (IOSs), and (2) identify the optimal scanning distance for each scanner. Methods: A maxillary arch model was obtained using polyvinyl siloxane impression material and poured with Type IV stone (Octa-rock royal®, Kulzer, Germany). Using three different types of IOSs—the trios 3 shape (TRIOS ® cart, 3Shape, Copenhagen, Denmark); the Helios 500 (Eighteeth ®, Changzhou, China); and the Heron (3Disc ®, Herndon, VA 20170, USA)—ten scans were performed with each of the IOSs with five predetermined distances: 0 mm, 2.5 mm, 5 mm, 7.5 mm, and 10 mm. Spacers of varying heights were designed using Meshmixer version 3.5 (Autodesk, Inc., Mill Valley, CA, USA) and three-dimensional printed with the Form 2 printer (Formlabs, Somerville, MA, USA). The scanned data was processed using Geomagic Control X (Version 16.0.2.16496, 3D Systems, Wilsonville, OR, USA). Statistical analyses were performed using R Statistical Software (version 4.2.2), with significance set at α = 0.05. Results: Scanning distance significantly influenced scan accuracy for all three scanners. The 3Disc scanner (3Disc, Herndon, VA, USA) demonstrated the highest accuracy at a 7.5 mm distance, while both the Helios 500 (Eighteeth, Changzhou, China) and Trios 3 (3Shape, Copenhagen, Denmark) scanners achieved their best accuracy at a 5 mm distance, as indicated by the lowest root mean square (RMS) values (p < 0.05). Conclusions: To conclude, each IOS has an optimal scanning distance for best accuracy. Trios 3 (3Shape, Copenhagen, Denmark) outperformed the others in both trueness and precision. Future studies should examine these effects under full-arch and clinical conditions. Full article
Show Figures

Figure 1

16 pages, 2024 KiB  
Article
Spatiotemporal Dynamics and Driving Factors of Phytoplankton Community Structure in the Liaoning Section of the Liao River Basin in 2010, 2015, and 2020
by Kang Peng, Zhixiong Hu, Rui Pang, Mingyue Li and Li Liu
Water 2025, 17(15), 2182; https://doi.org/10.3390/w17152182 - 22 Jul 2025
Viewed by 234
Abstract
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 [...] Read more.
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 species in 2010 to six phyla and 74 species in 2020. Concurrent increases in α-diversity indicated continuous improvements in habitat heterogeneity. The community structure shifted from a diatom-dominated assemblage to a green algae–diatom co-dominated configuration, contributing to an enhanced water purification capacity. The upstream agricultural zone (Tieling section) had elevated biomass and low diversity, indicating persistent non-point-source pollution stress. The midstream urban–industrial zone (Shenyang–Anshan section) emerged as a phytoplankton diversity hotspot, likely due to expanding niche availability in response to point-source pollution control. The downstream wetland zone (Panjin section) exhibited significant biomass decline and delayed diversity recovery, shaped by the dual pressures of resource competition and habitat filtering. The driving mechanism of community succession shifted from nutrient-dominated factors (NH3-N, TN) to redox-sensitive factors (DO, pH). These findings support a ‘zoned–graded–staged’ ecological restoration strategy for the Liao River Basin and inform the use of phytoplankton as bioindicators in watershed monitoring networks. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Figure 1

29 pages, 4944 KiB  
Article
Distinct Immunological Landscapes of HCMV-Specific T Cells in Bone Marrow and Peripheral Blood
by Sarah E. Jackson, Rosie Fairclough, Veronika Romashova, Georgina Okecha and Mark R. Wills
Pathogens 2025, 14(8), 722; https://doi.org/10.3390/pathogens14080722 - 22 Jul 2025
Viewed by 400
Abstract
Human cytomegalovirus (HCMV) establishes lifelong latency in the host, with the bone marrow (BM) CD34+ cells serving as a key reservoir. To investigate tissue-specific immune responses to CMV, we analysed paired peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMNCs) from [...] Read more.
Human cytomegalovirus (HCMV) establishes lifelong latency in the host, with the bone marrow (BM) CD34+ cells serving as a key reservoir. To investigate tissue-specific immune responses to CMV, we analysed paired peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMNCs) from HCMV-seropositive donors using multiparametric flow cytometry and cytokine FluroSpot assays. We assessed immune cell composition, memory T cell subsets, cytokine production, cytotoxic potential, activation marker expression, and checkpoint inhibitory receptor (CIR) profiles, both ex vivo and following stimulation with lytic and latent HCMV antigens. BMMNCs were enriched in CD34+ progenitor cells and exhibited distinct T cell memory subset distributions. HCMV-specific responses were compartmentalised: IFN-γ responses predominated in PBMCs following lytic antigen stimulation, while IL-10 and TNF-α responses were more prominent in BMMNCs, particularly in response to latent antigens. US28-specific T cells in the BM showed elevated expression of CD39, PD-1, BTLA, CTLA-4, ICOS, and LAG-3 on CD4+ T cells and increased expression of PD-1, CD39, BTLA, TIGIT, LAG-3, and ICOS on CD8+ T cell populations, suggesting a more immunoregulatory phenotype. These findings highlight functional and phenotypic differences in HCMV-specific T cell responses between blood and bone marrow, underscoring the role of the BM niche in shaping antiviral immunity and maintaining viral latency. Full article
Show Figures

Figure 1

37 pages, 1761 KiB  
Review
Iron–Immune Crosstalk at the Maternal–Fetal Interface: Emerging Mechanisms in the Pathogenesis of Preeclampsia
by Jieyan Zhong, Ruhe Jiang, Nan Liu, Qingqing Cai, Qi Cao, Yan Du and Hongbo Zhao
Antioxidants 2025, 14(7), 890; https://doi.org/10.3390/antiox14070890 - 19 Jul 2025
Viewed by 639
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron [...] Read more.
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron metabolism and its crosstalk with immune responses, particularly macrophage-mediated inflammation, in driving PE development. This review systematically explores the dynamic changes in iron metabolism during pregnancy, including increased maternal iron demand, placental iron transport mechanisms, and the molecular regulation of placental iron homeostasis. We further explore the contribution of ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, to trophoblast dysfunction and pregnancy-related diseases, including PE. Macrophages, pivotal immune regulators at the maternal–fetal interface, exhibit distinct polarization states that shape tissue remodeling and immune tolerance. We outline their origin, distribution, and polarization in pregnancy, and emphasize their aberrant phenotype and function in PE. The bidirectional crosstalk between iron and macrophages is also dissected: iron shapes macrophage polarization and function, while macrophages reciprocally modulate iron homeostasis. Notably, excessive reactive oxygen species (ROS) and pro-inflammatory cytokines secreted by M1-polarized macrophages may exacerbate trophoblast ferroptosis, amplifying placental injury. Within the context of PE, we delineate how iron overload and macrophage dysfunction synergize to potentiate placental inflammation and oxidative stress. Key iron-responsive immune pathways, such as the HO-1/hepcidin axis and IL-6/TNF-α signaling, are discussed in relation to disease severity. Finally, we highlight promising therapeutic strategies targeting the iron–immune axis, encompassing three key modalities—iron chelation therapy, precision immunomodulation, and metabolic reprogramming interventions—which may offer novel avenues for PE prevention and treatment. Full article
Show Figures

Figure 1

13 pages, 6867 KiB  
Article
A Closed-Form Solution for Water Inflow into Deeply Buried Arched Tunnels
by Yunbo Wei, Qiang Chang and Kexun Zheng
Water 2025, 17(14), 2121; https://doi.org/10.3390/w17142121 - 16 Jul 2025
Viewed by 215
Abstract
The analytical solutions for groundwater inflow into tunnels are usually developed under the condition of circular tunnels. However, real-world tunnels often have non-circular cross-sections, such as arched, lens-shaped, or egg-shaped profiles. Accurately assessing water inflow for these diverse tunnel shapes remains challenging. To [...] Read more.
The analytical solutions for groundwater inflow into tunnels are usually developed under the condition of circular tunnels. However, real-world tunnels often have non-circular cross-sections, such as arched, lens-shaped, or egg-shaped profiles. Accurately assessing water inflow for these diverse tunnel shapes remains challenging. To address this gap, this study developed a closed-form analytical solution for water inflow into a deeply buried arched tunnel using the conformal mapping method. When the tunnel circumference degenerates to a circle, the analytical solution degenerates to the widely used Goodman’s equation. The solution also showed excellent agreement with numerical simulations carried out using COMSOL. Based on the analytical solution, the impact of various factors on water inflow Q was further discussed: (1) Q decreases as the boundary distance D increases. And the boundary inclination angle (απ/2) significantly affects Q only when the boundary is close to the tunnel (D<20); (2) Q increases quickly with the upper arc radius r1, while it shows minimal variation with the change in the lower arc radius r2. The findings provide a theoretical foundation for characterizing water inflow into arched tunnels, thereby supporting improved tunnel planning and grouting system design. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

22 pages, 12756 KiB  
Article
The Antidiabetic Mechanisms of Cinnamon Extract: Insights from Network Pharmacology, Gut Microbiota, and Metabolites
by Rong Wang, Kuan Yang, Xuefeng Liu, Yiye Zhang, Yunmei Chen, Nana Wang, Lili Yu, Shaojing Liu, Yaqi Hu and Bei Qin
Curr. Issues Mol. Biol. 2025, 47(7), 543; https://doi.org/10.3390/cimb47070543 - 12 Jul 2025
Viewed by 547
Abstract
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management [...] Read more.
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management of glucose and lipid metabolism. However, the anti-diabetic efficacy of cinnamon is not completely understood. The objective of this research was to clarify the anti-diabetic mechanism associated with cinnamon extract through a combination of chemical profiling, network pharmacology, and in vivo investigations. The results indicated that 32 chemical ingredients, including quercetin, were identified through UPLC-Q-TOF-MS. Network pharmacology revealed that 471 targets related to 14 compounds were screened. The analysis of GO enrichment revealed that the primary pathways were notably enhanced in the metabolism of insulin and glucose. In vivo analyses showed that cinnamon could effectively alleviate hyperglycemia, insulin resistance, and lipid metabolism abnormalities via increased relative abundance of Akkermansia and Ligilactobacillus at the genus level and a decreased Firmicutes/Bacteroidetes ratio at the phylum level. Moreover, cinnamon reduced the serum levels of lipopolysaccharide (LPS) and proinflammatory cytokines (IL-6 and TNF-α) and significantly increased the colon Zonula occludens-1 (ZO-1) and occludin protein levels. It was also observed that cinnamon improved the fecal SCFA levels (acetic, propionic, butyric, valeric and caproic acid), while also modifying the bile acid (BA) profile and increasing the conjugated-to-unconjugated BA ratio. The Western blotting analysis further demonstrated that cinnamon activated intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. In summary, the finding confirmed that cinnamon ameliorated glucose and lipid metabolism disorders by safeguarding the intestinal barrier and modulating the gut microbiota and metabolites, thereby activating intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

17 pages, 532 KiB  
Review
The Fundamental Role of Nutrients for Metabolic Balance and Epigenome Integrity Maintenance
by Ana Paula de Souza, Vitor Marinho and Marcelo Rocha Marques
Epigenomes 2025, 9(3), 23; https://doi.org/10.3390/epigenomes9030023 - 9 Jul 2025
Viewed by 458
Abstract
Epigenetic modifications act as crucial regulators of gene activity and are influenced by both internal and external environmental factors, with diet being the most impactful external factor. On the other hand, cellular metabolism encompasses a complex network of biochemical reactions essential for maintaining [...] Read more.
Epigenetic modifications act as crucial regulators of gene activity and are influenced by both internal and external environmental factors, with diet being the most impactful external factor. On the other hand, cellular metabolism encompasses a complex network of biochemical reactions essential for maintaining cellular function, and it impacts every cellular process. Many metabolic cofactors are critical for the activity of chromatin-modifying enzymes, influencing methylation and the global acetylation status of the epigenome. For instance, dietary nutrients, particularly those involved in one-carbon metabolism (e.g., folate, vitamins B12 and B6, riboflavin, methionine, choline, and betaine), take part in the generation of S-adenosylmethionine (SAM), which represents the main methyl donor for DNA and histone methylation; α-ketoglutarate and ascorbic acid (vitamin C) act, respectively, as a co-substrate and cofactor for Ten-eleven Translocation (TET), which is responsible for DNA demethylation; and metabolites such as Acetyl-CoA directly impact histone acetylation, linking metabolism of the TCA cycle to epigenetic regulation. Further, bioactive compounds, such as polyphenols, modulate epigenetic patterns by affecting methylation processes or targeting epigenetic enzymes. Since diet and nutrition play a critical role in shaping epigenome functions and supporting human health, this review offers a comprehensive update on recent advancements in metabolism, epigenetics, and nutrition, providing insights into how nutrients contribute to metabolic balance, epigenome integrity maintenance and, consequently, disease prevention. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
Show Figures

Graphical abstract

13 pages, 2453 KiB  
Article
Research on the Impact of Shot Selection on Neuromuscular Control Strategies During Basketball Shooting
by Qizhao Zhou, Shiguang Wu, Jiashun Zhang, Zhengye Pan, Ziye Kang and Yunchao Ma
Sensors 2025, 25(13), 4104; https://doi.org/10.3390/s25134104 - 30 Jun 2025
Viewed by 375
Abstract
Objective: This study aims to investigate the effect of shot selection on the muscle coordination characteristics during basketball shooting. Methods: A three-dimensional motion capture system, force platform, and wireless surface electromyography (sEMG) were used to simultaneously collect shooting data from 14 elite basketball [...] Read more.
Objective: This study aims to investigate the effect of shot selection on the muscle coordination characteristics during basketball shooting. Methods: A three-dimensional motion capture system, force platform, and wireless surface electromyography (sEMG) were used to simultaneously collect shooting data from 14 elite basketball players. An inverse mapping model of sEMG signals and spinal α-motor neuron pool activity was developed based on the Debra muscle segment distribution theory. Non-negative matrix factorization (NMF) and K-means clustering were used to extract muscle coordination features. Results: (1) Significant differences in spinal segment activation timing and amplitude were observed between stationary and jump shots at different distances. In close-range stationary shots, the C5-S3 segments showed higher activation during the TP phase and lower activation during the RP phase. For mid-range shots, the C6-S3 segments exhibited greater activation during the TP phase. In long-range shots, the C7-S3 segments showed higher activation during the TP phase, whereas the L3-S3 segments showed lower activation during the RP phase (p < 0.01). (2) The spatiotemporal structure of muscle coordination modules differed significantly between stationary and jump shots. In terms of spatiotemporal structure, the second and third coordination groups showed stronger activation during the RP phase (p < 0.01). Significant differences in muscle activation levels were also observed between the coordination modules within each group in the spatial structure. Conclusion: Shot selection plays a significant role in shaping neuromuscular control strategies during basketball shooting. Targeted training should focus on addressing the athlete’s specific shooting weaknesses. For stationary shots, the emphasis should be on enhancing lower limb stability, while for jump shots, attention should be directed toward improving core stability and upper limb coordination. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

16 pages, 3888 KiB  
Article
Gut Microbiota-Bile Acid Crosstalk Contributes to Meat Quality and Carcass Traits of Tan and Dorper Sheep
by Lixian Yang, Ran Cui, Zhen Li, Mingming Xue, Shuheng Chan, Pengxiang Xue, Xiaoyang Yang, Longmiao Zhang, Fenghua Lv and Meiying Fang
Int. J. Mol. Sci. 2025, 26(13), 6224; https://doi.org/10.3390/ijms26136224 - 27 Jun 2025
Viewed by 403
Abstract
Tan sheep outperform Dorper sheep in meat-quality traits, including muscle fiber characteristics and fatty acid composition, while Dorper sheep excel in carcass weight. However, the molecular mechanisms underlying these breed-specific traits, especially gut microbiota–bile acid (BA) interactions, remain poorly understood. As host–microbiota co-metabolites, [...] Read more.
Tan sheep outperform Dorper sheep in meat-quality traits, including muscle fiber characteristics and fatty acid composition, while Dorper sheep excel in carcass weight. However, the molecular mechanisms underlying these breed-specific traits, especially gut microbiota–bile acid (BA) interactions, remain poorly understood. As host–microbiota co-metabolites, BAs are converted by colonic microbiota via bile salt hydrolase (BSH) and dehydroxylases into secondary BAs, which activate BA receptors to regulate host lipid and glucose metabolism. This study analyzed colonic BA profiles in 8-month-old Tan and Dorper sheep, integrating microbiome and longissimus dorsi muscle transcriptome data to investigate the gut–muscle axis in meat-quality and carcass trait regulation. Results showed that Tan sheep had 1.6-fold higher secondary BA deoxycholic acid (DHCA) levels than Dorper sheep (p < 0.05), whereas Dorper sheep accumulated conjugated primary BAs glycocholic acid (GCA) and tauro-α-muricholic acid (p < 0.05). Tan sheep exhibited downregulated hepatic BA synthesis genes, including cholesterol 7α-hydroxylase (CYP7A1) and 27-hydroxylase (CYP27A1), alongside upregulated transport genes such as bile salt export pump (BSEP), sodium taurocholate cotransporting polypeptide (NTCP), and ATP-binding cassette subfamily B member 4 (ABCB4), with elevated gut BSH activity (p < 0.05). DHCA was strongly correlated with g_Ruminococcaceae_UCG-014, ENSOARG00000001393, and ENSOARG00000016726, muscle fiber density, diameter, and linoleic acid (C18:2n6t) (|r| > 0.5, p < 0.05). In contrast, GCA was significantly associated with g_Lachnoclostridium_10, g_Rikenellaceae_RC9_gut_group, ENSOARG0000001232, carcass weight, and net meat weight (|r| > 0.5, p < 0.05). In conclusion, breed-specific colonic BA profiles were shaped by host–microbiota interactions, with DHCA potentially promoting meat quality in Tan sheep via regulation of muscle fiber development and fatty acid deposition, and GCA influencing carcass traits in Dorper sheep. This study provides novel insights into the gut microbiota–bile acid axis in modulating ruminant phenotypic traits. Full article
(This article belongs to the Special Issue Molecular Regulation of Animal Fat and Muscle Development)
Show Figures

Figure 1

Back to TopTop