Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (776)

Search Parameters:
Keywords = α-Linolenic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 545 KB  
Article
Chemical Composition, Nutritional Profile, and Bioactive Properties of Diplotaxis tenuifolia, a Health-Promoting Food
by Sandrine Ressurreição, Lígia Salgueiro and Artur Figueirinha
Molecules 2026, 31(3), 417; https://doi.org/10.3390/molecules31030417 - 26 Jan 2026
Abstract
Diplotaxis tenuifolia (Brassicaceae), valued for its culinary use and bioactive potential, has not yet been comprehensively characterized in terms of its chemical composition and biological properties. This study investigated the nutritional profile, phytochemical composition, and antioxidant activity of D. tenuifolia cultivated in Portugal. [...] Read more.
Diplotaxis tenuifolia (Brassicaceae), valued for its culinary use and bioactive potential, has not yet been comprehensively characterized in terms of its chemical composition and biological properties. This study investigated the nutritional profile, phytochemical composition, and antioxidant activity of D. tenuifolia cultivated in Portugal. The leaves contain substantial levels of essential minerals, particularly calcium, potassium, magnesium, iron, manganese, and chromium, while heavy metal levels were below regulatory safety limits. The nutritional profile also revealed high dietary fiber content, enriched glutamic and aspartic acids in the protein fraction, and α-linolenic acid as the predominant fatty acid. Phenolic compounds were most efficiently extracted by boiling them in 80% methanol, yielding the highest total phenolic (125.41 mg gallic acid equivalents g−1) and flavonoid contents (3.72 mg quercetin equivalents g−1). HPLC-PDA-ESI-MSn analysis enabled the detailed characterization of phenolic acids, flavonol glycosides, and glucosinolates, highlighting the first report of sulfoglucobrassicin in D. tenuifolia. Additionally, 6-methylsulfonyl-3-oxohexyl-glucosinolate, proline, pipecolic acid, glucaric acid, eicosanoic acid, 9,10,12,13-tetrahydroxy-octadecanoic acid (sativic acid) and 9,12,13-trihydroxyoctadec-10-enoic acid were described for the first time in this species. The extract exhibited also antioxidant activity, with ABTS IC50 57.54 ± 0.18 µg mL−1, DPPH IC50 302.73 ± 2.36 µg mL−1, and FRAP 752.71 ± 4.59 µmol eq. Fe(II) g−1. These findings establish D. tenuifolia as a nutritionally rich plant and a promising source of natural antioxidants for nutraceutical and pharmaceutical applications. Full article
Show Figures

Figure 1

22 pages, 30473 KB  
Article
Physiological, Transcriptomic, and Metabolomic Responses of Brachiaria decumbens Roots During Symbiosis Establishment with Piriformospora indica
by Man Liu, Xinyong Li, Wenke Zhang, Xinghua Zhao, Yuehua Sun, An Hu, Rui Zhang and Kai Luo
Biology 2026, 15(3), 215; https://doi.org/10.3390/biology15030215 - 23 Jan 2026
Viewed by 86
Abstract
Brachiaria decumbens is a high-yielding forage grass of major economic value in tropical regions. The root endophytic fungus Piriformospora indica is widely recognized for promoting plant growth and stress tolerance, yet its effects on B. decumbens remain poorly characterized. Here, we profiled root [...] Read more.
Brachiaria decumbens is a high-yielding forage grass of major economic value in tropical regions. The root endophytic fungus Piriformospora indica is widely recognized for promoting plant growth and stress tolerance, yet its effects on B. decumbens remain poorly characterized. Here, we profiled root responses to P. indica colonization at 10 days after inoculation (dais; early stage) and 20 dais (late stage) during symbiosis establishment. Colonization was confirmed by phenotypic and physiological assessments, with inoculated plants showing enhanced root growth; colonized roots exhibited higher activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), along with increased indole-3-acetic acid (IAA) levels, whereas malondialdehyde (MDA), jasmonic acid (JA), and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) were reduced. Transcriptome and metabolomic profiling identified 1884 and 1077 differentially expressed genes (DEGs) and 2098 and 1509 differentially accumulated metabolites (DAMs) at 10 dais (Pi10d vs. CK10d) and 20 dais (Pi20d vs. CK20d), respectively, and 3355 DEGs and 2314 DAMs between stages (Pi20d vs. Pi10d). Functional enrichment highlighted key pathways related to secondary metabolism, carbohydrate metabolism, and lipid biosynthesis. Differentially expressed transcription factors spanned multiple families, including MYB, AP2/ERF, MADS-box, and bZIP, consistent with broad transcriptional reprogramming during symbiosis establishment. Integrative multi-omics analysis further highlighted phenylpropanoid biosynthesis and α-linolenic acid metabolism as consistently co-enriched pathways, suggesting coordinated shifts in gene expression and metabolite accumulation across colonization stages. Collectively, these results provide a multi-layered resource and a framework for mechanistic dissection of the P. indicaB. decumbens interaction. Full article
(This article belongs to the Special Issue Advances in Plant Multi-Omics)
Show Figures

Figure 1

14 pages, 1720 KB  
Article
Chemical Characterization of Extracts Derived from Apple, Sour Cherry, and Sweet Cherry Seed Oils
by Marek Szmigielski, Marek Domin, Piotr Kiczorowski, Marta Krajewska, Jolanta Piekut, Marzena Smolewska and Małgorzata Szczepanik
Agriculture 2026, 16(2), 255; https://doi.org/10.3390/agriculture16020255 - 19 Jan 2026
Viewed by 124
Abstract
Numerous sectors of the food processing and oleochemical industries require oils with specific physicochemical properties. Fruit processing generates substantial waste potentially containing valuable raw materials for oil extraction. The significant volumes of apples and cherries processed in Poland prompted an assessment of their [...] Read more.
Numerous sectors of the food processing and oleochemical industries require oils with specific physicochemical properties. Fruit processing generates substantial waste potentially containing valuable raw materials for oil extraction. The significant volumes of apples and cherries processed in Poland prompted an assessment of their seeds’ suitability as oil sources. Seed dry matter, protein, and oil content were determined. The extracted oils were analyzed for acid value (AV), peroxide value (PV), oxidative stability, fatty acid composition, and sterol and tocopherol content. The predominant higher fatty acids identified in the sour cherry and sweet cherry kernel oils were linoleic acid (C18:2, n-6), with mean concentrations of 45.82% and 29.23%, respectively, and oleic acid (C18:1, n-9), accounting for 41.54% and 46.59%, respectively. Additional fatty acids detected included palmitic acid C16:0 (6.23% and 5.91%), palmitoleic acid C16:1, n-7 (0.29%), stearic acid C18:0 (1.36% and 3.11%), arachidic acid C20:0 (1.13%), α-eleostearic acid C18:3 (5.07% and 9.48%), and α-linolenic acid C18:3, n-3 (4.09%). Given the substantial proportion of the oil fraction containing numerous potentially biologically active compounds, including nutritionally valuable fatty acids, tocopherols, and phytosterols, apple, sour cherry, and sweet cherry seeds demonstrate considerable potential as raw materials for applications in the food, pharmaceutical, and cosmetics industries. Full article
Show Figures

Figure 1

29 pages, 1112 KB  
Review
Wild Seeds as Sustainable Sources of C18-Series Bioactive Fatty Acids: Metabolic Diversity, Nutritional Value, and Functional Applications
by Ana Minerva García-Cervantes, Mohamed Ezzaitouni, Tarik Chileh-Chelh, Salima Haddou, Ferdaous Al Ferjani and José Luis Guil-Guerrero
Seeds 2026, 5(1), 6; https://doi.org/10.3390/seeds5010006 - 13 Jan 2026
Viewed by 156
Abstract
Wild seeds constitute a taxonomically diverse and underexplored reservoir of C18-series bioactive fatty acids (BFAs) with significant nutritional, biomedical, and industrial relevance. This review integrates current knowledge on their lipid composition, metabolic architecture, and potential applications. Numerous wild taxa accumulate high levels of [...] Read more.
Wild seeds constitute a taxonomically diverse and underexplored reservoir of C18-series bioactive fatty acids (BFAs) with significant nutritional, biomedical, and industrial relevance. This review integrates current knowledge on their lipid composition, metabolic architecture, and potential applications. Numerous wild taxa accumulate high levels of oleic, linoleic, α-linolenic, γ-linolenic, and stearidonic acids, while others synthesise structurally specialised compounds such as punicic, petroselinic, and sciadonic acids. These FAs, together with tocopherols, phytosterols, and phenolics, underpin antioxidant, anti-inflammatory, immunomodulatory, and cardiometabolic effects supported by in vitro and in vivo evidence. The occurrence of these unusual lipids reflects lineage-specific modulation of plastidial and endoplasmic-reticulum pathways, including differential activities of SAD, FAD2/3, Δ6- and Δ5-desaturases, elongases, and acyl-editing enzymes that determine the final acyl-CoA and TAG pools. Wild seed oils show strong potential for translation into functional foods, targeted nutraceuticals, pharmacologically relevant lipid formulations, cosmetic ingredients, and bio-based materials. However, their exploitation is constrained by ecological sustainability, oxidative instability of PUFA-rich matrices, antinutritional constituents, and regulatory requirements for novel lipid sources. This review positions wild seeds as high-value, underused lipid resources with direct relevance to health and sustainability. It underscores their potential to enhance nutritional security and offer alternatives to conventional oil crops. Full article
Show Figures

Graphical abstract

16 pages, 1338 KB  
Article
Oxylipin Biomarkers of Auto-Oxidation Are Associated with Antioxidant Micronutrients and Multiple Sclerosis Disability
by Taylor R. Wicks, Anna Wolska, Diala Ghazal, Irina Shalaurova, Bianca Weinstock-Guttman, Richard W. Browne, Alan T. Remaley, Robert Zivadinov and Murali Ramanathan
Antioxidants 2026, 15(1), 102; https://doi.org/10.3390/antiox15010102 - 13 Jan 2026
Viewed by 212
Abstract
Purpose: To investigate associations between lipid oxidation biomarkers (oxylipins), antioxidant micronutrients, lipoprotein particles, and apolipoproteins in multiple sclerosis (MS). Methods: Blood and neurological assessments were collected from 30 healthy controls, 68 relapsing remitting MS subjects, and 37 progressive MS subjects. Hydroxy (H) and [...] Read more.
Purpose: To investigate associations between lipid oxidation biomarkers (oxylipins), antioxidant micronutrients, lipoprotein particles, and apolipoproteins in multiple sclerosis (MS). Methods: Blood and neurological assessments were collected from 30 healthy controls, 68 relapsing remitting MS subjects, and 37 progressive MS subjects. Hydroxy (H) and hydroperoxy lipid peroxidation products of the polyunsaturated fatty acids (PUFAs) arachidonic (20:4, ω-6), linoleic (octadecadienoic acid or ODE, 18:2, ω-6), eicosapentaenoic (20:5, ω-3), and α-linolenic (18:3, ω-3) acids were measured using liquid chromatography–mass spectrometry. Antioxidant micronutrients, including β-cryptoxanthin and lutein/zeaxanthin, were quantified by high-performance liquid chromatography. Lipoprotein and metabolite profiles were obtained using nuclear magnetic resonance spectroscopy. Regression models were adjusted for age, sex, body mass index, and disease status. Results: The 9-hydroxy octadecadienoic acid to 13-hydroxy octadecadienoic acid ratio (9-HODE/13-HODE ratio), which reflects autoxidative versus enzymatic oxidation, was associated with MS status (p = 0.002) and disability on the Expanded Disability Status Scale (p = 0.004). Lutein/zeaxanthin (p = 0.023) and β-cryptoxanthin (p = 0.028) were negatively associated with the 9-HODE/13-HODE ratio. Apolipoprotein-CII, a marker of liver-X-receptor (LXR) signaling, was associated with 9-HODE/13-HODE ratio and other oxylipins. Octadecadienoic fatty acid-derived oxylipins were negatively associated with LC3A, a mitophagy marker, and positively correlated with 7-ketocholesterol, a cholesterol autoxidation product. Conclusions: Autoxidation of PUFAs is associated with greater disability in MS. Higher β-cryptoxanthin and lutein/zeaxanthin were associated with reduced auto-oxidation. Lipid peroxidation shows associations with LXR signaling, mitophagy, inflammation, and cholesterol autoxidation. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

19 pages, 2457 KB  
Article
Albumin-Bound Fatty Acids Modulate Endogenous Angiotensin-Converting Enzyme (ACE) Inhibition
by Enikő Edit Enyedi, Attila Ádám Szabó, Tamás Bence Pintér, Ivetta Siket Mányiné, Anna Pluhár, Csongor Váradi, Emese Bányai, Attila Tóth, Zoltán Papp and Miklós Fagyas
Biomedicines 2026, 14(1), 103; https://doi.org/10.3390/biomedicines14010103 - 4 Jan 2026
Viewed by 453
Abstract
Background/Objectives: Human serum albumin (HSA) is a major endogenous inhibitor of angiotensin-converting enzyme (ACE) and helps fine-tune the activity of the renin–angiotensin–aldosterone system (RAAS), thereby potentially influencing the development of cardiovascular (CV) diseases. As the principal transport protein for free fatty acids [...] Read more.
Background/Objectives: Human serum albumin (HSA) is a major endogenous inhibitor of angiotensin-converting enzyme (ACE) and helps fine-tune the activity of the renin–angiotensin–aldosterone system (RAAS), thereby potentially influencing the development of cardiovascular (CV) diseases. As the principal transport protein for free fatty acids (FFAs), HSA may have its ACE-inhibitory capacity modified by its FFA cargo and, through this mechanism, may also affect CV disease risk. We therefore tested the hypothesis that the composition of HSA-bound FFAs determines the magnitude of endogenous ACE inhibition. Methods: We quantified endogenous ACE inhibition and examined the effect of FFA concentration on this inhibition in clinical patients (n = 161 and n = 101, respectively). We measured the effects of HSA treated with saturated, monounsaturated, and polyunsaturated FFAs, as well as FFA-free HSA, on recombinant ACE and on tissue ACE. Results: Endogenous ACE inhibition was stronger in patients with higher serum HSA concentrations (Spearman’s rho = 0.422, 95% CI 0.281–0.544, p < 0.001), whereas total FFA concentration was not associated with endogenous ACE inhibition (Spearman’s rho = 0.088, p = 0.38, n = 101). However, removal of free fatty acids substantially worsened the ACE-inhibitory effect of HSA on recombinant ACE (charcoal-treated HSA: IC50 = 23.24 [19.40–29.78] g/L vs. control HSA: 7.84 [6.58–9.75] g/L, p < 0.001) and on tissue ACE isolated from lung, heart, and lymph node. FFA chain length, degree and position of unsaturation, and cis/trans configuration all differentially modulated endogenous ACE inhibition. Among saturated fatty acids, stearic acid (IC50 = 7.98 [7.04–9.23] g/L), and among omega-3 and omega-6 fatty acids, α-linolenic (IC50 = 5.60 [4.28–6.15] g/L) and γ-linolenic acids (IC50 = 5.09 [4.28–6.15] g/L) produced the greatest enhancement of the ACE-inhibitory capacity of HSA. Conclusions: The present results indicate that HSA concentration relates to endogenous ACE inhibition in serum, and in vitro experiments demonstrate that HSA-bound FFAs can modulate HSA-mediated ACE inhibition, a mechanism that may be relevant to cardiovascular physiology and disease. Full article
(This article belongs to the Special Issue Renin-Angiotensin System in Cardiovascular Biology, 2nd Edition)
Show Figures

Figure 1

15 pages, 843 KB  
Article
Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cake Powder: Chemical Characterization and In Vitro Bioactivity for Sustainable Applications
by Valeria Guarrasi, Barbara Prandi, Tullia Tedeschi, Benedetta Chiancone, Andrea Di Fazio, Raffaella Barbieri, Debora Baroni, Marilú Roxana Soto-Vásquez, Silvia Vilasi, Francesca Falco, Martina Cirlini and Daniel Paredes-López
Molecules 2026, 31(1), 117; https://doi.org/10.3390/molecules31010117 - 29 Dec 2025
Viewed by 327
Abstract
Sacha inchi (P. volubilis L.), an ancient oilseed crop native to the Amazon, is gaining attention for its high nutritional value particularly due to its ω-3-, -6-, -9-rich oil. However, most research has focused mainly on oil characterization, neglecting the potential of [...] Read more.
Sacha inchi (P. volubilis L.), an ancient oilseed crop native to the Amazon, is gaining attention for its high nutritional value particularly due to its ω-3-, -6-, -9-rich oil. However, most research has focused mainly on oil characterization, neglecting the potential of its by-products, such as the Sacha inchi oil-press cake (i.e., the solid residue after oil extraction). This study explores the chemical composition of Sacha inchi oil press-cake powder, focusing on fatty acid and amino acid profiles, antinutrient factors, total phenolic content, antioxidant activity, and the bioactivity of its extracts on cellular models. Fatty acid analysis revealed a high proportion of polyunsaturated fatty acids, especially α-linolenic acid (42.52%), making it a valuable resource for health-promoting applications. The protein content was also significant (41.86%), with a balanced amino acid composition, including essential amino acids such as leucine, valine, and isoleucine, which are vital for muscle protein synthesis and energy metabolism, in food and/or feed applications. Antinutritional factors were detected, including saponins (1050.1 ± 1.1 mg/100 g), alkaloids (2.1 ± 0.5 mg/100 g), and tannins (6.2 ± 0.9 mg/100 g). While these phytotoxins could limit their use in food applications, their potential antimicrobial activity highlights promising pharmacological opportunities. Total phenolic content (TPC) and antioxidant activity (AO) were evaluated using two extract mixtures differing in composition and polarity, with the acetone/water/acetic acid solvent (80/19/1 v/v/v) showing the highest antioxidant properties. The extract obtained showed cytotoxic effects against Panc-1 cancer cells, highlighting its potential in nutraceutical and pharmaceutical applications. This study underscores the unexploited potential of Sacha inchi by-products, such as the oil press-cake, as a sustainable resource of bioactive compounds for functional products, supporting circular bio-economy strategies by plant-based waste and local biodiversity valorization. Full article
Show Figures

Graphical abstract

25 pages, 9757 KB  
Article
α-Linolenic Acid Alleviates Diabetic Cardiomyopathy by Activating AMPK-STAT3 Pathway to Inhibit Ferritinophagy and Enhance SLC7A11-GPX4 Antioxidant Axis
by Ziqian Zhang, Xue Bai, Qian Du and Jianhong Yang
Molecules 2026, 31(1), 79; https://doi.org/10.3390/molecules31010079 - 24 Dec 2025
Viewed by 427
Abstract
Diabetic cardiomyopathy (DCM) is a severe complication of diabetes, in which ferroptosis is a key pathogenic mechanism. This study examines how alpha-linolenic acid (ALA), a plant-derived omega-3 polyunsaturated fatty acid, protects against damage from ferroptosis in DCM. Using an in vitro model of [...] Read more.
Diabetic cardiomyopathy (DCM) is a severe complication of diabetes, in which ferroptosis is a key pathogenic mechanism. This study examines how alpha-linolenic acid (ALA), a plant-derived omega-3 polyunsaturated fatty acid, protects against damage from ferroptosis in DCM. Using an in vitro model of H9C2 cardiomyocytes treated with high glucose/palmitate, combined with a high-fat diet and mouse model of low-dose streptozotocin (STZ)-induced diabetes, this research demonstrates for the first time that ALA significantly alleviates cardiac dysfunction and prevents ferroptosis. Mechanistically, ALA inhibits STAT3 phosphorylation by activating the AMPK signaling pathway, thereby reducing NCOA4-mediated ferritinophagy and mitigating mitochondrial iron overload and reactive oxygen species accumulation. It also enhances the function of the SLC7A11/GSH/GPX4 axis, reducing lipid peroxidation (LPO)-induced ferroptosis. Collectively, these findings indicate that ALA protects against diabetic cardiomyopathy by coordinating the regulation of ferritinophagy and antioxidant defense through the AMPK-STAT3 pathway, offering a potential therapeutic strategy for disease management. Full article
Show Figures

Figure 1

15 pages, 2313 KB  
Article
Variations in Nutritional Composition of Walnut Kernels Across Different Elevations in Chongqing Region, China
by Jiajia Tang, Ao Li, Long Tong, Xinying Ji, Yi Su, Leyuan Sun, Ruining Nie, Chengxu Wu, Xiuzhen Li and Junpei Zhang
Horticulturae 2026, 12(1), 16; https://doi.org/10.3390/horticulturae12010016 - 24 Dec 2025
Viewed by 521
Abstract
Walnut (Juglans regia L.) is an important economic and oil-bearing tree species, and the nutritional quality of its kernels is influenced by multiple environmental factors. Elevation is an ecological gradient that integratively reflects variations in environmental conditions such as temperature and light [...] Read more.
Walnut (Juglans regia L.) is an important economic and oil-bearing tree species, and the nutritional quality of its kernels is influenced by multiple environmental factors. Elevation is an ecological gradient that integratively reflects variations in environmental conditions such as temperature and light availability and shows a certain degree of correlation with kernel nutritional quality. The aim of this study was to clarify the regulatory effect of elevation on the nutritional quality of walnut kernels in Chongqing and to optimize the layout of high-quality walnut production areas. This study used 181 walnut germplasm resources collected from 16 natural populations (production areas) in Chongqing. Six elevation ranges were defined (I: 200–600 m, II: 600–900 m, III: 900–1200 m, IV: 1200–1400 m, V: 1400–1600 m, VI: 1600–1800 m), and twelve nutritional traits of walnut kernels were systematically analyzed, including total fat, protein, soluble sugar, tannin, saturated fatty acids (stearic acid, palmitic acid, arachidic acid), and unsaturated fatty acids (oleic acid, palmitoleic acid, cis-11-eicosenoic acid, linoleic acid, α-linolenic acid). The results showed that the fat content of walnut kernels was generally higher than 60%, with the highest value in zone VI (62.93%). The protein content was the highest in zone III (17.71%) and the lowest in zone VI (16.06%). Soluble sugar and tannin contents were relatively low, both peaking in zone II (3.10% and 10.85%, respectively). The overall content of saturated fatty acids was low, being slightly higher in zone II, with little variation among components across elevations. Among monounsaturated fatty acids, oleic acid was dominant, showing a decreasing–increasing trend with rising elevation, with the lowest value in zone II (20.98%) and the highest in zone VI (26.93%), while palmitoleic acid and cis-11-eicosenoic acid were maintained at low levels. Polyunsaturated fatty acids were dominated by linoleic acid, ranging from 51.22% to 61.04%, with the highest content in zone II and the lowest in zone VI. Comprehensive evaluation and cluster analysis grouped the six elevation zones into three categories, with zone II showing the best nutritional quality, particularly in terms of soluble sugar, stearic acid, and linoleic acid, while zone I had the lowest score. These findings provide a theoretical basis for the selection of high-quality walnut production areas and the precision cultivation of nutrient-rich walnut fruits, as well as important data support for the scientific planning and high-quality development of the walnut industry in Chongqing. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

14 pages, 1434 KB  
Article
Oxylipin Profiling in Selected Brown and Red Algae: Detection of Heterobicyclic Oxylipins, Plasmodiophorols and Ectocarpins in Phaeophyceae
by Yana Y. Toporkova, Elena O. Smirnova, Oksana S. Belous, Tatiana M. Iljina, Natalia V. Lantsova, Svetlana S. Gorina and Alexander N. Grechkin
Mar. Drugs 2026, 24(1), 8; https://doi.org/10.3390/md24010008 - 23 Dec 2025
Viewed by 348
Abstract
GC-MS oxylipin profiling of brown and red algal thalli was performed. Brown algae (Fucus distichus and Alaria esculenta) were collected from the Barents Sea coastline nearby Teriberka, Murmansk region, Kola Peninsula, Russia, while other brown and red algae were sourced from [...] Read more.
GC-MS oxylipin profiling of brown and red algal thalli was performed. Brown algae (Fucus distichus and Alaria esculenta) were collected from the Barents Sea coastline nearby Teriberka, Murmansk region, Kola Peninsula, Russia, while other brown and red algae were sourced from the Pacific coast of the Russian Far East. Triols and δ-ketols (epoxyalcohol synthase products) were found in most brown and red algae. Several Heterokontophyta and Rhodophyta species possessed α-ketols (products of allene oxide synthase) and related vic-diols. Plasmodiophorols and ectocarpins (hydroperoxide bicyclase (HPB) products) were found only in brown algae from the Ectocarpales, Fucales, and Laminariales orders, not in brown algae from the Desmarestiales or Dictyotales orders, or in any red algae. Therefore, plasmodiophorol A and other HPB products could be used as chemotaxonomic markers for the classification of the separate orders of algae within Heterokontophyta. The in vitro incubations of F. distichus thalli with linoleic and α-linolenic acid resulted in the formation of α-ketols and the hydroperoxide bicyclase product, plasmodiophorol A. Full article
Show Figures

Figure 1

22 pages, 7719 KB  
Article
Bioactive Components, Untargeted Metabolomics and Bioinformatics of Chaenomeles speciosa Fruit on Uric Acid-Lowering Activity Assessment
by Mingzhen Zhang, Cong Liu, Yan Zhang, Zhangyaoyu Yuan, Shi Chen, Huihui Zhang, Xianju Huang, Lvyi Chen, Zhinan Mei and Yuebin Ge
Foods 2026, 15(1), 20; https://doi.org/10.3390/foods15010020 - 22 Dec 2025
Viewed by 484
Abstract
Chaenomeles speciosa (Sweet) Nakai (CF), a traditional food in East Asia and a recent addition to clinical dietary recommendations, has demonstrated potential for managing hyperuricemia. However, its bioactive components and therapeutic mechanisms remain largely unexplored. In this study, we used an integrative approach [...] Read more.
Chaenomeles speciosa (Sweet) Nakai (CF), a traditional food in East Asia and a recent addition to clinical dietary recommendations, has demonstrated potential for managing hyperuricemia. However, its bioactive components and therapeutic mechanisms remain largely unexplored. In this study, we used an integrative approach incorporating serum pharmacochemistry, metabolomics, bioinformatics, molecular docking, and in vitro/vivo validation to investigate CF’s effects and mechanisms in hyperuricemia. In hyperuricemic mice, CF significantly reduced serum uric acid, creatinine, and blood urea nitrogen (BUN) levels, improved kidney histopathology, and restored redox balance by increasing antioxidant enzyme activities (SOD and GSH-Px) while lowering malondialdehyde (MDA) levels. Metabolomic analysis revealed that CF modulated pathways associated with oxidative stress, including purine metabolism, arachidonic acid metabolism, and α-linolenic acid metabolism, to reverse hyperuricemia-associated metabolic perturbations. Correlation analysis between differential metabolites and serum-absorbed constituents identified androsin, cynaroside, and salicin as potential bioactive compounds. These compounds showed high predicted binding affinities to COX-1, PGE2, and XOD in molecular docking, and these interactions were validated by in vitro assays, where the compounds effectively suppressed inflammatory cytokine production and inhibited XOD activity. Overall, CF exerts anti-hyperuricemic and renoprotective effects through coordinated regulation of purine metabolism, inflammation, and oxidative stress, supporting its potential as a functional food or complementary therapy for hyperuricemia-related conditions. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

29 pages, 43421 KB  
Article
From Microbiota to Metabolomics: How Corylus heterophylla Fisch. Male Flower Extract Shields Mice from Cognitive Decline
by Wei Lu, Yujie Li, Xinyuan Liao, Han Hu, Bolin Zhang, Lisong Liang and Haina Gao
Nutrients 2025, 17(24), 3958; https://doi.org/10.3390/nu17243958 - 18 Dec 2025
Cited by 1 | Viewed by 523
Abstract
Background/Objectives: Emerging evidence suggests that hippocampal neuroinflammation (HNF) drives cognitive decline via dysregulation of the microbiota-gut-brain axis. Corylus heterophylla Fisch. male flower extract (CFE), a flavonoid-rich by-product of hazelnut processing, presents a promising yet unexplored neuroprotective candidate. This study investigated the preventive effects [...] Read more.
Background/Objectives: Emerging evidence suggests that hippocampal neuroinflammation (HNF) drives cognitive decline via dysregulation of the microbiota-gut-brain axis. Corylus heterophylla Fisch. male flower extract (CFE), a flavonoid-rich by-product of hazelnut processing, presents a promising yet unexplored neuroprotective candidate. This study investigated the preventive effects and mechanisms of CFE against HNF-induced cognitive decline. Methods: In the present study, mice were pretreated with CFE (200 mg/kg) before the Lipopolysaccharide (LPS) administration. Cognitive function, inflammation, core pathology, neuroplasticity, gut microbiota and serum metabolites were assessed. The chemical composition of CFE was analyzed by UHPLC-MS and its direct immunomodulatory effects were investigated in BV2 cells. Results: Behavioral assessments demonstrated significant therapeutic efficacy. This was evidenced by the recovery from hippocampal damage, accompanied by reduced levels of core pathological markers (Aβ1–42, Tau, p-Tau (Ser404), GSK-3β), decreased expression of pro-inflammatory mediators including IL-33, elevated levels of neurotrophic factors (BDNF and MAP2), and attenuated abnormal activation of astrocytes and microglia. The 16S rRNA analysis confirmed that CFE ameliorated gut microbial dysbiosis. Notably, CFE significantly increased the relative abundance of Muribaculaceae and Lachnospiraceae, while significantly decreased Staphylococcus and Helicobacter. Metabolomics revealed enhanced levels of α-linolenic acid (ALA), serotonin (5-HT) and acetic acid, which correlated positively with Muribaculaceae and Lachnospiraceae. Phytochemical analysis identified luteolin and kaempferol as the predominant flavonoids in CFE. In BV2 cells, CFE, luteolin and kaempferol shifted microglial polarization from the M1 phenotype toward the M2 phenotype. Conclusions: CFE alleviated HNF-induced cognitive decline by regulating microbiota-gut-brain axis and microglial M1/M2 polarization. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health—2nd Edition)
Show Figures

Figure 1

16 pages, 3377 KB  
Article
Integrative Metabolomics, Pharmacoinformatics and Experimental Studies Reveal the Neuroprotective Potential of Caulerpa racemosa Metabolites Against Alzheimer’s Disease
by Nita Handayani, Dhecella Winy Cintya Ningrum, Adha Fauzi Hendrawan, Anis Yuniati, Raffaele Romano, Lucia De Luca, Antonello Santini and Fahrul Nurkolis
Mar. Drugs 2025, 23(12), 475; https://doi.org/10.3390/md23120475 - 11 Dec 2025
Viewed by 626
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder characterized by cholinergic dysfunction, oxidative/nitrosative stress, and neuroinflammation. Marine green algae Caulerpa racemosa are rich in neuroactive lipids and fatty acid derivatives with reported antioxidant and anti-inflammatory properties. However, their integrated mechanistic potential against AD [...] Read more.
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder characterized by cholinergic dysfunction, oxidative/nitrosative stress, and neuroinflammation. Marine green algae Caulerpa racemosa are rich in neuroactive lipids and fatty acid derivatives with reported antioxidant and anti-inflammatory properties. However, their integrated mechanistic potential against AD remains largely underexplored. This study aimed to elucidate the neuroprotective mechanisms of C. racemosa metabolites against AD using integrative metabolomics, network pharmacology, molecular docking, and in vitro validation assays. Untargeted LC–HRMS profiling was performed to identify major metabolites in the ethanolic extract of C. racemosa. Neuroprotective targets were predicted via TargetNet, STRING, and Cytoscape (MCODE, CytoNCA). Functional enrichment was conducted using KEGG, GO (BP, MF, CC), and ClueGO. Molecular docking (CB-Dock2) validated compound–target interactions with ACHE, CHRM1, NOS1, and NOS2. Antioxidant (DPPH) and cholinesterase (AChE/BChE) inhibitory activities were evaluated in vitro. Metabolomic profiling identified lipid-dominant metabolites—oleamide, hexadecanamide, palmitoyl ethanolamide, α-linolenic acid, α-eleostearic acid, and 9-oxo-octadecadienoic acid. Network analysis revealed key AD-related hubs (ACHE, CHRM1, NOS1, NOS2) enriched in cholinergic regulation, arachidonic-acid metabolism, oxidative stress response, and nitric oxide signaling. Docking showed moderate multi-target affinities (−6.0 to −8.4 kcal/mol), with α-linolenic acid, α-eleostearic acid, and oxidized C18 lipids exhibiting the strongest interactions—particularly with ACHE and NOS isoforms. In vitro assays showed moderate antioxidant activity (IC50 = 120.97 ± 10.93 µg/mL) and cholinesterase inhibition (AChE IC50 = 136.48 ± 1.70 µg/mL; BChE IC50 = 145.98 ± 3.28 µg/mL), aligning with predicted multi-target interactions. C. racemosa extract exhibits neuroprotective potential through a synergistic combination of cholinergic modulation, antioxidant activity, NOS-mediated nitrosative stress reduction, and suppression of arachidonic-acid inflammatory pathways. These findings support C. racemosa as a promising marine-derived multi-target candidate for AD intervention, warranting further mechanistic and in vivo evaluation. Full article
(This article belongs to the Special Issue The Extraction and Application of Functional Components in Algae)
Show Figures

Graphical abstract

13 pages, 681 KB  
Systematic Review
Hydroponic Forage in Ruminant Nutrition: A Systematic Review of Nutritional Value, Performance Outcomes, and Sustainability
by Alessandro Vastolo and Monica Isabella Cutrignelli
Animals 2025, 15(24), 3544; https://doi.org/10.3390/ani15243544 - 9 Dec 2025
Viewed by 1010
Abstract
This systematic review evaluated 28 peer-reviewed studies on the use of hydroponic forage in ruminant diets, following PRISMA 2020 guidelines. Hydroponic barley sprouts contain on average 14.8 ± 2.1% CP, 3.6 ± 0.4% EE, 12.9 ± 1.7% NDF, 7.8 ± 1.2% ADF, and [...] Read more.
This systematic review evaluated 28 peer-reviewed studies on the use of hydroponic forage in ruminant diets, following PRISMA 2020 guidelines. Hydroponic barley sprouts contain on average 14.8 ± 2.1% CP, 3.6 ± 0.4% EE, 12.9 ± 1.7% NDF, 7.8 ± 1.2% ADF, and 10.5 ± 2.8% DM (mean ± SD; n = 21 studies), and mineral content, though limited by high moisture and low dry matter yield. Among the included studies, 61% focused on barley, confirming its suitability for hydroponic cultivation. In dairy cattle, hydroponic forage improved milk fat content and oleic acid (C18:1), linoleic acid (C18:2), and α-linolenic acid (C18:3) and reduced saturated fatty acids without compromising yield. In buffaloes, inclusion enhanced cheese quality and reduced energy footprint, though costs were higher. For small ruminants and growing animals, moderate inclusion (5–25% dry matter) improved intake, digestibility, and growth, while excessive replacement reduced feed intake or digestibility, likely due to rumen microbiota shifts. Additionally, hydroponic feeding reduced methane emissions in lambs, highlighting its environmental potential. Overall, hydroponic forage can serve as a sustainable complement to conventional feed resources, promoting resource efficiency and animal performance when properly integrated into balanced diets. Further studies should define optimal inclusion rates and evaluate economic and environmental trade-offs under different production systems. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

18 pages, 6370 KB  
Article
Molecular Mechanisms Underlying Divergent Biochemical Compositions in Longissimus Dorsi of Huainan and Yunan Black Pigs: Insights from Fatty Acids, Amino Acids, and Transcriptomic Profiling
by Yuliang Wen, Chengshui Liao, Ruibiao Wang, Bo Wen, Weiyu Luo, Wei Zhang, Chunling Zhu, Huarun Sun, Longfei Zhang, Xuehan Liu, Jiyuan Shen, Yuping Xiang, Hao Li, Jianhe Hu, Yueyu Bai, Ke Ding and Lei Wang
Agriculture 2025, 15(24), 2532; https://doi.org/10.3390/agriculture15242532 - 6 Dec 2025
Viewed by 404
Abstract
This study investigated meat quality, nutritional characteristics, and transcriptomic regulation in Yunan (YN) black pigs and Huainan (HN) black pigs (n = 6 each). Analysis of fatty acid composition revealed that HN black pigs possessed significantly higher levels of most fatty acids compared [...] Read more.
This study investigated meat quality, nutritional characteristics, and transcriptomic regulation in Yunan (YN) black pigs and Huainan (HN) black pigs (n = 6 each). Analysis of fatty acid composition revealed that HN black pigs possessed significantly higher levels of most fatty acids compared to YN black pigs. Notably, the contents of monounsaturated fatty acid C18:1n9c and polyunsaturated fatty acid C18:2n6c in HN black pigs were 1.94-fold and 2.65-fold higher, respectively, than those in YN black pigs. The α-linolenic acid content was also significantly elevated in HN black pigs, indicating an overall higher fatty acid content. Regarding amino acid differences, HN black pigs exhibited significantly higher levels of aspartic acid, glutamic acid, histidine, as well as superior composition of total amino acids, total umami amino acids, and essential amino acids, which contribute to enhanced flavor characteristics and nutritional balance. Transcriptome analysis identified 526 differentially expressed genes in HN vs. YN. KEGG enrichment analysis showed that these genes were involved in many adipogenesis and lipid metabolism signaling pathways, such as biosynthesis of unsaturated fatty acids, fatty acid elongation, apelin signaling pathway and lysine degradation. By integrating transcriptome and protein–protein interaction (PPI) network analyses, we identified key meat quality-related genes: ELOVL6, PRKAG3, ROCK2, and MYH11. miRNA profiling identified ssc-miR-133b, ssc-miR-206, and miR-205 as key regulators of meat quality. This study provides a valuable theoretical foundation for understanding the molecular mechanisms underlying pork quality and offers insights for its future improvement. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

Back to TopTop