Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (204)

Search Parameters:
Keywords = α″-Fe16N2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4165 KB  
Article
Spectroscopic Methods in Evaluation of Antioxidant Potential, Enzyme Inhibition, Cytotoxicity, and Antimicrobial Activity of the Synthesized N3-Substituted Amidrazones
by Renata Paprocka, Leszek Pazderski, Jolanta Kutkowska, Iqra Naeem, Amna Shahid Awan, Zahid Mushtaq and Aleksandra Szydłowska-Czerniak
Int. J. Mol. Sci. 2026, 27(2), 746; https://doi.org/10.3390/ijms27020746 - 12 Jan 2026
Viewed by 134
Abstract
Seven amidrazones containing a characteristic NH2–N=C(Ar1)–NHAr2 moiety, where Ar1, Ar2 are phenyl, 4-methylphenyl, 4-nitrophenyl, 2-pyridyl, and 4-pyridyl substituents, denoted as 2a2g, were synthesized by the reactions between thioamides and hydrazine. Their molecular [...] Read more.
Seven amidrazones containing a characteristic NH2–N=C(Ar1)–NHAr2 moiety, where Ar1, Ar2 are phenyl, 4-methylphenyl, 4-nitrophenyl, 2-pyridyl, and 4-pyridyl substituents, denoted as 2a2g, were synthesized by the reactions between thioamides and hydrazine. Their molecular structures were confirmed by 1H, 13C, 1H-13C HMQC, 1H-13C HMBC, and 1H-15N HMBC NMR spectroscopy, with complete assignment of the detected signals, as well as by high-resolution mass spectra. The biological activity of all compounds was studied, exhibiting antioxidant properties determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods, inhibitory potential against digestive tract enzymes (α-amylase, lipase, pepsin), cytotoxicity (hemolysis), and antimicrobial activities (against Gram-positive and Gram-negative bacteria, and a fungus). The antioxidant activity of the studied amidrazones varied from 83.34% to 93.27% and 1.01–5.79 mM FeSO4 for the DPPH and FRAP methods, respectively. Moreover, these derivatives revealed inhibition potential against α-amylase (28.6–86.8%), lipase (28.0–60.0%), and pepsin (34.1–76.6%), which increased when increasing their concentrations from 0.2 to 1 mg/mL. Among them, compound 2d (possessing 2-pyridyl and 4-nitrophenyl substituents) stood out in particular, as a potent antioxidant (DPPH = 90.43%, FRAP = 4.73 Mm FeSO4) with the highest activity against Gram-positive bacteria: S. aureus (MIC = 64 μg/mL), G. rubripertincta (MIC = 64 μg/mL), and fungus: C. albicans (MIC = 32 μg/mL); high α-amylase (86.8%) inhibition at the highest concentration (1 mg/mL); and lipase (38.0%) and pepsin (43.8%) inhibition at the lowest concentration (0.2 mg/mL). The obtained results were analyzed by unsupervised multivariate techniques to confirm significant differences in the biological activity of amidrazones depending on the Ar1 and Ar2 substituents. Full article
(This article belongs to the Special Issue Spectroscopic Techniques in Molecular Sciences)
Show Figures

Graphical abstract

27 pages, 1936 KB  
Review
Bioactive Chemicals and Biological Activity of Tropaeolum majus L. and the Importance of Trichoderma spp. in the Cultivation of This Species
by Sylwia Skazińska, Roman Andrzejak, Katarzyna Waszkowiak and Beata Janowska
Agriculture 2026, 16(1), 101; https://doi.org/10.3390/agriculture16010101 - 31 Dec 2025
Viewed by 246
Abstract
Tropaeolum majus L. is a popular ornamental plant. All parts of T. majus plant (flowers, leaves, and seeds) are edible and are appreciated for their pungent taste, although their chemical composition varies. T. majus is known for its many health benefits. It is [...] Read more.
Tropaeolum majus L. is a popular ornamental plant. All parts of T. majus plant (flowers, leaves, and seeds) are edible and are appreciated for their pungent taste, although their chemical composition varies. T. majus is known for its many health benefits. It is a source of trace elements and bioactive compounds that are easily absorbed by the human body. The flowers of T. majus contain flavonoids from the flavone and flavonol groups, as well as their glycosides, which exhibit antibacterial, antifungal and antiviral activity. They also inhibit the activity of certain enzymes. Among the flavonoids, the flowers and leaves of T. majus contain derivatives of kaempferol and quercetin. Flavonoids also include anthocyanins, which are responsible for the color of T. majus flowers. In red flowers, delphinidin predominates; in orange flowers, pelargonidin; and in yellow flowers, pelargonidin and delphinidin are present in similar amounts. In the flowers of T. majus, seven carotenoids have been identified: violaxanthin, antheraxanthin, lutein, zeaxanthin, α, β and γ-carotene. In the leaves, however, lutein, violaxanthin, β-carotene and neoxanthin were detected. In T. majus, the presence of two glucosinolates has been reported: glucotropaeolin and sinalbin. The flowers and leaves of T. majus also contain both macroelements (N, P, K, Ca, Mg, Na) and microelements (Fe, Mn, Cu, Zn, Mo), and essential oils which have anti-cancer, antibacterial, and antiviral properties. The quality and flowering of T. majus are enhanced by fungi of the Trichoderma genus, which is important both ecologically and in terms of increasing the yield of raw material extracted from the plant. T. aureoviride, T. hamatum, and T. harzianum stimulated the flowering of the T. majus ‘Spitfire’. The plants treated with T. harzianum after being planted in pots flowered the most abundantly. Trichoderma spp. caused the plants to grow more intensively, producing longer and more leafy shoots with a greater number of offshoots. Trichoderma spp. stimulated the uptake of macronutrients, except for P. In the case of Ca and Na, this phenomenon was only observed in plants treated with T. aureoviride and T. hamatum, and for Mg, only when T. hamatum was applied to sown seeds. As for the developed root systems, as far as the micronutrients are concerned, Trichoderma spp. stimulated the uptake of Zn and Mn. Additionally, there was a higher Fe content in the plants treated with T. harzianum on both dates and T. aureoviride after planting the plants in pots. Full article
(This article belongs to the Special Issue The Application of Trichoderma in Crop Production)
Show Figures

Figure 1

16 pages, 7884 KB  
Article
Effect of Yttrium on Iron-Rich Phases and Mechanical Properties of As-Cast Al-Fe Alloy with Low Si Concentration
by Wenjie Wu, Wenxia Lai, Ziteng Cao, Chengdong Li and Mei Zhao
Crystals 2026, 16(1), 28; https://doi.org/10.3390/cryst16010028 - 30 Dec 2025
Viewed by 217
Abstract
In Al–Fe alloys, the mechanical properties are determined by the morphology of iron-rich phases. In this work, AA8176(Al-1Fe)-nY (n = 0, 0.3, 0.5, 0.7, and 0.9 wt.%) alloys were prepared by the cast method. The effects of yttrium (Y) addition on the [...] Read more.
In Al–Fe alloys, the mechanical properties are determined by the morphology of iron-rich phases. In this work, AA8176(Al-1Fe)-nY (n = 0, 0.3, 0.5, 0.7, and 0.9 wt.%) alloys were prepared by the cast method. The effects of yttrium (Y) addition on the microstructure and mechanical properties of AA8176 alloy were studied using various techniques including optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), cooling curve analysis and tensile tests. The results revealed that the optimal refinement effect was achieved when the amount of Y content was 0.5 wt.%. When the Y content increased from 0 to 0.5 wt.%, the coarse needle-like Al13Fe4 phases were gradually transformed into short rod-like morphology and some fine Al10Fe2Y phases were formed around the Al13Fe4 phases. The average length of iron-rich phases was decreased from 10.01 μm to 2.65 μm. Additionally, as the Y content increased from 0 to 0.5 wt.%, the secondary dendrite arm spacing (SDAS) of AA8176 alloy was reduced from 31.33 μm to 20.24 μm. Furthermore, the mechanical properties of the AA8176 alloy were improved due to the modified microstructure. With the addition of 0.5 wt.% Y, the ultimate tensile strength, yield strength, elongation, and Vickers hardness were improved to 96.86 MPa, 57.21 MPa, 23.1%, and 30.55 HV, respectively, compared to 84.47 MPa, 50.71 MPa, 18.6%, and 27.28 HV for the unmodified AA8176 alloy. It is proposed that the growth of α-Al dendrite and Al13Fe4 phases were effectively inhibited by segregation of Y atoms around α-Al dendrite and Al13Fe4 phases during solidification. And the Al10Fe2Y phases were formed by these Y atoms with Al and Fe elements. However, the formation of coarse Al10Fe2Y phases was promoted by excessive Y content, resulting in a substantial degradation in mechanical properties. Full article
Show Figures

Figure 1

29 pages, 9117 KB  
Article
Transcriptome and Metabolome-Based Analysis of Carbon–Nitrogen Co-Application Effects on Fe/Zn Contents in Dendrobium officinale and Its Metabolic Molecular Mechanisms
by Daoliang Yan, Shang Xiang, Yutang Cheng, Tongyu Li and Bingsong Zheng
Agriculture 2026, 16(1), 29; https://doi.org/10.3390/agriculture16010029 - 22 Dec 2025
Viewed by 281
Abstract
To explore the impact of combined carbon–nitrogen fertilization on the concentrations of Fe (ferrum) and Zn (zinc) in Dendrobium officinale (D. officinale), and to elucidate the underlying metabolic regulatory mechanisms, two-year-old seedlings of D. officinale were selected as the experimental subjects. [...] Read more.
To explore the impact of combined carbon–nitrogen fertilization on the concentrations of Fe (ferrum) and Zn (zinc) in Dendrobium officinale (D. officinale), and to elucidate the underlying metabolic regulatory mechanisms, two-year-old seedlings of D. officinale were selected as the experimental subjects. Three treatment groups were established: a control group (CK), an α-ketoglutaric acid (AKG) treatment group (C treatment, CT), a urea treatment group (N treatment, NT), and an AKG and urea combined treatment group (CT_NT). Samples were collected at 0, 8, 16, 24, and 32 days post-treatment. Physiological and biochemical analyses measured stem contents of iron, zinc, copper, nitrate nitrogen, soluble proteins, and citric acid. Transcriptomic and metabolomic technologies were employed to elucidate molecular mechanisms. Physiological studies have shown that combined carbon–nitrogen application exerts time-dependent regulation on Fe, Zn, and their key metabolites in the stems of D. officinale, presenting a trend of first increasing and then decreasing. Metabolomic analysis revealed that flavonoids, phenolic compounds, and organic acids are involved in Fe chelation, while quercetin, dopamine, and other substances promote Zn absorption. Transcriptomic analysis indicated that combined carbon–nitrogen application activates the accumulation of Fe and Zn contents by upregulating the expression of related genes. Integrated analysis demonstrated that carbon–nitrogen metabolism affects the metabolic network of D. officinale by regulating primary and secondary metabolic pathways. This study elucidated the physiological and molecular mechanisms underlying the regulation of Fe and Zn contents in D. officinale by combined carbon–nitrogen application, providing theoretical support and a scientific basis for the high-efficiency cultivation and quality improvement of D. officinale. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

19 pages, 10310 KB  
Article
Grokhovskyite, CuCrS2, a New Chromium Disulfide in Uakit Iron Meteorite (IIAB), Buryatia, Russia
by Victor V. Sharygin, Grigoriy A. Yakovlev, Yurii V. Seryotkin, Nikolai S. Karmanov, Konstantin A. Novoselov and Maxim S. Karabanalov
Minerals 2025, 15(12), 1295; https://doi.org/10.3390/min15121295 - 11 Dec 2025
Viewed by 391
Abstract
Grokhovskyite, CuCrS2, was observed in small sulfide inclusions (up to 50–80 µm) in Ni-rich iron (kamacite) of the Uakit iron meteorite (IIAB) in the Republic of Buryatia, Russia. The grain sizes of this mineral are usually less than 5 μm, and [...] Read more.
Grokhovskyite, CuCrS2, was observed in small sulfide inclusions (up to 50–80 µm) in Ni-rich iron (kamacite) of the Uakit iron meteorite (IIAB) in the Republic of Buryatia, Russia. The grain sizes of this mineral are usually less than 5 μm, and the biggest detected crystals are 10 × 5 μm in size. It is commonly associated with daubréelite, troilite, schreibersite, and, sometimes, with carlsbergite and uakitite. Within inclusions, the mineral forms elongated splintered crystals, or, rarely, needle-shaped grains in daubréelite. The grokhovskyite-containing associations in the Uakit meteorite seem to form due to high-temperature (>1000 °C) separation of Fe-Cr sulfide liquid, which is locally enriched in Cu, from Fe-Ni metal melt. Physical and optical properties of grokhovskyite are quite similar to those of synthetic CuCrS2: yellow–brown and non-transparent phase with metallic luster; Mohs hardness ≈ 4; gray to light gray color with yellow tint in reflected light; weak to medium bireflectance, anisotropy, and pleochroism; density (calc.) = 4.559 g/cm3. Grokhovskyite is structurally related to the Cr-containing disulfide minerals with general formula Me+CrS2 (where Me+ = Na, Cu, Ag), including caswellsilverite, NaCrS2; schöllhornite, Na0.3CrS2·H2O; and cronusite, Ca0.2CrS2·2H2O. Structural data were obtained for one grokhovskyite crystal using the EBSD technique. Fitting of the EBSD patterns for a synthetic α-CuCrS2 model (trigonal R3m; a = 3.4794(8) Å; c = 18.702(4) Å; V = 196.08(10) Å3; Z = 3) resulted in the parameter MAD = 0.57–1.16° (good fit). Analytical data for grokhovskyite (n = 36, in wt.%) are as follows: Cu—32.97; Cr—27.65; Fe—3.69; Ni—0.16; S—35.71; Na, Zn, V, Mn, and Co—below detection limit (<0.005 wt.%). The empirical formula is (Cu0.930Cr0.952Fe0.118Ni0.005)2.005S1.995; however, different concentrations of Fe are indicated in two individual grains of grokhovskyite (0.09–0.17 apfu). Such variations may be explained by Fe incorporation in the grokhovskyite structure according to the scheme IVCu+ + VICr3+IVFe2+ + VIFe2+. The three main bands (near 110, 250, and 310 cm−1), which are common of synthetic CuCrS2, were observed in the Raman spectra of grokhovskyite. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

17 pages, 6413 KB  
Article
Modulation of Oxidative and ER Stress Pathways by the ADAM17 Inhibitor GW280264X in LPS-Induced Acute Liver Injury
by Merve Huner Yigit, Oguzhan Okcu, Mehtap Atak, Soner Karabulut, Gökhan Yıldız and Ertugrul Yigit
Life 2025, 15(12), 1877; https://doi.org/10.3390/life15121877 - 8 Dec 2025
Viewed by 417
Abstract
Background and Objectives: ADAM17, a sheddase that regulates cytokine and receptor ectodomains, amplifies inflammatory signaling. Acute liver injury (ALI) is driven by dysregulated inflammation, accompanied by both oxidative and endoplasmic reticulum (ER) stress responses. We investigated whether pharmacological inhibition of ADAM17 with GW280264X [...] Read more.
Background and Objectives: ADAM17, a sheddase that regulates cytokine and receptor ectodomains, amplifies inflammatory signaling. Acute liver injury (ALI) is driven by dysregulated inflammation, accompanied by both oxidative and endoplasmic reticulum (ER) stress responses. We investigated whether pharmacological inhibition of ADAM17 with GW280264X mitigates lipopolysaccharide (LPS)-induced acute liver injury by targeting these pathways. Methods: Male C57BL/6J mice received intraperitoneal LPS (10 mg/kg). GW280264X (500 µg/kg, i.p.) was administered at one and three hours post-LPS treatment. At the fifth hour, serum and liver samples were collected to determine serum ALT/AST levels and to perform hematoxylin and eosin (H&E) staining. Inflammatory (TNF-α), oxidative (MDA, 4-HNE, Fe2+, GSH; NRF2/KEAP1), endoplasmic reticulum (ER) stress (GRP78, ATF6, CHOP), and ferroptosis-related (GPX4, SLC7A11) markers, along with ADAM17 protein levels, were analyzed using ELISA, colorimetric assays, and Western blotting. Results: LPS triggered hepatic injury. This was accompanied by marked elevations in TNF-α, oxidative indices (MDA, 4-HNE, Fe2+) and ER stress proteins (GRP78, ATF6, CHOP), together with depletion of hepatic GSH. GW280264X significantly reduced AST levels, attenuated inflammatory, oxidative, and ER stress responses, and improved hepatic histopathology. GPX4 and SLC7A11 tended to increase following treatment, but the changes did not reach statistical significance and should be interpreted cautiously due to the limited sample size (n = 5). Similarly, ADAM17 protein levels tended to decrease, although the change was not statistically significant. Conclusions: Pharmacological inhibition of ADAM17 with GW280264X may confer early hepatoprotection in LPS-induced ALI by attenuating inflammatory, oxidative and ER stress pathways. ADAM17 inhibition yielded partial and statistically non-significant protective effects at this early stage; therefore, these findings should be considered exploratory. Future studies with larger sample sizes and longer observation periods are warranted to confirm the durability and mechanistic basis of this response. Full article
(This article belongs to the Special Issue Liver Disease: Pathogenesis, Diagnosis, and Treatments)
Show Figures

Figure 1

12 pages, 778 KB  
Brief Report
17β-Estradiol and Its Metabolites Induce Oxidative Damage to Membrane Lipids in Primary Porcine Thyroid Follicular Cells—Comparison Between Sexes
by Jan Stępniak and Małgorzata Karbownik-Lewińska
Int. J. Mol. Sci. 2025, 26(24), 11807; https://doi.org/10.3390/ijms262411807 - 6 Dec 2025
Viewed by 382
Abstract
Sexual dimorphism significantly influences the epidemiology of thyroid disorders, with females exhibiting higher incidence of thyroid diseases. Estrogens and their hydroxylated metabolites are key regulators of cellular redox balance and may contribute to sex-specific susceptibility through pro-oxidative mechanisms. However, the impact of individual [...] Read more.
Sexual dimorphism significantly influences the epidemiology of thyroid disorders, with females exhibiting higher incidence of thyroid diseases. Estrogens and their hydroxylated metabolites are key regulators of cellular redox balance and may contribute to sex-specific susceptibility through pro-oxidative mechanisms. However, the impact of individual estrogen metabolites on oxidative stress in thyroid follicular cells remains poorly defined. Here, we investigated the pro-oxidative effects of 17β-estradiol (E2) and its hydroxylated metabolites—2-hydroxyestradiol (2-OHE2), 4-hydroxyestradiol (4-OHE2), and 16α-hydroxyestrone (16α-OHE1)—in primary porcine thyroid cell cultures from males and females. Primary follicular thyroid cells were isolated from six male and six female pigs. Cells were exposed to E2 (100 nM) or its metabolites (1 μM), with or without Fenton reaction substrates (Fe2+ and H2O2), for 24 h. Lipid peroxidation (an index of oxidative damage to lipids) was quantified using BODIPY® 581/591 C11 fluorescence via flow cytometry. Basal lipid peroxidation did not differ between sexes. 2-OHE2 increased lipid peroxidation in both male and female thyroid cells, with a more pronounced effect observed in males. In contrast, 4-OHE2 selectively enhanced lipid peroxidation only in female cells. 16α-OHE1 elevated lipid peroxidation in both sexes. E2 significantly increased lipid peroxidation in both male and female cells. Among all compounds tested, E2 exhibited the most potent pro-oxidative activity, particularly in female-derived cells. These findings provide novel insights into the redox-modulating effects of estrogen metabolism in the thyroid and suggest a potential molecular basis for sex-related susceptibility to thyroid dysfunction. While based on an in vitro porcine model, the study increases our understanding of the mechanisms by which estrogenic compounds may influence thyroid pathophysiology, possibly including early events in thyroid disease development or oncogenesis. Full article
Show Figures

Figure 1

14 pages, 1283 KB  
Article
A Comparative Study of COMPLET Code Predictions with Experimental Data on Alpha Particle-Induced Reactions on Cobalt Isotope up to 120 MeV
by Cherie Sisay Mekonen and Ayyagari Venkata Mohan Rao
Atoms 2025, 13(12), 96; https://doi.org/10.3390/atoms13120096 - 4 Dec 2025
Viewed by 419
Abstract
A comparative study of alpha-induced reactions on cobalt isotope with the predictions by COMPLET code is presented for nine excitation functions, 59Co(α,p5n)57Ni, 59Co (α,p6n)56Ni, 59Co(α,2pn)60Co, 59Co(α,3pn)59Fe, 59Co(α,αn)58Co, 59 [...] Read more.
A comparative study of alpha-induced reactions on cobalt isotope with the predictions by COMPLET code is presented for nine excitation functions, 59Co(α,p5n)57Ni, 59Co (α,p6n)56Ni, 59Co(α,2pn)60Co, 59Co(α,3pn)59Fe, 59Co(α,αn)58Co, 59Co(α,α2n)57Co, 59Co(α,α3n)56Co, 59Co(α,2αn)54Mn, and 59Co(α,2α3n)52Mn. The experimental values were taken from the EXFOR data base. Theoretical cross-sections were calculated using initial exciton number n0 = 4 (4p0h) and level density parameter a (=ACN/10) globally. While several reactions showed excellent agreement with experimental data, others displayed a notable discrepancy. This is because of the limitations of the COMPLET code to take the alpha emission in a pre-equilibrium phase. Full article
Show Figures

Figure 1

18 pages, 3167 KB  
Article
Foliar Application of Iron Nanoparticles Improves Chinese Cabbage Growth
by Miaomiao He, Jialu Yu, Yuzhen Wei, Fahad Munir, Fasih Ullah Haider and Liqun Cai
Plants 2025, 14(22), 3509; https://doi.org/10.3390/plants14223509 - 17 Nov 2025
Viewed by 477
Abstract
Iron deficiency limits plant growth and is usually addressed with iron fertilizers. Iron−based nanomaterials (nZVI, α−FeOOH, α−Fe2O3, γ−Fe2O3, and Fe3O4) show promise as novel alternatives, but the effects of sulfide nano−zero−valent [...] Read more.
Iron deficiency limits plant growth and is usually addressed with iron fertilizers. Iron−based nanomaterials (nZVI, α−FeOOH, α−Fe2O3, γ−Fe2O3, and Fe3O4) show promise as novel alternatives, but the effects of sulfide nano−zero−valent iron (S−nZVI) on crops remain little studied. Thus, this study aimed to synthesize a novel iron−based nanomaterial, S−nZVI, using a one−step method, and to evaluate the effects of S−nZVI and nZVI at concentrations ranging from 5 to 100 mg L1 on the physiological and photosynthetic characteristics of Chinese cabbage (Brassica rapa L.). In the study, foliar application of iron nanoparticles increased leaf area, biomass, and photosynthesis, with 50 mg L1 the most efficient concentration (S−nZVI > nZVI). Moreover, the photosynthetic rate of the leaves increased significantly (>200%), and carbohydrate accumulation also increased significantly. Additionally, S−nZVI treatment increased leaf iron content by 5.8−fold compared to the control group, likely by enhancing the activity of antioxidant enzymes. However, the 100 mg L1 S−nZVI treatment significantly inhibited these physiological and biochemical indicators. Overall, the foliar S−nZVI (50 mg L1) enhanced Chinese cabbage growth by alleviating iron deficiency, boosting antioxidant activity, and reducing oxidative stress; further field trials are needed to verify its effectiveness and cost−efficiency. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

20 pages, 16078 KB  
Article
Shielding Gas Effect on Dendrite-Reinforced Composite Bronze Coatings via WAAM Cladding: Minimizing Defects and Intergranular Bronze Penetration into 09G2S Steel
by Artem Okulov, Yulia Khlebnikova, Olga Iusupova, Lada Egorova, Teona Suaridze, Yury Korobov, Boris Potekhin, Michael Sholokhov, Tushar Sonar, Majid Naseri, Tao He and Zaijiu Li
Technologies 2025, 13(11), 525; https://doi.org/10.3390/technologies13110525 - 13 Nov 2025
Viewed by 439
Abstract
Bronze materials are indispensable across numerous industries for enhancing the durability and performance of components, primarily due to their excellent tribological properties, corrosion resistance, and machinability. This study investigates the impact of different atmospheric conditions on the properties of WAAM (wire arc additive [...] Read more.
Bronze materials are indispensable across numerous industries for enhancing the durability and performance of components, primarily due to their excellent tribological properties, corrosion resistance, and machinability. This study investigates the impact of different atmospheric conditions on the properties of WAAM (wire arc additive manufacturing) cladded bronze coatings on 09G2S steel substrate. Specifically, the research examines how varying atmospheres—including ambient air (N2/O2, no shielding gas), pure argon (Ar), carbon dioxide (CO2), and 82% Ar + 18% CO2 (Ar/CO2) mixture—influence coating defectiveness (porosity, cracks, non-uniformity), wettability (manifested as uniform layer formation and strong adhesion), and the extent of intergranular penetration (IGP), leading to the formation of characteristic infiltrated cracks or “bronze whiskers”. Modern investigative techniques such as optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were employed for comprehensive material characterization. Microhardness testing was also carried out to evaluate and confirm the homogeneity of the coating structure. The findings revealed that the bronze coatings primarily consisted of a dominant, highly textured FCC α-Cu phase and a minor BCC α-Fe phase, with Rietveld refinement quantifying a α-Fe volume fraction of ~5%, lattice parameters of a = 0.3616 nm for α-Cu and a = 0.2869 nm for α-Fe, and a modest microstrain of 0.001. The bronze coating deposited under a pure Ar atmosphere exhibited superior performance, characterized by excellent wettability, a uniform, near-defect-free structure with minimal porosity and cracks, and significantly suppressed formation of bronze whiskers, both in quantity and size. Conversely, the coating deposited without a protective atmosphere demonstrated the highest degree of defectiveness, including agglomerated pores and cracks, leading to an uneven interface and extensive whisker growth of varied morphologies. Microhardness tests confirmed that while the Ar-atmosphere coating displayed the lowest hardness (~130 HV0.1), it maintained consistent values across the entire analyzed area, indicating structural homogeneity. These results underscore the critical role of atmosphere selection in WAAM processing for achieving high-quality bronze coatings with enhanced interfacial integrity and functional performance. Full article
Show Figures

Graphical abstract

14 pages, 2974 KB  
Article
Microstructural and Magnetic Evolution of α″-Fe16N2 Bulk Magnets Consolidated by Spark Plasma Sintering
by Marian Grigoras, Mihaela Lostun, Marieta Porcescu, George Stoian and Nicoleta Lupu
Crystals 2025, 15(11), 969; https://doi.org/10.3390/cryst15110969 - 11 Nov 2025
Viewed by 775
Abstract
The development of rare-earth-free permanent magnets represents a strategic direction in advanced magnetic materials research. Among the most promising candidates, the metastable α″-Fe16N2 phase stands out due to its exceptionally high saturation magnetization. In this work, α″-Fe16N2 [...] Read more.
The development of rare-earth-free permanent magnets represents a strategic direction in advanced magnetic materials research. Among the most promising candidates, the metastable α″-Fe16N2 phase stands out due to its exceptionally high saturation magnetization. In this work, α″-Fe16N2 powders produced by gas atomization followed by nitriding were consolidated via Spark Plasma Sintering (SPS). The effects of sintering temperature (498–598 K) and pressure (40–80 MPa) on phase evolution, densification, microstructure, and magnetic properties have been systematically investigated. Optimal processing conditions were identified at 548 K and 60 MPa, providing a balance between densification (~80% of the theoretical density), phase stability, and magnetic performance. X-ray diffraction revealed that the α″-Fe16N2 phase remains stable up to ~523 K, while its decomposition into α-Fe and γ′-Fe4N becomes significant at higher temperatures. The consolidated samples exhibited a saturation magnetization of ~230 Am2/kg, a maximum coercivity of ~86.5 kA/m, and a Mr/Ms ratio of 0.42. δM curve analysis indicated a transition from magnetostatic interactions (at low pressures) to exchange-dominated coupling (at intermediate and high pressures). These findings demonstrate the potential of SPS processing to preserve the α″-Fe16N2 phase and produce rare-earth-free magnetic compacts with competitive magnetic performance, providing a basis for further process optimization. Full article
(This article belongs to the Special Issue New Trends in Materials for Permanent Magnets)
Show Figures

Figure 1

11 pages, 2717 KB  
Article
Precipitation of Fe-25Cr-5Al-Ti-RE Ferritic Stainless Steel Under Different Quenching Temperatures
by Xiaojian Du, Jianghua Ma, Guowang Song, Taotao Li, Jiayi Qi, Chengzhi Liu and Yucheng Yin
Crystals 2025, 15(11), 948; https://doi.org/10.3390/cryst15110948 - 31 Oct 2025
Viewed by 395
Abstract
This study investigated the variation in precipitation in Fe-25Cr-5Al-Ti-RE ferritic stainless steel under different quenching heat treatment temperatures. Quenching heat treatments were performed at five temperatures, namely 600 °C, 700 °C, 800 °C, 900 °C, and 1000 °C. To analyze the alloy’s microstructure [...] Read more.
This study investigated the variation in precipitation in Fe-25Cr-5Al-Ti-RE ferritic stainless steel under different quenching heat treatment temperatures. Quenching heat treatments were performed at five temperatures, namely 600 °C, 700 °C, 800 °C, 900 °C, and 1000 °C. To analyze the alloy’s microstructure and precipitation behavior, comprehensive characterization techniques were employed, including X-ray Diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results demonstrated that after quenching at these temperatures, the main precipitation in the alloy was a chromium-rich phase (α′), aluminum oxide (Al2O3), titanium carbide (TiC), and titanium nitride (TiN). Specifically, Al2O3 was detected exclusively after heat treatments at 800 °C, 900 °C, and 1000 °C, with its particle size ranging from 10 nm to 100 nm. During high-temperature heat treatment, aluminum atoms and oxygen atoms in the matrix interacted with each other, and fine Al2O3 particles precipitated through a solid-state phase transition. Regarding titanium-containing precipitates, TiC precipitated after heat treatments at 700 °C, 800 °C, and 900 °C, whereas TiN was only observed after the quenching treatment at 1000 °C. The size of TiC particles fell within the range of 100 nm to 400 nm, while TiN particles exhibited a significantly larger size, spanning from 5 μm to 10 μm. Thermodynamic and kinetic analyses revealed that at elevated temperatures, nitrogen (N) exhibited a relatively high diffusion coefficient in the matrix; meanwhile, titanium (Ti) demonstrated an extremely strong chemical affinity for N. Consequently, even when the N content in the alloy was at a low level, N tended to preferentially react with Ti rather than with carbon (C) to form TiN. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

15 pages, 3394 KB  
Review
Progress and Prospect of Sm-Fe-N Magnets
by Tetsuji Saito
Inorganics 2025, 13(10), 322; https://doi.org/10.3390/inorganics13100322 - 29 Sep 2025
Cited by 1 | Viewed by 1588
Abstract
High-performance but expensive neodymium-iron-boron (Nd-Fe-B) magnets are widely used in automotive and electrical applications. Prospective candidates for rare-earth-free magnets include Fe-based magnets such as L10-FeNi and α″-Fe16N2 phase. However, these rare-earth-free magnets cannot replace Nd-Fe-B magnets due to [...] Read more.
High-performance but expensive neodymium-iron-boron (Nd-Fe-B) magnets are widely used in automotive and electrical applications. Prospective candidates for rare-earth-free magnets include Fe-based magnets such as L10-FeNi and α″-Fe16N2 phase. However, these rare-earth-free magnets cannot replace Nd-Fe-B magnets due to their lower coercivity. Thus, the development of Sm-based magnets, using the relatively abundant rare-earth element Sm, has become a focus of attention. A promising, cheaper alternative with excellent magnetic properties is the Samarium-iron-nitride (Sm-Fe-N) magnet. This paper describes the production and magnetic properties of Sm-Fe-N powders with Th2Zn17 and TbCu7 phases. The production process and magnetic properties of Sm-Fe-N bonded magnets prepared from the powders are also described. Current approaches for producing Sm-Fe-N sintered magnets are included. Full article
Show Figures

Figure 1

36 pages, 9959 KB  
Article
Design and Validation of Elastic Dies for Enhanced Metal Powder Compaction: A FEM and Experimental Study
by Dan Cristian Noveanu and Simona Noveanu
Materials 2025, 18(19), 4491; https://doi.org/10.3390/ma18194491 - 26 Sep 2025
Viewed by 705
Abstract
Metal powder compaction in rigid dies often suffers from high ejection forces, non-uniform density, and accelerated tool wear. We investigate an elastic-sleeve die concept in which a conical shrink-fit sleeve provides controllable radial confinement during pressing and elastic relaxation during extraction. An extensive [...] Read more.
Metal powder compaction in rigid dies often suffers from high ejection forces, non-uniform density, and accelerated tool wear. We investigate an elastic-sleeve die concept in which a conical shrink-fit sleeve provides controllable radial confinement during pressing and elastic relaxation during extraction. An extensive experimental program on Fe-based and 316L powders, carried out in parallel with finite element analyses (SolidWorks Simulation version 2021; Marc Mentat 2005), quantified the roles of taper angle (α = 1–4°), axial pretension (Δh = 0.5–1.5 mm), and friction. Contact pressure increased from ≈52 MPa at α = 1° to ≈200 MPa at α = 3°, with negligible gains beyond 3°. For 316L, relative density reached ρ ≈ 0.889 at 325 kN with Δh = 1.5 mm; Fe–Cu–C achieved ρ ≈ 0.865 under identical conditions. The experimental results provided direct validation of the FEM, with calibrated viscoplastic simulations reproducing density–force trends within ≈±5% (mean density error ≈ 4.6%), while mid-stroke force differences (≈15–20%) reflected rearrangement/friction effects not captured by the constitutive law. The combined evidence identifies an optimal window of α ≈ 3° and Δh ≈ 1.0–1.5 mm that maximizes contact pressure and densification without overstressing the sleeve. Elastic relaxation of the sleeve facilitates extraction and suggests reduced ejection effort compared with rigid dies. These findings support elastic dies as a practical route to improved densification and tool life in powder metallurgy. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

20 pages, 2100 KB  
Article
Fe2+-Sensing α-Synuclein Iron-Responsive Messenger RNA/eIF4F Complex Binding and Regulating mRNA Translation Activation and Repression
by Mateen A. Khan
Int. J. Mol. Sci. 2025, 26(19), 9320; https://doi.org/10.3390/ijms26199320 - 24 Sep 2025
Viewed by 607
Abstract
Alpha-synuclein (α-Syn) protein plays a crucial role in the pathophysiology of Parkinson’s disease (PD). In the 5′-untranslated regions (5′-UTRs) of α-Syn, mRNA has a structured iron-responsive element (IRE) with a stem loop that regulates translation. Iron (labile as Fe2+) enhances protein [...] Read more.
Alpha-synuclein (α-Syn) protein plays a crucial role in the pathophysiology of Parkinson’s disease (PD). In the 5′-untranslated regions (5′-UTRs) of α-Syn, mRNA has a structured iron-responsive element (IRE) with a stem loop that regulates translation. Iron (labile as Fe2+) enhances protein synthesis rates through an IRE mRNA. This investigation aimed to describe the way in which α-Syn IRE interacts with eIF4F and establish a relationship between binding affinity and translation efficiency. The strong binding affinity of α-Syn IRE with eIF4F was demonstrated by a fluorescence-based experiment, with Ka = 8.4 × 106 M−1 at 25 °C. Fe2+ further increased (~three-fold) the affinity of α-Syn IRE with eIF4F, outcompeting binding with IRP1. With an increase in temperature (10–30 °C), Kd values increased from 35.8 ± 1.6 nM to 158 ± 8.7 nM for the interaction of α-Syn IRE with eIF4F; however, adding Fe2+ demonstrated significantly increased affinity throughout the same temperature range. Thermodynamic analyses demonstrated that α-Syn IRE/eIF4F binding occurred spontaneously, with the presence of van der Waals and hydrogen bonding. Fe2+ enhanced the α-Syn IRE/eIF4F complex’s change in enthalpic and binding free energy contributions, which led to a more stable complex formation through the involvement of more hydrogen bonding. Exogenous addition of eIF4F in depleted WG or RR lysates restored α-Syn protein synthesis. Fe2+ further boosted α-Syn mRNA translation. IRP1 repressed α-Syn translation, although the addition of Fe2+ reversed this effect by boosting activator eIF4F binding and decreasing repressor IRP1 binding. These findings reveal the significance of iron in the α-synuclein mRNA regulatory process and validate its contribution as a strong enhancer of α-Syn mRNA translation. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

Back to TopTop