Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,675)

Search Parameters:
Journal = Photonics
Section = General

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 902 KiB  
Article
Flat Top Non-Polarizing Optical Bandpass Filtering in Form of Planar Optical Waveguide
by Jianhua Liu and Ping Jiang
Photonics 2025, 12(7), 724; https://doi.org/10.3390/photonics12070724 (registering DOI) - 17 Jul 2025
Abstract
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top [...] Read more.
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top and polarization-independent optical bandpass filter structure is proposed based on experimentally verified polarization independency in the form of a prism-pair coupled planar optical waveguide (POW). The POW is composed of two waveguide stacks, which consists of nine planar thin-film layers. Theoretical simulations show that the flat band top spans about 5 nm with transmittance over 97.8%. The passband is designed to be centered at 632.8 nm, the He-Ne laser wavelength, and the FWHM (full width at half maximum) bandwidth is about 35 nm. Within 0.5° tuning for the incident angle of the light, the passband could be shifted within 50 nm, while its transmittance fluctuates only less than 1% and the passband shape distorts only slightly. This type of OBF is potentially applicable in various fields of optical and laser spectroscopies. Full article
Show Figures

Figure 1

17 pages, 4685 KiB  
Article
Development of an Automated Phase-Shifting Interferometer Using a Homemade Liquid-Crystal Phase Shifter
by Zhenghao Song, Lin Xu, Jing Wang, Xitong Liang and Jun Dai
Photonics 2025, 12(7), 722; https://doi.org/10.3390/photonics12070722 (registering DOI) - 16 Jul 2025
Abstract
In this paper, an automatic phase-shifting interferometer has been developed using a homemade liquid-crystal phase shifter, which demonstrates a low-cost, fully automated technical solution for measuring the phase information of optical waves in devices. Conventional phase-shifting interferometers usually rely on PZT piezoelectric phase [...] Read more.
In this paper, an automatic phase-shifting interferometer has been developed using a homemade liquid-crystal phase shifter, which demonstrates a low-cost, fully automated technical solution for measuring the phase information of optical waves in devices. Conventional phase-shifting interferometers usually rely on PZT piezoelectric phase shifters, which are complex, require additional half-inverse and half-transparent optics to build the optical path, and are expensive. To overcome these limitations, we used a laboratory-made liquid-crystal waveplate as a phase shifter and integrated it into a Mach–Zehnder phase-shifting interferometer. The system is controlled by an STM32 microcontroller and self-developed measurement software, and it utilizes a four-step phase-shift interferometry algorithm and the CPULSI phase-unwrapping algorithm to achieve automatic phase measurements. Phase test experiments using a standard plano-convex lens and a homemade liquid-crystal grating as test objects demonstrate the feasibility and accuracy of the device by the fact that the measured focal lengths are in good agreement with the nominal values, and the phase distributions of the gratings are also in good agreement with the predefined values. This study validates the potential of liquid-crystal-based phase shifters for low-cost, fully automated optical phase measurements, providing a simpler and cheaper alternative to conventional methods. Full article
Show Figures

Figure 1

14 pages, 2149 KiB  
Article
Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film
by Ziming Dong, Guoqing Sun, Yuqing Zhao, Yaxin Wang, Lei Ding, Liqin Tang and Yigang Li
Photonics 2025, 12(7), 718; https://doi.org/10.3390/photonics12070718 - 16 Jul 2025
Abstract
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient [...] Read more.
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient amplification in an erbium–ytterbium-based hybrid slot waveguide consisting of a silicon nitride waveguide and a thin-film active layer/electron-beam resist. The electron-beam resist as the upper cladding layer not only possesses the role of protecting the waveguide but also has tighter optical confinement in the vertical cross-section direction. On this basis, an accurate and comprehensive dynamic model of an erbium–ytterbium co-doped amplifier is realized by introducing quenched ions. A modal gain of above 20 dB is achieved at the signal wavelength of 1530 nm in a 1.4 cm long hybrid slot waveguide, with fractions of quenched ions fq = 30%. In addition, the proposed hybrid waveguide amplifiers exhibit higher modal gain than conventional air-clad amplifiers under the same conditions. Endowing silicon nitride photonic integrated circuits with efficient amplification enriches the integration of various active functionalities on silicon. Full article
Show Figures

Figure 1

12 pages, 5633 KiB  
Article
Study on Joint Intensity in Real-Space and k-Space of SFS Super-Resolution Imaging via Multiplex Illumination Modulation
by Xiaoyu Yang, Haonan Zhang, Feihong Lin, Xu Liu and Qing Yang
Photonics 2025, 12(7), 717; https://doi.org/10.3390/photonics12070717 - 16 Jul 2025
Abstract
This paper studied the general mechanism of spatial-frequency-shift (SFS) super-resolution imaging based on multiplex illumination modulation. The theory of SFS joint intensity was first proposed. Experiments on parallel slots with discrete spatial frequency (SF) distribution and V-shape slots with continuous SF distribution were [...] Read more.
This paper studied the general mechanism of spatial-frequency-shift (SFS) super-resolution imaging based on multiplex illumination modulation. The theory of SFS joint intensity was first proposed. Experiments on parallel slots with discrete spatial frequency (SF) distribution and V-shape slots with continuous SF distribution were carried out, and their real-space images and k-space images were obtained. The influence of single illumination with different SFS and mixed illumination with various combinations on SFS super-resolution imaging was analyzed. The phenomena of sample SF coverage were discussed. The SFS super-resolution imaging characteristics based on low-coherence illumination and highly localized light fields were discovered. The phenomenon of image magnification during SFS super-resolution imaging process was discussed. The differences and connections between the SF spectrum of objects and the k-space images obtained in SFS super-resolution imaging process were explained. This provides certain support for optimization of high-throughput SFS super-resolution imaging. Full article
Show Figures

Figure 1

8 pages, 2367 KiB  
Article
Microwave-Controlled Spectroscopy Evolution for Different Rydberg States
by Yinglong Diao, Haoliang Hu, Xiaofei Li, Zhibo Li, Feitong Zeng, Yanbin Chen and Shuhang You
Photonics 2025, 12(7), 715; https://doi.org/10.3390/photonics12070715 - 16 Jul 2025
Abstract
In this paper, a series of electromagnetically-induced-transparent (EIT) spectra of different Rydberg states, controlled by microwaves, in rubidium (Rb) thermal vapor are presented. The novel evolution regularity for different Rydberg states can be found by experimentally detected transmitted EIT spectra, which can reveal [...] Read more.
In this paper, a series of electromagnetically-induced-transparent (EIT) spectra of different Rydberg states, controlled by microwaves, in rubidium (Rb) thermal vapor are presented. The novel evolution regularity for different Rydberg states can be found by experimentally detected transmitted EIT spectra, which can reveal the primary quantum number of different Rydberg states and how to influence microwave control spectroscopy evolution regularity, and which can pave the way in order to address the challenge of selecting Rydberg states for applications in Rydberg microwave field detection. This is helpful for the development of measuring standards of the microwave field in Rydberg states. Full article
Show Figures

Figure 1

21 pages, 2217 KiB  
Article
AI-Based Prediction of Visual Performance in Rhythmic Gymnasts Using Eye-Tracking Data and Decision Tree Models
by Ricardo Bernardez-Vilaboa, F. Javier Povedano-Montero, José Ramon Trillo, Alicia Ruiz-Pomeda, Gema Martínez-Florentín and Juan E. Cedrún-Sánchez
Photonics 2025, 12(7), 711; https://doi.org/10.3390/photonics12070711 - 14 Jul 2025
Viewed by 106
Abstract
Background/Objective: This study aims to evaluate the predictive performance of three supervised machine learning algorithms—decision tree (DT), support vector machine (SVM), and k-nearest neighbors (KNN) in forecasting key visual skills relevant to rhythmic gymnastics. Methods: A total of 383 rhythmic gymnasts aged 4 [...] Read more.
Background/Objective: This study aims to evaluate the predictive performance of three supervised machine learning algorithms—decision tree (DT), support vector machine (SVM), and k-nearest neighbors (KNN) in forecasting key visual skills relevant to rhythmic gymnastics. Methods: A total of 383 rhythmic gymnasts aged 4 to 27 years were evaluated in various sports centers across Madrid, Spain. Visual assessments included clinical tests (near convergence point accommodative facility, reaction time, and hand–eye coordination) and eye-tracking tasks (fixation stability, saccades, smooth pursuits, and visual acuity) using the DIVE (Devices for an Integral Visual Examination) system. The dataset was split into training (70%) and testing (30%) subsets. Each algorithm was trained to classify visual performance, and predictive performance was assessed using accuracy and macro F1-score metrics. Results: The decision tree model demonstrated the highest performance, achieving an average accuracy of 92.79% and a macro F1-score of 0.9276. In comparison, the SVM and KNN models showed lower accuracies (71.17% and 78.38%, respectively) and greater difficulty in correctly classifying positive cases. Notably, the DT model outperformed the others in predicting fixation stability and accommodative facility, particularly in short-duration fixation tasks. Conclusion: The decision tree algorithm achieved the highest performance in predicting short-term fixation stability, but its effectiveness was limited in tasks involving accommodative facility, where other models such as SVM and KNN outperformed it in specific metrics. These findings support the integration of machine learning in sports vision screening and suggest that predictive modeling can inform individualized training and performance optimization in visually demanding sports such as rhythmic gymnastics. Full article
Show Figures

Figure 1

16 pages, 5752 KiB  
Article
Hybrid-Integrated Multi-Lines Optical-Phased-Array Chip
by Shengmin Zhou, Mingjin Wang, Jingxuan Chen, Zhaozheng Yi, Jiahao Si and Wanhua Zheng
Photonics 2025, 12(7), 699; https://doi.org/10.3390/photonics12070699 - 10 Jul 2025
Viewed by 209
Abstract
We propose a hybrid-integrated III–V-silicon optical-phased-array (OPA) based on passive alignment flip–chip bonding technology and provide new solutions for LiDAR. To achieve a large range of vertical beam steering in a hybrid-integrated OPA, a multi-lines OPA in a single chip is introduced. The [...] Read more.
We propose a hybrid-integrated III–V-silicon optical-phased-array (OPA) based on passive alignment flip–chip bonding technology and provide new solutions for LiDAR. To achieve a large range of vertical beam steering in a hybrid-integrated OPA, a multi-lines OPA in a single chip is introduced. The system allows parallel hybrid integration of multiple dies onto a single wafer, achieving a multi-fold improvement in tuning efficiency. In order to increase the range of horizontal beam steering, we propose a half-wavelength pitch waveguide emitter with non-uniform width to reduce the crosstalk, which can remove the higher-order grating lobes in free space. In this work, we simulate OPA individually for four-lines and eight-lines. As a result, we simultaneously achieved a beam steering with nearly ±90° (horizontal) × 17.2° (vertical, when four-line OPA) or 39.6° (vertical, when eight-line OPA) field of view (FOV) and a high tuning efficiency with 1.13°/nm (when eight-line OPA). Full article
Show Figures

Figure 1

23 pages, 3781 KiB  
Article
Influence of Uncertainties in Optode Positions on Self-Calibrating or Dual-Slope Diffuse Optical Measurements
by Giles Blaney, Angelo Sassaroli, Tapan Das and Sergio Fantini
Photonics 2025, 12(7), 697; https://doi.org/10.3390/photonics12070697 - 10 Jul 2025
Viewed by 98
Abstract
Self-calibrating and dual-slope measurements have been used in the field of diffuse optics for robust assessment of absolute values or temporal changes in the optical properties of highly scattering media and biological tissue. These measurements employ optical probes with a minimum of two [...] Read more.
Self-calibrating and dual-slope measurements have been used in the field of diffuse optics for robust assessment of absolute values or temporal changes in the optical properties of highly scattering media and biological tissue. These measurements employ optical probes with a minimum of two source positions and a minimum of two detector positions. This work focuses on a quantitative analysis of the impact of errors in these source and detector positions on the assessment of optical properties. We considered linear, trapezoidal, and rectangular optode arrangements and theoretical computations based on diffusion theory for semi-infinite homogeneous media. We found that uncertainties in optodes’ positions may have a greater impact on measurements of absolute scattering versus absorption coefficients. For example, a 4.1% and 19% average error in absolute absorption and scattering, respectively, can be expected by displacing every optode in a linear arrangement by 1 mm in any direction. The impact of optode position errors is typically smaller for measurements of absorption changes. In each geometrical arrangement (linear, trapezoid, rectangular), we identify the direction of the position uncertainty for each optode that has minimal impact on the optical measurements. These results can guide the optimal design of optical probes for self-calibrating and dual-slope measurements. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

16 pages, 2510 KiB  
Article
Aberration Theoretical Principle of Broadband Multilayer Refractive–Diffractive Optical Elements by Polychromatic Integral Aberration Method
by Ying Yang, Chongxing Liu, Wanting Yang, Yumin Wei, Mengyuan Liu, Bo Dong and Changxi Xue
Photonics 2025, 12(7), 690; https://doi.org/10.3390/photonics12070690 - 8 Jul 2025
Viewed by 139
Abstract
Multilayer diffractive optical elements (MLDOEs), which have broadband imaging performance, are widely used in lightweight and compact optical systems on the surface of the refractive lenses forming refractive–diffractive lenses. However, current research is generally limited to its broadband diffraction efficiency distribution and rarely [...] Read more.
Multilayer diffractive optical elements (MLDOEs), which have broadband imaging performance, are widely used in lightweight and compact optical systems on the surface of the refractive lenses forming refractive–diffractive lenses. However, current research is generally limited to its broadband diffraction efficiency distribution and rarely involves the study of the imaging quality of multilayer refractive–diffractive optical elements in the broadband. The lack of research on its aberration principle and the absence of methods on how to achieve average aberration control in the broadband have led to a decline in imaging quality when it is applied to the optical system. Therefore, in this paper, we have derived in detail the aberration theory of multilayer refractive–diffractive optical elements and proposed the polychromatic integral aberration (PIA) method to evaluate the aberration characteristics of multilayer diffraction optical elements in the whole broadband. First, we start with the aberrations of diffractive optical elements in the air, and then derive the overall aberrations applied to multilayer refractive–diffractive optical elements. Then, based on the performance of the average aberrations throughout the entire broadband, a broadband aberration evaluation method named PIA is proposed. Finally, the design of traditional multilayer diffraction optical elements, the design of refractive–diffractive multilayer optical elements based on the derivation, and the design of multilayer refraction diffraction optical elements under the PIA method are compared. The results show that the multilayer refractive–diffractive optical element designed by PIA can effectively achieve aberration control and balanced aberration performance in the whole broadband. This research provides a practical and feasible path for exploring the imaging quality of broadband multilayer refractive–diffractive optical elements. Full article
Show Figures

Figure 1

10 pages, 4530 KiB  
Article
A Switchable-Mode Full-Color Imaging System with Wide Field of View for All Time Periods
by Shubin Liu, Linwei Guo, Kai Hu and Chunbo Zou
Photonics 2025, 12(7), 689; https://doi.org/10.3390/photonics12070689 - 8 Jul 2025
Viewed by 203
Abstract
Continuous, single-mode imaging systems fail to deliver true-color high-resolution imagery around the clock under extreme lighting. High-fidelity color and signal-to-noise ratio imaging across the full day–night cycle remains a critical challenge for surveillance, navigation, and environmental monitoring. We present a competitive dual-mode imaging [...] Read more.
Continuous, single-mode imaging systems fail to deliver true-color high-resolution imagery around the clock under extreme lighting. High-fidelity color and signal-to-noise ratio imaging across the full day–night cycle remains a critical challenge for surveillance, navigation, and environmental monitoring. We present a competitive dual-mode imaging platform that integrates a 155 mm f/6 telephoto daytime camera with a 52 mm f/1.5 large-aperture low-light full-color night-vision camera into a single, co-registered 26 cm housing. By employing a sixth-order aspheric surface to reduce the element count and weight, our system achieves near-diffraction-limited MTF (>0.5 at 90.9 lp/mm) in daylight and sub-pixel RMS blur < 7 μm at 38.5 lp/mm under low-light conditions. Field validation at 0.0009 lux confirms high-SNR, full-color capture from bright noon to the darkest nights, enabling seamless switching between long-range, high-resolution surveillance and sensitive, low-light color imaging. This compact, robust design promises to elevate applications in security monitoring, autonomous navigation, wildlife observation, and disaster response by providing uninterrupted, color-faithful vision in all lighting regimes. Full article
(This article belongs to the Special Issue Research on Optical Materials and Components for 3D Displays)
Show Figures

Figure 1

15 pages, 6000 KiB  
Article
The Algorithm for Recognizing Superposition of Wave Aberrations from Focal Pattern Based on Partial Sums
by Sergey G. Volotovsky, Pavel A. Khorin, Aleksey P. Dzyuba and Svetlana N. Khonina
Photonics 2025, 12(7), 687; https://doi.org/10.3390/photonics12070687 - 7 Jul 2025
Viewed by 148
Abstract
In this paper, we investigate the possibility of recognizing a superposition of wave aberrations from a focal pattern based on a matrix of partial sums. Due to the peculiarities of the focal pattern, some types of the considered superpositions are recognized ambiguously from [...] Read more.
In this paper, we investigate the possibility of recognizing a superposition of wave aberrations from a focal pattern based on a matrix of partial sums. Due to the peculiarities of the focal pattern, some types of the considered superpositions are recognized ambiguously from the intensity pattern in the focal plane by standard error-reduction algorithms. It is numerically shown that when recognizing superpositions of Zernike functions from the intensity pattern in the focal plane, the use of step-by-step optimization in combination with the Levenberg–Marquardt algorithm yields good results only with an initial approximation close to the solution. In some cases, the root mean square reaches 0.3, which is unacceptable for precise detection in optical systems that require prompt correction of aberrations in real time. Therefore, to overcome this drawback, an algorithm was developed that considers partial sums, which made it possible to increase the convergence range and achieve unambiguous recognition results for aberrations (root mean square does not exceed 10−8) described by superpositions of Zernike functions up to n = 5. Full article
Show Figures

Figure 1

12 pages, 441 KiB  
Article
Absolute Measurement of Coherent Backscattering Using a Spatial Light Modulator for Coherence Modification
by Karsten Pink, Niklas Fritzsche, Manuel Petzi, Alwin Kienle and Florian Foschum
Photonics 2025, 12(7), 685; https://doi.org/10.3390/photonics12070685 - 7 Jul 2025
Viewed by 180
Abstract
Coherent backscattering is an interference phenomenon that occurs in the backwards direction of the incident illumination. It arises from photons traveling the same path in opposite directions within a scattering medium. Accurately determining the background signal for normalization can be challenging in such [...] Read more.
Coherent backscattering is an interference phenomenon that occurs in the backwards direction of the incident illumination. It arises from photons traveling the same path in opposite directions within a scattering medium. Accurately determining the background signal for normalization can be challenging in such measurements. This study investigates the use of a spatial light modulator to control spatial coherence, effectively switching the interference on and off. This approach enables independent, absolute measurements of both the signal and background across the full angular detection range without modifying the experimental setup. We demonstrate this method experimentally, highlighting the importance of accurate background determination in coherent backscattering measurements using a Fourier-based setup. Additionally, we demonstrate that measurements normalized to the correct background closely match Monte Carlo simulations of the coherent backscattering signal. Full article
Show Figures

Figure 1

15 pages, 1917 KiB  
Article
Temperature-Dependent Polarization Characterization and Birefringence Inversion in Super-Twisted Nematic Liquid Crystals
by Houtong Liu, Bin Wang, Minjuan Mao, Yuanyuan Qian and Dan Wang
Photonics 2025, 12(7), 683; https://doi.org/10.3390/photonics12070683 - 7 Jul 2025
Viewed by 169
Abstract
The temperature-dependent polarization performance of super-twisted nematic liquid crystals (STN-LCs) when used as polarizers has garnered considerable scholarly attention. In this study, the transmittance of an STN-LC cell was measured under incident light wavelengths of 650 nm, 532 nm, and 405 nm over [...] Read more.
The temperature-dependent polarization performance of super-twisted nematic liquid crystals (STN-LCs) when used as polarizers has garnered considerable scholarly attention. In this study, the transmittance of an STN-LC cell was measured under incident light wavelengths of 650 nm, 532 nm, and 405 nm over the temperature range of 30 °C to 100 °C. The STN-LC cell was employed both as the sample under test and as an analyzer in a rotational measurement setup to investigate how its polarization properties vary with temperature. The results indicate that the LC cell exhibits the characteristics of a linear polarizer under red light (650 nm) and violet laser (405 nm) across the full temperature range. However, under green laser (532 nm), when the temperature exceeds 60 °C, its extinction ratio is poor, suggesting its unsuitability for polarization applications under such conditions. A birefringence inversion formula was derived using the transmittance difference method, which effectively eliminates the influence of the glass substrates on the measured transmittance of the LC layer. Utilizing this method, a simple optical setup consisting of a polarizer and photodetector was constructed to accurately extract the birefringence of the LC. The birefringence of super-twisted nematic liquid crystal can be obtained by the transmittance difference method, which is low-cost, has a simple optical path, and is convenient for temperature-controlled experimental measurements of the liquid crystal cell. The findings of this study provide methodological support for the precise determination of birefringence in LCs exhibiting linear polarization characteristics. Full article
Show Figures

Figure 1

16 pages, 2134 KiB  
Article
Research on Field-of-View Reconstruction Technology of Specific Bands for Spatial Integral Field Spectrographs
by Jie Song, Yuyu Tang, Jun Wei and Xiaoxian Huang
Photonics 2025, 12(7), 682; https://doi.org/10.3390/photonics12070682 - 7 Jul 2025
Viewed by 189
Abstract
Integral field technology, as an advanced spectroscopic imaging technique, can be used to acquire the spatial and spectral information of the target area simultaneously. In this paper, we propose a method for the field reconstruction of characteristic wavelength bands of a space integral [...] Read more.
Integral field technology, as an advanced spectroscopic imaging technique, can be used to acquire the spatial and spectral information of the target area simultaneously. In this paper, we propose a method for the field reconstruction of characteristic wavelength bands of a space integral field spectrograph. The precise positioning of the image slicer is crucial to ensure that the spectrograph can accurately capture the position of each slicer in space. Firstly, the line spread function information and the characteristic location coordinates are obtained. Next, the positioning points of each group of image slicers under a specific spectral band are determined by quintic spline interpolation and a double-closed-loop optimization framework, thus establishing connection points for the responses of different image slicers. Then, the accuracy and reliability of the data are further improved by fitting the signal intensity of pixel points. Finally, the data of all image slicers are aligned to complete the field reconstruction of the characteristic wavelength bands of the space integral field spectrograph. This provides new ideas for the two-dimensional spatial reconstruction of spectrographs using image slicers as integral field units in specific spectral bands and accurately restores the two-dimensional spatial field observations of spatial integral field spectrographs. Full article
Show Figures

Figure 1

18 pages, 3893 KiB  
Article
Creation of Low-Loss Dual-Ring Optical Filter via Temporal Coupled Mode Theory and Direct Binary Search Inverse Design
by Yuchen Hu, Tong Wang, Wen Zhou and Bo Hu
Photonics 2025, 12(7), 681; https://doi.org/10.3390/photonics12070681 - 6 Jul 2025
Viewed by 195
Abstract
We propose a dual-ring optical filter based on direct binary search inverse design. The proposed device comprises two cascaded rings in an add–drop configuration. A physical model was established using temporal coupled mode theory to derive theoretical spectra and analyze key parameters governing [...] Read more.
We propose a dual-ring optical filter based on direct binary search inverse design. The proposed device comprises two cascaded rings in an add–drop configuration. A physical model was established using temporal coupled mode theory to derive theoretical spectra and analyze key parameters governing transmission performance. Based on theoretical results, a direct binary search algorithm was implemented. The parameters of the proposed device were calculated using a three-dimensional finite-difference time-domain method for verification. The numerical results demonstrate a free spectral range of 86 nm, with insertion loss and extinction ratios of 0.3 dB and 22 dB, respectively. The proposed device has a narrow spectral linewidth of 0.3 nm within a compact footprint of 24 μm×25.5 μm. The device shows significant application potential in laser external cavities and dense wavelength division multiplexing systems. Moreover, this work provides a novel methodology for precision design of photonic devices. Full article
Show Figures

Figure 1

Back to TopTop