Research on Optical Materials and Components for 3D Displays

A special issue of Photonics (ISSN 2304-6732).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 870

Special Issue Editors


E-Mail Website
Guest Editor
School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
Interests: planar optics; 3D display; flat lens

E-Mail Website
Guest Editor
School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
Interests: liquid crystal technology; light field 3D display

E-Mail Website
Guest Editor
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
Interests: 3D display; 3D data security
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Three-dimensional displays promise to redefine the interaction between human and machines by creating depth cues. This technology has found applications in various fields, including education, medicine, entertainment, and the automobile industry. This Special Issue focuses on the development of the 3D displays with high resolution, large field of view, accurate depth cues and high light efficiency. In recent years, significant progress has been made regarding the materials and components utilized in 3D displays. A number of compound lens arrays, lenticular lens arrays and microlens arrays with improved parameters have been developed. Novel planar optical elements such as metasurfaces, liquid crystal gratings, and diffraction flat lenses have promoted promising 3D display results. The tunable materials employed in 3D displays, such as liquid crystal, lithium niobate and vanadium dioxide, have also advanced rapidly. Therefore, the characteristics and parameters of 3D display technology and 3D display systems have been enhanced. In addition, the novel application of novel optical materials and components for 3D displays has been demonstrated.

This Special Issue welcomes the submission of manuscripts that provide an overview of recent advances in key optical materials and components for 3D displays. All theoretical, numerical and experimental papers will be accepted.

Dr. Jianyu Hua
Dr. Fan Chu
Dr. Hanle Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • holographic 3D display
  • light field 3D display
  • augmented reality 3D display
  • near eye 3D display
  • microlens array
  • metalens array
  • metasurface
  • flat lens
  • liquid crystal
  • lithium niobate
  • directional backlight
  • eye tracker

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 4530 KiB  
Article
A Switchable-Mode Full-Color Imaging System with Wide Field of View for All Time Periods
by Shubin Liu, Linwei Guo, Kai Hu and Chunbo Zou
Photonics 2025, 12(7), 689; https://doi.org/10.3390/photonics12070689 - 8 Jul 2025
Abstract
Continuous, single-mode imaging systems fail to deliver true-color high-resolution imagery around the clock under extreme lighting. High-fidelity color and signal-to-noise ratio imaging across the full day–night cycle remains a critical challenge for surveillance, navigation, and environmental monitoring. We present a competitive dual-mode imaging [...] Read more.
Continuous, single-mode imaging systems fail to deliver true-color high-resolution imagery around the clock under extreme lighting. High-fidelity color and signal-to-noise ratio imaging across the full day–night cycle remains a critical challenge for surveillance, navigation, and environmental monitoring. We present a competitive dual-mode imaging platform that integrates a 155 mm f/6 telephoto daytime camera with a 52 mm f/1.5 large-aperture low-light full-color night-vision camera into a single, co-registered 26 cm housing. By employing a sixth-order aspheric surface to reduce the element count and weight, our system achieves near-diffraction-limited MTF (>0.5 at 90.9 lp/mm) in daylight and sub-pixel RMS blur < 7 μm at 38.5 lp/mm under low-light conditions. Field validation at 0.0009 lux confirms high-SNR, full-color capture from bright noon to the darkest nights, enabling seamless switching between long-range, high-resolution surveillance and sensitive, low-light color imaging. This compact, robust design promises to elevate applications in security monitoring, autonomous navigation, wildlife observation, and disaster response by providing uninterrupted, color-faithful vision in all lighting regimes. Full article
(This article belongs to the Special Issue Research on Optical Materials and Components for 3D Displays)
Show Figures

Figure 1

13 pages, 7359 KiB  
Article
Tabletop 3D Display with Large Radial Viewing Angle Based on Panoramic Annular Lens Array
by Min-Yang He, Cheng-Bo Zhao, Xue-Rui Wen, Yi-Jian Liu, Qiong-Hua Wang and Yan Xing
Photonics 2025, 12(5), 515; https://doi.org/10.3390/photonics12050515 - 21 May 2025
Viewed by 290
Abstract
Tabletop 3D display is an emerging display form that enables multiple users to share viewing around a central tabletop, making it promising for the application of collaborative work. However, achieving an ideal ring-shaped viewing zone with a large radial viewing angle remains a [...] Read more.
Tabletop 3D display is an emerging display form that enables multiple users to share viewing around a central tabletop, making it promising for the application of collaborative work. However, achieving an ideal ring-shaped viewing zone with a large radial viewing angle remains a challenge for most current tabletop 3D displays. This paper presents a tabletop 3D display based on a panoramic annular lens array to realize a large radial viewing angle. Each panoramic annular lens in the array is designed with a block-structured panoramic front unit and a relay lens system, enabling the formation of a ring-shaped viewing zone and increasing the radial angle of the outgoing light. Additionally, the diffusion characteristics of the optical diffusing screen component are analyzed under large angles of incidence after light passes through the panoramic annular lens array. Then, a method for generating the corresponding elemental image array is presented. The results of the simulation experiments demonstrate that the viewing range is improved to −78.4–−42.2° and 42.6–78.9°, resulting in a total radial viewing angle of up to 72.5°, and the proposed 3D display can present a 360° viewable 3D image with correct perspective and parallax. Full article
(This article belongs to the Special Issue Research on Optical Materials and Components for 3D Displays)
Show Figures

Figure 1

Back to TopTop