Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,524)

Search Parameters:
Journal = Micromachines
Section = A:Physics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7856 KB  
Article
Single-Die-Level MEMS Post-Processing for Prototyping CMOS-Based Neural Probes Combined with Optical Fibers for Optogenetic Neuromodulation
by Gabor Orban, Alberto Perna, Matteo Vincenzi, Raffaele Adamo, Gian Nicola Angotzi, Luca Berdondini and João Filipe Ribeiro
Micromachines 2026, 17(2), 159; https://doi.org/10.3390/mi17020159 - 26 Jan 2026
Abstract
The integration of complementary metal–oxide–semiconductor (CMOS) and micro-electromechanical systems (MEMSs) technologies for miniaturized biosensor fabrication enables unprecedented spatiotemporal resolution in monitoring the bioelectrical activity of the nervous system. Wafer-level CMOS technology incurs high costs, but multi-project wafer (MPW) runs mitigate this by allowing [...] Read more.
The integration of complementary metal–oxide–semiconductor (CMOS) and micro-electromechanical systems (MEMSs) technologies for miniaturized biosensor fabrication enables unprecedented spatiotemporal resolution in monitoring the bioelectrical activity of the nervous system. Wafer-level CMOS technology incurs high costs, but multi-project wafer (MPW) runs mitigate this by allowing multiple users to share a single wafer. Still, monolithic CMOS biosensors require specialized surface materials or device geometries incompatible with standard CMOS processes. Performing MEMS post-processing on the few square millimeters available in MPW dies remains a significant challenge. In this paper, we present a MEMS post-processing workflow tailored for CMOS dies that supports both surface material modification and layout shaping for intracortical biosensing applications. To address lithographic limitations on small substrates, we optimized spray-coating photolithography methods that suppress edge effects and enable reliable patterning and lift-off of diverse materials. We fabricated a needle-like, 512-channel simultaneous neural recording active pixel sensor (SiNAPS) technology based neural probe designed for integration with optical fibers for optogenetic studies. To mitigate photoelectric effects induced by light stimulation, we incorporated a photoelectric shield through simple modifications to the photolithography mask. Optical bench testing demonstrated >96% light-shielding effectiveness at 3 mW of light power applied directly to the probe electrodes. In vivo experiments confirmed the probe’s capability for high-resolution electrophysiological measurements. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
15 pages, 4576 KB  
Article
Design of a Compact UHF Wilkinson Power Divider Using a Combined T-Shaped–CCMRC Resonator for Harmonic Suppression
by Saeed Roshani, Salah I. Yahya, Golshan Mohamadpour and Sobhan Roshani
Micromachines 2026, 17(2), 158; https://doi.org/10.3390/mi17020158 - 26 Jan 2026
Abstract
This paper proposes a compact UHF microstrip divider with wideband harmonic suppression. A combined resonator, formed by a T-shaped resonator and a pair of coupled compact microstrip resonant cells (CCMRCs), is embedded into each divider branch to replace the conventional quarter-wavelength transmission lines. [...] Read more.
This paper proposes a compact UHF microstrip divider with wideband harmonic suppression. A combined resonator, formed by a T-shaped resonator and a pair of coupled compact microstrip resonant cells (CCMRCs), is embedded into each divider branch to replace the conventional quarter-wavelength transmission lines. The divider is designed on an FR4 substrate (εr = 4.4, thickness = 60 mil) for a center frequency of 570 MHz. Full-wave electromagnetic simulations indicate equal power division at 570 MHz with return loss better than 39 dB and output-port isolation higher than 47 dB. Moreover, a wide stopband from 1.5 GHz to 3.5 GHz is obtained, yielding strong attenuation for the third-to-sixth harmonics. The proposed layout occupies 19.6 mm × 21.6 mm, which is about 76% smaller than a conventional 570 MHz divider (42.7 mm × 41 mm). The proposed design is suitable for modern wireless communication systems. Full article
(This article belongs to the Special Issue Recent Advancements in Microwave and Optoelectronics Devices)
Show Figures

Figure 1

19 pages, 1924 KB  
Article
Thermal–Electrical Fusion for Real-Time Condition Monitoring of IGBT Modules in Transportation Systems
by Man Cui, Yun Liu, Zhen Hu and Tao Shi
Micromachines 2026, 17(2), 154; https://doi.org/10.3390/mi17020154 - 25 Jan 2026
Abstract
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework [...] Read more.
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework that innovatively synergizes micro-scale spatial thermal analysis with microsecond electrical dynamics inversion. The method requires only non-invasive temperature measurements on the module baseplate and utilizes standard electrical signals (load current, duty cycle, switching frequency, DC-link voltage) readily available from the converter’s controller, enabling simultaneous diagnosis without dedicated voltage or high-bandwidth current sensors. First, a non-invasive assessment of solder layer fatigue is achieved by correlating the normalized thermal gradient (TP) on the baseplate with the underlying thermal impedance (ZJC). Second, for bond wire aging, a cost-effective inversion algorithm estimates the on-state voltage (Vce,on) by calculating the total power loss from temperature, isolating the conduction loss (Pcond) with the aid of a Foster-model-based junction temperature (TJ) estimate, and finally computing Vce,on at a unique current inflection point (IC,inf) to nullify TJ dependency. Third, the health states from both failure modes are fused for comprehensive condition evaluation. Experimental validation confirms the method’s accuracy in tracking both degradation modes. This work provides a practical and economical solution for online IGBT condition monitoring, enhancing the predictive maintenance and operational safety of transportation electrification systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
19 pages, 3442 KB  
Article
A Responsive and Precise Particle Position Control System Combining a Sidewall-Driven Peristaltic Micropump and a High-Speed Camera
by Yuta Tanaka and Toshio Takayama
Micromachines 2026, 17(2), 147; https://doi.org/10.3390/mi17020147 - 23 Jan 2026
Viewed by 81
Abstract
The systems to manipulate a single particle in a microfluidic channel can be adopted to pharmacological and cytological experiments of single-cell observation. The common cell position systems use syringe pumps driven by piezoelectric devices, and these have a flow quantity limit. To achieve [...] Read more.
The systems to manipulate a single particle in a microfluidic channel can be adopted to pharmacological and cytological experiments of single-cell observation. The common cell position systems use syringe pumps driven by piezoelectric devices, and these have a flow quantity limit. To achieve single-cell manipulation using actuators without limiting the flow quantity and with a low risk of contamination, we propose a particle control system that uses a sidewall-driven peristaltic micropump driven by pneumatic pressure. The adopted pump was integrated into a single-layer mold with a flow path and was simple to fabricate. Unlike syringe pumps, it not only pumps water forward, but also inhales from the back simultaneously, and can pump indefinitely. We developed a responsive and precise particle position control system using this pump in combination with a high-speed camera. In this system, the pumping pressure is operated by real-time adjustment of a pneumatic pressure supply to realize PID control. This approach moves the particle rapidly when it is far from a designated target position for a quick approach and slowly near the target position to position precisely. Full article
(This article belongs to the Special Issue MEMS Actuators and Their Applications)
Show Figures

Figure 1

4 pages, 199 KB  
Editorial
Future Development Strategy of Piezoelectric Devices
by Kenji Uchino
Micromachines 2026, 17(1), 145; https://doi.org/10.3390/mi17010145 - 22 Jan 2026
Viewed by 37
Abstract
Firstly, the five key development trends in the field of piezoelectric materials are discussed to offer the present perspective: “Performance to Reliability,” “Hard to Soft,” “Macro to Nano,” “Homo to Hetero,” and “Single to Multi-functional [...] Full article
(This article belongs to the Section A:Physics)
14 pages, 3687 KB  
Article
Flexible Mesh-Structured Single-Walled Carbon Nanotube Thermoelectric Generators with Enhanced Heat Dissipation for Wearable Applications
by Hiroto Nakayama, Takuya Amezawa, Yuta Asano, Shuya Ochiai, Keisuke Uchida, Yuto Nakazawa and Masayuki Takashiri
Micromachines 2026, 17(1), 139; https://doi.org/10.3390/mi17010139 - 22 Jan 2026
Viewed by 36
Abstract
Thermoelectric generators (TEGs) based on single-walled carbon nanotubes (SWCNTs) offer a promising approach for powering sensors in wearable systems. However, achieving high performance remains challenging because the high thermal conductivity of SWCNTs limits the temperature gradient within the device. We previously developed flexible [...] Read more.
Thermoelectric generators (TEGs) based on single-walled carbon nanotubes (SWCNTs) offer a promising approach for powering sensors in wearable systems. However, achieving high performance remains challenging because the high thermal conductivity of SWCNTs limits the temperature gradient within the device. We previously developed flexible SWCNT-TEGs with enhanced heat dissipation by dip-coating SWCNTs onto mesh sheets; however, their performance in real wearable environments had not been evaluated. In this study, we demonstrate the practical operation of these SWCNT-TEGs under conditions such as fingertip contact and cap-based wear. The output voltage increased proportionally with the number of fingers touching the device, and a stable voltage of 6.1 mV was obtained when the TEG was mounted on a cap and worn outdoors at 7 °C. These findings highlight the promising potential of flexible SWCNT-TEGs as power sources for next-generation wearable technologies, including human–computer interaction and health monitoring. Full article
(This article belongs to the Special Issue Manufacturing and Application of Advanced Thin-Film-Based Device)
Show Figures

Figure 1

12 pages, 4245 KB  
Article
The Influence of Mask Modification on Microneedle Strength in Deep X-Ray Lithography
by Jie Wang, Yigui Li and Lin Du
Micromachines 2026, 17(1), 136; https://doi.org/10.3390/mi17010136 - 22 Jan 2026
Viewed by 26
Abstract
Hollow microneedle arrays of different shapes were prepared for blood collection and precise drug delivery. This microneedle array was investigated using shape modification and hole position optimization, and different approaches to increase the strength of the microneedles and hole alignment were analyzed. Firstly, [...] Read more.
Hollow microneedle arrays of different shapes were prepared for blood collection and precise drug delivery. This microneedle array was investigated using shape modification and hole position optimization, and different approaches to increase the strength of the microneedles and hole alignment were analyzed. Firstly, solid-tip microneedles were prepared using deep X-ray lithography, and an approach to increase the strength of microneedles by modifying the shape of the photomask was examined. Secondly, photomasks with holes in different positions were designed, and the exposure was aligned at different hole positions. Finally, the maximum stress and minimum displacement were analyzed using ANSYS 10.0 simulation software, while the proof-of-strength properties were accomplished by inserting microneedles into a polyimide film. The experimental results show that the modification of the shape of the photomask can increase the strength of the microneedles and compensate for the shortcomings generated by the moving exposure. Placing the holes away from the center of the tip can increase the flow rate of the microneedles. A horizontal offset of 30 μm and a vertical offset of 50 μm from the center of the microneedle tip were determined to be the best positions for aligning the holes. This meets the requirements for microneedle strength and sharpness. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors, 4th Edition)
Show Figures

Figure 1

11 pages, 5308 KB  
Article
Tunable Wavelength-Multiplexed Dual-Frequency Bound Pulse in a Carbon-Nanotube-Based Fiber Laser
by Lin Wang, Guoqing Hu, Yan Wang, Guangwei Chen, Liang Xuan, Zhehai Zhou and Jun Yu
Micromachines 2026, 17(1), 133; https://doi.org/10.3390/mi17010133 - 20 Jan 2026
Viewed by 147
Abstract
We experimentally and theoretically demonstrate coexistence of three different wavelength-multiplexed bound dual-frequency pulses in an all-fiber mode-locked fiber laser, effectively achieved by exploiting polarization-dependent loss effects and two uneven gain peaks of Er-doped fiber. With the single wall carbon-nanotube-based intensity modulation, wavelength-multiplexed dual-frequency [...] Read more.
We experimentally and theoretically demonstrate coexistence of three different wavelength-multiplexed bound dual-frequency pulses in an all-fiber mode-locked fiber laser, effectively achieved by exploiting polarization-dependent loss effects and two uneven gain peaks of Er-doped fiber. With the single wall carbon-nanotube-based intensity modulation, wavelength-multiplexed dual-frequency pulses located at 1531.1 nm and 1556.6 nm are obtained. Changing the polarization rotation angles in the fiber cavity, one of the two asynchronous pulses evolves into a bound state of a doublet, in which the center wavelength of the bound solitons is centered at ~1530 nm or ~1556 nm. The relative phase between the two bound solitons or modulation depth of bound solitons can be switched by a polarization controller. A simulation method based on coupled Ginzburg–Landau equations is provided to characterize the laser physics and understand the mechanism behind the dynamics of tuning between different bound dual-frequency pulses. The proposed fiber laser will provide a potential way to understand multiple soliton dynamics and implementation in optical frequency combs generation. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

11 pages, 538 KB  
Article
Metamaterial Incident Photon Reconstruction Theory Based on Resonant Dipole Phase
by Boli Xu and Renbin Zhong
Micromachines 2026, 17(1), 130; https://doi.org/10.3390/mi17010130 - 20 Jan 2026
Viewed by 175
Abstract
In this study, a Metamaterial Incident Photon Reconstruction Theory (MIPRT) is developed to describe the modulation process of metamaterials on incident photons. The theory includes the Invariant Incident Photon Hypothesis and Resonant Phase Deconstruction and Quantification; it reveals the modulation characteristics of metamaterials [...] Read more.
In this study, a Metamaterial Incident Photon Reconstruction Theory (MIPRT) is developed to describe the modulation process of metamaterials on incident photons. The theory includes the Invariant Incident Photon Hypothesis and Resonant Phase Deconstruction and Quantification; it reveals the modulation characteristics of metamaterials on incident photons, not by first absorption and then re-emission but by inducing coherent destructive interference, which brings about redistribution of the spatial probability of photon occurrence. This theory is validated in a single-layer metamaterial, and a unique relationship between the resonant phase and amplitude is derived and confirmed by simulation. The proposed MIPRT brings a comprehensive understanding of the electromagnetic (EM) response characteristics of metamaterials and provides a new idea for metamaterial theory from another perspective. Full article
Show Figures

Figure 1

19 pages, 5655 KB  
Article
Structure Design Optimization of a Differential Capacitive MEMS Accelerometer Based on a Multi-Objective Elitist Genetic Algorithm
by Dongda Yang, Yao Chu, Ruitao Liu, Xiwen Zhang, Saifei Yuan, Fan Zhang, Shengjie Xuan, Yunzhang Chi, Jiahui Liu, Zetong Lei and Rui You
Micromachines 2026, 17(1), 129; https://doi.org/10.3390/mi17010129 - 19 Jan 2026
Viewed by 280
Abstract
This article describes a global structure optimization methodology for microelectromechanical system devices based on a multi-objective elitist genetic algorithm. By integrating a parameterized model with a multi-objective evolutionary framework, the approach can efficiently explore design space and concurrently optimize multiple metrics. A differential [...] Read more.
This article describes a global structure optimization methodology for microelectromechanical system devices based on a multi-objective elitist genetic algorithm. By integrating a parameterized model with a multi-objective evolutionary framework, the approach can efficiently explore design space and concurrently optimize multiple metrics. A differential capacitive MEMS accelerometer is presented to demonstrate the method. Four key objectives, including resonant frequency, static capacitance, dynamic capacitance, and feedback force, are simultaneously optimized to enhance sensitivity, bandwidth, and closed-loop driving capability. After 25 generations, the algorithm converged to a uniformly distributed Pareto front. The experimental results indicate that, compared with the initial design, the sensitivity-oriented design achieves a 56.1% reduction in static capacitance and an 85.5% improvement in sensitivity. The global multi-objective optimization achieves a normalized hypervolume of 35.8%, notably higher than the local structure optimization, demonstrating its superior design space coverage and trade-off capability. Compared to single-objective optimization, the multi-objective approach offers a superior strategy by avoiding the limitation of overemphasizing resonant frequency at the expense of other metrics, thereby enabling a comprehensive exploration of the design space. Full article
(This article belongs to the Special Issue Artificial Intelligence for Micro Inertial Sensors)
Show Figures

Figure 1

17 pages, 2450 KB  
Article
Design, Fabrication and Characterization of Multi-Frequency MEMS Transducer for Photoacoustic Imaging
by Alberto Prud’homme and Frederic Nabki
Micromachines 2026, 17(1), 122; https://doi.org/10.3390/mi17010122 - 17 Jan 2026
Viewed by 212
Abstract
This work presents the design, fabrication, and experimental characterization of microelectromechanical system (MEMS) ultrasonic transducers engineered for multi-frequency operation in photoacoustic imaging (PAI). The proposed devices integrate multiple resonant geometries, including circular diaphragms, floated crosses, anchored cross membranes, and cantilever arrays, within compact [...] Read more.
This work presents the design, fabrication, and experimental characterization of microelectromechanical system (MEMS) ultrasonic transducers engineered for multi-frequency operation in photoacoustic imaging (PAI). The proposed devices integrate multiple resonant geometries, including circular diaphragms, floated crosses, anchored cross membranes, and cantilever arrays, within compact footprints to overcome the inherently narrow frequency response of conventional MEMS transducers. All devices were fabricated using the PiezoMUMPs commercial microfabrication process, with finite element simulations guiding modal optimization and laser Doppler vibrometry used for experimental validation in air. The circular diaphragm exhibited a narrowband response with a dominant resonance at 1.69 MHz and a quality factor (Q) of 268, confirming the bandwidth limitations of traditional geometries. In contrast, complex designs such as the floated cross and cantilever arrays achieved significantly broader spectral responses, with resonances spanning from 275 kHz to beyond 7.5 MHz. The cantilever array, with systematically varied arm lengths, achieved the highest modal density through asynchronous activation across the spectrum. Results demonstrate that structurally diverse MEMS devices can overcome the bandwidth constraints of traditional piezoelectric transducers. The integration of heterogeneous MEMS geometries offers a viable approach for broadband sensitivity in PAI, enabling improved spatial resolution and depth selectivity without compromising miniaturization or manufacturability. Full article
Show Figures

Figure 1

18 pages, 4916 KB  
Review
Broadband Flexible Quantum Dots/Graphene Photodetectors
by Judy Z. Wu and Andrew Shultz
Micromachines 2026, 17(1), 121; https://doi.org/10.3390/mi17010121 - 16 Jan 2026
Viewed by 311
Abstract
Nanohybrids consisting of quantum dots and graphene (QD/graphene) provides a unique scheme to design quantum sensors. The quantum confinement in QDs enables spectral tunability, while that in graphene provides superior photocarrier mobility. The combination of them allows for broadband light absorption and high [...] Read more.
Nanohybrids consisting of quantum dots and graphene (QD/graphene) provides a unique scheme to design quantum sensors. The quantum confinement in QDs enables spectral tunability, while that in graphene provides superior photocarrier mobility. The combination of them allows for broadband light absorption and high photoconduction gain that in turn leads to high photoresponsivity in QD/Gr nanohybrid photodetectors. Since the first QD/graphene photodetector was reported in 2012, intensive research has been conducted on this topic. In this paper, a review of the recent progress made on QD/Gr nanohybrid photodetectors will be provided. Among many applications, there will be a particular focus on broadband and flexible photodetectors, which make use of the inherent advantages of the QD/Gr nanohybrids. The remaining challenges and future perspectives will be discussed in this emerging topic area. Full article
(This article belongs to the Special Issue Photodetectors and Their Applications)
Show Figures

Figure 1

32 pages, 8754 KB  
Review
Plasmonics Meets Metasurfaces: A Vision for Next Generation Planar Optical Systems
by Muhammad A. Butt
Micromachines 2026, 17(1), 119; https://doi.org/10.3390/mi17010119 - 16 Jan 2026
Viewed by 383
Abstract
Plasmonics and metasurfaces (MSs) have emerged as two of the most influential platforms for manipulating light at the nanoscale, each offering complementary strengths that challenge the limits of conventional optical design. Plasmonics enables extreme subwavelength field confinement, ultrafast light–matter interaction, and strong optical [...] Read more.
Plasmonics and metasurfaces (MSs) have emerged as two of the most influential platforms for manipulating light at the nanoscale, each offering complementary strengths that challenge the limits of conventional optical design. Plasmonics enables extreme subwavelength field confinement, ultrafast light–matter interaction, and strong optical nonlinearities, while MSs provide versatile and compact control over phase, amplitude, polarization, and dispersion through planar, nanostructured interfaces. Recent advances in materials, nanofabrication, and device engineering are increasingly enabling these technologies to be combined within unified planar and hybrid optical platforms. This review surveys the physical principles, material strategies, and device architectures that underpin plasmonic, MS, and hybrid plasmonic–dielectric systems, with an emphasis on interface-mediated optical functionality rather than long-range guided-wave propagation. Key developments in modulators, detectors, nanolasers, metalenses, beam steering devices, and programmable optical surfaces are discussed, highlighting how hybrid designs can leverage strong field localization alongside low-loss wavefront control. System-level challenges including optical loss, thermal management, dispersion engineering, and large-area fabrication are critically examined. Looking forward, plasmonic and MS technologies are poised to define a new generation of flat, multifunctional, and programmable optical systems. Applications spanning imaging, sensing, communications, augmented and virtual reality, and optical information processing illustrate the transformative potential of these platforms. By consolidating recent progress and outlining future directions, this review provides a coherent perspective on how plasmonics and MSs are reshaping the design space of next-generation planar optical hardware. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, 4th Edition)
Show Figures

Figure 1

22 pages, 10582 KB  
Article
A Novelty Temperature Compensation Model for Dual-Mass Vibration MEMS Gyroscope Based on Machine Learning and TTAO-VMD Algorithm
by Wenbo Tan, Yan Wang and Xinwang Wang
Micromachines 2026, 17(1), 120; https://doi.org/10.3390/mi17010120 - 16 Jan 2026
Viewed by 135
Abstract
The output of MEMS gyroscopes is highly vulnerable to ambient temperature variations, which induce temperature drift errors and degrade navigation precision. Consequently, temperature compensation for MEMS gyroscope outputs is of critical importance. To address this issue, this study proposes a novel temperature compensation [...] Read more.
The output of MEMS gyroscopes is highly vulnerable to ambient temperature variations, which induce temperature drift errors and degrade navigation precision. Consequently, temperature compensation for MEMS gyroscope outputs is of critical importance. To address this issue, this study proposes a novel temperature compensation model for the dual-mass vibration MEMS gyroscope (DMVMG), which integrates the TTAO-VMD, 1D-CNN-Bi-GRU-Attention, and SHAKF algorithms. The implementation process of the proposed model is as follows: firstly, the structural configuration and fundamental operating principle of the DMVMG are elaborated. Secondly, the temperature error compensation model is constructed based on the fusion of the TTAO-VMD, 1D-CNN-Bi-GRU-Attention, and SHAKF algorithms. Thirdly, the raw output signal of the DMVMG is preprocessed using the TTAO-VMD algorithm, which decomposes the signal into four distinct components, namely high-frequency noise, white noise, mixed noise, and temperature-induced noise. Subsequently, the high-frequency and white noise components are eliminated, while the mixed noise component is filtered via the SHAKF algorithm. On this basis, the 1D-CNN-Bi-GRU-Attention algorithm is adopted to establish the temperature error compensation model, with the temperature, temperature change rate, time, and temperature-induced noise as input variables. Finally, the optimized signal components are reconstructed to yield the temperature-compensated output of the DMVMG. The experimental results based on the Allan variance method demonstrate that the angle random walk (N) is reduced from 18.56 °/h to 0.17 °/h, and the bias instability (B) is decreased from 32.76 °/h to 0.82 °/h, verifying the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue MEMS Inertial Device, 3rd Edition)
Show Figures

Figure 1

22 pages, 3453 KB  
Review
Diamond Sensor Technologies: From Multi Stimulus to Quantum
by Pak San Yip, Tiqing Zhao, Kefan Guo, Wenjun Liang, Ruihan Xu, Yi Zhang and Yang Lu
Micromachines 2026, 17(1), 118; https://doi.org/10.3390/mi17010118 - 16 Jan 2026
Viewed by 380
Abstract
This review explores the variety of diamond-based sensing applications, emphasizing their material properties, such as high Young’s modulus, thermal conductivity, wide bandgap, chemical stability, and radiation hardness. These diamond properties give excellent performance in mechanical, pressure, thermal, magnetic, optoelectronic, radiation, biosensing, quantum, and [...] Read more.
This review explores the variety of diamond-based sensing applications, emphasizing their material properties, such as high Young’s modulus, thermal conductivity, wide bandgap, chemical stability, and radiation hardness. These diamond properties give excellent performance in mechanical, pressure, thermal, magnetic, optoelectronic, radiation, biosensing, quantum, and other applications. In vibration sensing, nano/poly/single-crystal diamond resonators operate from MHz to GHz frequencies, with high quality factor via CVD growth, diamond-on-insulator techniques, and ICP etching. Pressure sensing uses boron-doped piezoresistive, as well as capacitive and Fabry–Pérot readouts. Thermal sensing merges NV nanothermometry, single-crystal resonant thermometers, and resistive/diode sensors. Magnetic detection offers FeGa/Ti/diamond heterostructures, complementing NV. Optoelectronic applications utilize DUV photodiodes and color centers. Radiation detectors benefit from diamond’s neutron conversion capability. Biosensing leverages boron-doped diamond and hydrogen-terminated SGFETs, as well as gas targets such as NO2/NH3/H2 via surface transfer doping and Pd Schottky/MIS. Imaging uses AFM/NV probes and boron-doped diamond tips. Persistent challenges, such as grain boundary losses in nanocrystalline diamond, limited diamond-on-insulator bonding yield, high temperature interface degradation, humidity-dependent gas transduction, stabilization of hydrogen termination, near-surface nitrogen-vacancy noise, and the cost of high-quality single-crystal diamond, are being addressed through interface and surface chemistry control, catalytic/dielectric stack engineering, photonic integration, and scalable chemical vapor deposition routes. These advances are enabling integrated, high-reliability diamond sensors for extreme and quantum-enhanced applications. Full article
Show Figures

Figure 1

Back to TopTop