Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (97)

Search Parameters:
Journal = Fishes
Section = Environment and Climate Change

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2588 KiB  
Article
Trace Metal Contamination in Commercial Fish from the Ecuadorian Amazon: Preliminary Health Risk Assessment in a Local Market
by Gabriela Elena Echevarría Díaz, Fernando Rafael Sánchez Orellana, Rafael Enrique Yunda Vega, Jonathan Santiago Valdiviezo-Rivera and Blanca Patricia Ríos-Touma
Fishes 2025, 10(8), 392; https://doi.org/10.3390/fishes10080392 (registering DOI) - 7 Aug 2025
Abstract
Trace metal pollution in tropical freshwater ecosystems poses growing public health concerns, particularly in regions where fisheries are central to food security; however, little is known about metal exposure risks in the Western Amazon. This study presents the first assessment of trace metal [...] Read more.
Trace metal pollution in tropical freshwater ecosystems poses growing public health concerns, particularly in regions where fisheries are central to food security; however, little is known about metal exposure risks in the Western Amazon. This study presents the first assessment of trace metal concentrations in fish sold at the main market in El Coca, a rapidly growing city in the Ecuadorian Amazon. We analyzed 11 trace metals in 17 commercially important species and estimated seven health risk indices based on two fish consumption scenarios and international reference dose standards. Our results show that all species exceeded recommended thresholds for arsenic, mercury, and lead, while one species surpassed guidelines for aluminum. Metal concentrations varied by species and river of origin: small catfish from the Payamino River had elevated cadmium, chromium, copper, and manganese levels, potentially linked to upstream gold mining, whereas larger catfish showed higher mercury and arsenic accumulation. Monte Carlo simulations of risk indices suggested overall low disease risk, but the lack of local demographic data limits accurate assessments for vulnerable groups. Despite sampling limitations, our findings offer the first baseline for monitoring trace metal exposure in the northern Ecuadorian Amazon and underscore the need for targeted public health strategies in this understudied region. Full article
(This article belongs to the Special Issue Toxicology of Anthropogenic Pollutants on Fish)
Show Figures

Graphical abstract

15 pages, 1539 KiB  
Article
Microplastics Induce Structural Color Deterioration in Fish Poecilia reticulata Mediated by Oxidative Stress
by Hong-Yu Ren, Huan-Chao Ma, Rui-Peng He, Cong-Cong Gao, Bin Wen, Jian-Zhong Gao and Zai-Zhong Chen
Fishes 2025, 10(8), 382; https://doi.org/10.3390/fishes10080382 - 5 Aug 2025
Viewed by 50
Abstract
Microplastics (MPs) can affect fish health by inducing oxidative stress, but their impact on structural coloration remains poorly understood. This study investigated the effects of environmentally relevant concentrations (16 and 160 μg/L) of MPs and nanoplastics (NPs) exposure on growth, oxidative stress and [...] Read more.
Microplastics (MPs) can affect fish health by inducing oxidative stress, but their impact on structural coloration remains poorly understood. This study investigated the effects of environmentally relevant concentrations (16 and 160 μg/L) of MPs and nanoplastics (NPs) exposure on growth, oxidative stress and structural coloration in blue strain guppy fish (Poecilia reticulata). Results showed exposure to 160 μg/L MPs significantly reduced specific growth rate of fish compared to controls. Plastic accumulation followed a dose-dependent pattern, especially within gut concentrations. Oxidative stress responses differed between MPs and NPs: 160 μg/L MPs decreased SOD activity in skin and reduced GSH levels, while 160 μg/L NPs increased MDA levels in gut tissues, indicating severe lipid peroxidation. Structural coloration analysis revealed exposure to 160 μg/L MPs decreased lightness and increased yellowness, demonstrating reduced blue coloration. This was accompanied by an increase in skin uric acid content, suggesting that guanine conversion might occur to combat oxidative stress. These findings demonstrate that MPs, particularly at high concentrations, impair growth and induce oxidative stress in guppies. To counteract stress, guanine in iridophores may be converted into uric acid, leading to a decline in structural coloration. This study is the first to reveal that MPs disrupt structural coloration of fish, providing new insights into the ecological risks of plastic pollution on aquatic organisms. Full article
(This article belongs to the Special Issue Impact of Climate Change and Adverse Environments on Aquaculture)
Show Figures

Figure 1

19 pages, 3457 KiB  
Article
Transcriptome Analysis Revealed the Immune and Metabolic Responses of Grass Carp (Ctenopharyngodon idellus) Under Acute Salinity Stress
by Leshan Ruan, Baocan Wei, Yanlin Liu, Rongfei Mu, Huang Li and Shina Wei
Fishes 2025, 10(8), 380; https://doi.org/10.3390/fishes10080380 - 5 Aug 2025
Viewed by 135
Abstract
Freshwater salinization, an escalating global environmental stressor, poses a significant threat to freshwater biodiversity, including fish communities. This study investigates the grass carp (Ctenopharyngodon idellus), a species with the highest aquaculture output in China, to elucidate the molecular underpinnings of its [...] Read more.
Freshwater salinization, an escalating global environmental stressor, poses a significant threat to freshwater biodiversity, including fish communities. This study investigates the grass carp (Ctenopharyngodon idellus), a species with the highest aquaculture output in China, to elucidate the molecular underpinnings of its physiological adaptations to fluctuating salinity gradients. We used high-throughput mRNA sequencing and differential gene expression profiling to analyze transcriptional dynamics in intestinal and kidney tissues of grass carp exposed to heterogeneous salinity stressors. Concurrent serum biochemical analyses showed salinity stress significantly increased Na+, Cl, and osmolarity, while decreasing lactate and glucose. Salinity stress exerted a profound impact on the global transcriptomic landscape of grass carp. A substantial number of co-regulated differentially expressed genes (DEGs) in kidney and intestinal tissues were enriched in immune and metabolic pathways. Specifically, genes associated with antigen processing and presentation (e.g., cd4-1, calr3b) and apoptosis (e.g., caspase17, pik3ca) exhibited upregulated expression, whereas genes involved in gluconeogenesis/glycolysis (e.g., hk2, pck2) were downregulated. KEGG pathway enrichment analyses revealed that metabolic and cellular structural pathways were predominantly enriched in intestinal tissues, while kidney tissues showed preferential enrichment of immune and apoptotic pathways. Rigorous validation of RNA-seq data via qPCR confirmed the robustness and cross-platform consistency of the findings. This study investigated the core transcriptional and physiological mechanisms regulating grass carp’s response to salinity stress, providing a theoretical foundation for research into grass carp’s resistance to salinity stress and the development of salt-tolerant varieties. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Graphical abstract

17 pages, 4136 KiB  
Article
The Effects of Interactions Between Key Environmental Factors on Non-Specific Indicators in Carassius auratus
by Bin Wang, Hang Yang, Hanping Mao and Qiang Shi
Fishes 2025, 10(8), 372; https://doi.org/10.3390/fishes10080372 - 2 Aug 2025
Viewed by 220
Abstract
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this [...] Read more.
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this species. The key findings revealed that thermal elevation profoundly influenced blood glucose and cortisol concentrations. Notably, exposure to hyperoxic conditions markedly attenuated stress responses relative to hypoxia at equivalent temperatures: cortisol levels were significantly suppressed (reductions of 60.11%, 118.06%, and 34.72%), while blood glucose levels exhibited concurrent increases (16.42%, 26.43%, and 26.34%). Distinctive behavioral patterns, including floating head behavior, surface swimming behavior, and rollover behavior, were identified as indicative behaviors of thermal–oxygen stress. Molecular analysis demonstrated the upregulated expression of stress-associated genes (HSP70, HSP90, HIF-1α, and Prdx3), which correlated temporally with elevated cortisol and glucose concentrations and the manifestation of stress behaviors. Furthermore, a muscle texture assessment indicated that increased DO availability mitigated the textural deterioration induced by heat stress. Collectively, this work establishes an authentic biomarker framework, providing crucial threshold parameters essential for the development of intelligent, real-time environmental monitoring and dynamic regulation systems to enhance climate-resilient aquaculture management. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Figure 1

27 pages, 1569 KiB  
Review
Bisphenols: Endocrine Disruptors and Their Impact on Fish: A Review
by Nikola Peskova and Jana Blahova
Fishes 2025, 10(8), 365; https://doi.org/10.3390/fishes10080365 - 29 Jul 2025
Viewed by 355
Abstract
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for [...] Read more.
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for aquatic organisms. This review summarises the occurrence, environmental distribution, and toxicity of BPs in fish, with a focus on estrogenic, androgenic, thyroid, and glucocorticoid disruptions. Studies consistently show that exposure to BPs leads to altered gene expression, developmental abnormalities, impaired reproduction, and disrupted hormonal signalling in various fish species. Although BPA alternatives like bisphenol S, bisphenol F, or bisphenol AF were introduced as safer options, emerging evidence suggests they may pose equal or greater risks. Regulatory measures are evolving, particularly within the European Union, but legislation remains limited for many bisphenol analogues. This review emphasises the need for comprehensive environmental monitoring, stricter regulatory frameworks, and the development of genuinely safer alternatives to minimise the ecological and health impacts of BPs in aquatic systems. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

55 pages, 3773 KiB  
Review
Molecular Mechanisms and Biomarker-Based Early-Warning Indicators of Heavy Metal Toxicity in Marine Fish
by Andra Oros, Valentina Coatu, Nicoleta Damir, Diana Danilov, Elena Ristea and Luminita Lazar
Fishes 2025, 10(7), 339; https://doi.org/10.3390/fishes10070339 - 10 Jul 2025
Viewed by 616
Abstract
Heavy metals are among the most persistent and bioaccumulative pollutants in marine ecosystems, posing significant toxicological threats to fish via complex molecular and cellular disruptions. This review synthesizes current knowledge on the cascade of mechanistic responses in marine fish following HM exposure, which [...] Read more.
Heavy metals are among the most persistent and bioaccumulative pollutants in marine ecosystems, posing significant toxicological threats to fish via complex molecular and cellular disruptions. This review synthesizes current knowledge on the cascade of mechanistic responses in marine fish following HM exposure, which includes oxidative stress, modulation of antioxidant responses, activation of detoxification systems, DNA damage, inflammation, apoptosis, neuroendocrine disruption, and ultimately, cellular energy imbalance. In addition to established pathways, the review highlights recent advances in mechanistic understanding and biomarker development, including cellular stress responses, epigenetic regulation, metal homeostasis mechanisms, and novel molecular indicators. These mechanisms support the development of an integrated biomarker framework that combines classical indicators (e.g., antioxidant enzymes, metallothionein) with next-generation endpoints (e.g., miRNA profiles, gene-level responses of metal transporters or stress chaperones, epigenetic alterations). The interpretation of biomarker responses requires consideration of the exposure context, environmental variables, and physiological status to ensure accurate assessment of sublethal toxicity in field settings. By bridging mechanistic understanding with biomonitoring relevance, this review provides a comprehensive foundation for advancing molecular tools in pollution monitoring and risk assessment. Special emphasis is placed on biomarkers specific to heavy metal exposure, enhancing their diagnostic value relative to general stress indicators. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

15 pages, 2654 KiB  
Article
Presence and Potential Effect of Microplastics Associated with Anthropic Activity in Two Benthic Fishes Serranus scriba and Lithognathus mormyrus
by Amanda Cohen-Sánchez, Juan Alejandro Sanz, Montserrat Compa, Maria Magdalena Quetglas-Llabrés, Maria del Mar Ribas-Taberner, Lorenzo Gil, Silvia Tejada, Samuel Pinya and Antoni Sureda
Fishes 2025, 10(7), 323; https://doi.org/10.3390/fishes10070323 - 3 Jul 2025
Viewed by 374
Abstract
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species— [...] Read more.
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species—Serranus scriba (more related to rocky bottoms) and Lithognathus mormyrus (more related to sandy bottoms)—in two areas of Mallorca Island (Western Mediterranean) with varying anthropic pressures with similar mixed rocky/sandy bottoms. A total of eight fish samples per species and per area (total n = 32), as well as three water samples (500 mL each) and three sediment samples per area, were collected and analyzed. The results showed that despite plastic presence in both areas, the area with higher tourism affluence was also the most polluted. Fourier transform infrared spectroscopy analysis confirmed that the majority of recovered polymers were polyethylene and polypropylene. The pattern of MPs presence was reflected in the biomarker analysis, which showed higher values of antioxidants, namely catalase (CAT) and superoxide dismutase (SOD); detoxification, namely glutathione s-transferase (GST); and inflammation, namely myeloperoxidase (MPO)—enzymes in the gastrointestinal tract of fish from the more polluted area. However, no statistical differences were found for malondialdehyde (MDA) as a marker of lipid peroxidation. As for differences between species, S. scriba presented a higher presence of MPs and measured biomarkers than in L. Mormyrus, suggesting higher exposure. In conclusion, these results showed that increased anthropic activity is associated with a higher presence of MPs which, in turn, induces an adaptative response in exposed fish. Moreover, species living in the same area could be differentially affected by MPs, which is probably associated with different behavioural and feeding habits. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Figure 1

20 pages, 723 KiB  
Article
Changes in Subcellular Responses in the Digestive Gland of the Freshwater Mussel Unio crassus from a Historically Contaminated Environment
by Zoran Kiralj, Zrinka Dragun, Jasna Lajtner, Krešimira Trgovčić, Tatjana Mijošek Pavin, Bruno Bušić and Dušica Ivanković
Fishes 2025, 10(7), 317; https://doi.org/10.3390/fishes10070317 - 2 Jul 2025
Viewed by 276
Abstract
Utilizing a multi-biomarker approach, we assessed the potential adverse effects of pollutants on subcellular responses in the digestive gland of the freshwater mussel Unio crassus from a historically contaminated lowland section (KIZ) of the river Mrežnica compared to its less impacted upstream karstic [...] Read more.
Utilizing a multi-biomarker approach, we assessed the potential adverse effects of pollutants on subcellular responses in the digestive gland of the freshwater mussel Unio crassus from a historically contaminated lowland section (KIZ) of the river Mrežnica compared to its less impacted upstream karstic section (REF) and their seasonality (spring vs. autumn). This approach accounted for the diverse modes of action of pollutants by including biomarkers of metal exposure (metallothioneins, MT), general stress (total cytosolic proteins, TP), antioxidative capacity (catalase, CAT; glutathione, GSH; glutathione-S-transferase, GST), oxidative damage (malondialdehyde, MDA), and neurotoxicity (acetylcholinesterase, AChE). Only in spring, MT concentrations were 15% higher at the REF site (4.38 ± 1.06 µg mg proteins−1) compared to the KIZ site (3.69 ± 0.63 µg mg proteins−1), likely related to elevated Cd bioaccumulation due to the karstic substrate. Regardless of the season, mussels from KIZ showed consistently lower TP and GSH, with significantly higher CAT, GST, and MDA levels, indicating elevated stress, activation of antioxidant defenses, and oxidative damage from chronic exposure to pro-oxidant pollutants, including metal(loid)s and organic contaminants (e.g., ibuprofen, nicotine). Compared to the REF site, AChE activity at the KIZ site was higher in late spring and lower in early autumn, indicating seasonal variability in AChE activity at the contamination-impacted location driven by fluctuating exposure to neurotoxicants, such as drugs and insecticides. Overall, biomarker responses indicated that mild historical pollution, reinforced by current low-capacity sources, has an observable impact on mussel health, posing long-term risks to sediment-dwelling aquatic organisms. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

25 pages, 8034 KiB  
Article
The Impacts of Marine Heatwaves on Economic Fisheries in Adjacent Sea Regions Around Japan Under Global Warming
by Dan Liu, Xinjun Chen and Bilin Liu
Fishes 2025, 10(7), 299; https://doi.org/10.3390/fishes10070299 - 20 Jun 2025
Viewed by 499
Abstract
Climate change has significantly affected marine fisheries. In recent years, marine heatwaves (MHWs) have intensified concurrently with increasing sea surface temperature (SST), particularly along the coast of Japan in the Northwest Pacific. Although the relationships between MHWs and large-scale climate patterns are well [...] Read more.
Climate change has significantly affected marine fisheries. In recent years, marine heatwaves (MHWs) have intensified concurrently with increasing sea surface temperature (SST), particularly along the coast of Japan in the Northwest Pacific. Although the relationships between MHWs and large-scale climate patterns are well established, the long-term effects of MHWs on fisheries remain uncertain. Considering thermal adaptability, we analyzed the catches of warm- and cold-water species from commercially important fisheries in adjacent sea regions around Japan, correlating them with regional SSTs and MHW indices. Our results show that regional SSTs exhibited a persistent increasing trend, with major shifts occurring around 1988/89 and 1998/99. Pronounced interannual–decadal variabilities were observed in the leading principal components (PCs) of different species groups, with step changes concentrated in 1989~1992, 1999~2003, and 2009~2012. Notably, there was a significant negative response of cold groups to warming SSTs. Among warm-water species, only the Japanese sardine (Sardinops melanostictus) catch exhibited a strong correlation with climate change. Gradient forest analysis and threshold generalized additive models (TGAMs) further revealed the nonlinear, threshold-driven responses of the fish groups to environmental variability, which occurred after step changes in both the environmental factors and catches. Matching analysis between the annual change rates of catches and MHW indices confirmed the detrimental effects of strong MHWs on marine fisheries. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Figure 1

13 pages, 686 KiB  
Article
Mercury and Selenium Trophic Transfer in the Mexican California Current Ecosystem Using a Top Predator as a Model
by Maria Emilia Rechimont, Felipe Amezcua, Jorge Ricardo Ruelas-Inzunza, Roberto Cruz-Garcìa, Juan Roberto Felipe Vallarta-Zárate and Felipe Amezcua-Linares
Fishes 2025, 10(6), 275; https://doi.org/10.3390/fishes10060275 - 5 Jun 2025
Viewed by 449
Abstract
Research on the trophic transfer of trace elements in food chains, particularly toxic elements like mercury (Hg) and essential elements like selenium (Se), is crucial for understanding their impact on human health. In this work, we assessed the transfer of Hg and Se [...] Read more.
Research on the trophic transfer of trace elements in food chains, particularly toxic elements like mercury (Hg) and essential elements like selenium (Se), is crucial for understanding their impact on human health. In this work, we assessed the transfer of Hg and Se in the blue shark (Prionace glauca), a top predator with economic importance. Muscle samples from sharks, as well as their main prey (squid, red shrimp, sardine, and mackerel), were analyzed for Hg and Se concentrations. The Hg levels of sharks were below the recommended legal limit for seafood consumption in Mexico (1 µg·g−1 ww), while Se levels were significantly lower than previously reported for the species. Biomagnification was evaluated in this species by calculating biomagnification factors (BMF) for Hg and Se based on predator-prey element concentrations. Hg showed a BMF of 2.8, indicating biomagnification, while Se had a BMF of 0.2, suggesting biodilution. Trophic transfer factor models supported these findings, showing a positive correlation of Hg concentration with trophic level and a negative correlation with Se. However, while a hazard quotient under one does not pose a risk for consumption, a Se:Hg molar ratio under one estimated in the muscle tissue indicates that Hg levels along this food web should be approached with caution. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

15 pages, 2392 KiB  
Article
The Effect of Temporal and Environmental Conditions on Catch Rates of the Narrow-Barred Spanish Mackerel Setnet Fishery in Khanh Hoa Province, Vietnam
by Nghiep Ke Vu and Khanh Quoc Nguyen
Fishes 2025, 10(6), 257; https://doi.org/10.3390/fishes10060257 - 1 Jun 2025
Viewed by 633
Abstract
Small-scale inshore fisheries significantly contribute to the total landing volumes and have an important role in Vietnamese socioeconomic development, food security, livelihoods, and social well-being. The setnet fishery has been used throughout coastal communities of Vietnam for many decades. Being a passive fishing [...] Read more.
Small-scale inshore fisheries significantly contribute to the total landing volumes and have an important role in Vietnamese socioeconomic development, food security, livelihoods, and social well-being. The setnet fishery has been used throughout coastal communities of Vietnam for many decades. Being a passive fishing gear, the catch efficiency of setnet depends on various conditions such as fish density, season, oceanography, environment, and others. However, very little information exists about the relationship between catch rates and national conditions. Recognizing this research gap, this study examined the effect of temporal and environmental conditions on the catch rates of the narrow-barred Spanish mackerel (Scomberomorus commerson) setnet fishery using long-term data from 2005 to 2016. Overall, the catch of narrow-barred Spanish mackerel decreased over the course of the study. The generalized additive model (GAM) showed that catch rates were significantly affected by sea surface temperature (SST), which peaked at 27 °C. After this temperature point, the catch rates significantly decreased. Temporal variables also contributed to the catch variation. The setnet caught the highest yield in April and May, and more fish were caught during periods of low nightlight intensity than during high illuminated periods. Our study contributes to the understanding of critical factors affecting the catch rates of valuable species, which helps to determine the optimal fishing process of the setnet fishery within the shifting of marine heatwaves. Full article
(This article belongs to the Special Issue Effects of Climate Change on Marine Fisheries)
Show Figures

Figure 1

17 pages, 1255 KiB  
Article
Climate Change and Freshwater Aquaculture: A Modified Slack-Based Measure DEA Approach
by Hao Jiang, Yingli Zhang, Shunxiang Yang and Lu Zhai
Fishes 2025, 10(6), 252; https://doi.org/10.3390/fishes10060252 - 28 May 2025
Viewed by 383
Abstract
As global climate change intensifies and resources become increasingly scarce, China’s sustainable development of freshwater aquaculture faces unprecedented challenges. This study utilizes panel data from 31 provincial-level regions in mainland China (2000–2023) and innovatively constructs a multi-stage sequential modified slack-based measure data envelopment [...] Read more.
As global climate change intensifies and resources become increasingly scarce, China’s sustainable development of freshwater aquaculture faces unprecedented challenges. This study utilizes panel data from 31 provincial-level regions in mainland China (2000–2023) and innovatively constructs a multi-stage sequential modified slack-based measure data envelopment analysis (MSBM-DEA) model. By endogenizing extreme climate factors within the aquaculture production efficiency framework, this study reveals the dynamic impact of climate change on freshwater aquaculture total factor productivity (TFP). The finding indicates that extreme climate events reduce freshwater aquaculture TFP by 1.66% and technical advancement by 18.9%. The impact varies regionally, with eastern provinces experiencing a maximum TFP decline of 3.1%, while western provinces face a significant drop of 5.2%. The eastern region, supported by technology and policy, shows a relatively strong recovery capacity, whereas the western region suffers more due to resource scarcity and technical lag. To tackle these challenges, this study recommends establishing a climate-adaptive TFP monitoring framework and promoting a dual-driven model of technical innovation and efficiency enhancement to bolster fisheries’ climate resilience. This research provides valuable decision making support for climate adaptation strategies in China’s freshwater aquaculture and serves as empirical evidence and theoretical guidance for other climate-vulnerable regions globally. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Figure 1

17 pages, 2657 KiB  
Article
Toxicity and Safety Assessment of Key Pesticides Used in Rice Fields on Rice Flower Carp (Procypris merus)
by Qianxue Shao, Yongming Ruan, Ru Liang, Ruixin Jin, Zhixi Jin, Lin Xie, Yongqing Chi, Jiaojiao Xia and Pingyang Zhu
Fishes 2025, 10(6), 248; https://doi.org/10.3390/fishes10060248 - 25 May 2025
Viewed by 373
Abstract
Integrated rice–fish farming, crucial for sustainable agriculture, relies on the judicious use of pesticide. This study evaluates the toxicity of six common rice-field pesticides on Procypris merus (rice flower carp), a key species in these systems. We conducted acute and chronic toxicity tests, [...] Read more.
Integrated rice–fish farming, crucial for sustainable agriculture, relies on the judicious use of pesticide. This study evaluates the toxicity of six common rice-field pesticides on Procypris merus (rice flower carp), a key species in these systems. We conducted acute and chronic toxicity tests, assessing survival, growth, oxidative stress (SOD, CAT, MDA, 8-OHdG), and neurotoxicity (AChE). Results revealed a spectrum of toxicity: abamectin and trifloxystrobin were highly toxic; pretilachlor was moderately so; and glufosinate-ammonium, triflumezopyrim, and thiazole zinc were low. Notably, triflumezopyrim induced significant oxidative stress and DNA damage, while all three low-toxicity pesticides inhibited AChE activity, indicating potential neurotoxicity. Despite these effects, all observed toxicities were reversible within 7–14 days. Considering that the tested concentrations exceeded typical field application rates, glufosinate-ammonium, triflumezopyrim, and thiazole zinc are deemed relatively safe for P. merus at recommended dosages. Our findings provide critical insights for optimizing pesticide selection in rice–fish farming, balancing pest control with ecological safety, thereby informing sustainable agricultural practices. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

18 pages, 3017 KiB  
Article
Climate Risk in Intermediate Goods Trade: Impacts on China’s Fisheries Production
by Shunxiang Yang, Zefang Liao, Yingli Zhang, Yuqing Ren and Hang Qu
Fishes 2025, 10(5), 210; https://doi.org/10.3390/fishes10050210 - 3 May 2025
Viewed by 416
Abstract
Climate change, especially extreme weather events, has significantly heightened the vulnerability of fisheries production supply chains. This study firstly investigates the input-driven climate risks through intermediate goods trade and their indirect impacts on China’s fisheries sector and constructs the Climate Risk-Trade-Production Model (CRTPM). [...] Read more.
Climate change, especially extreme weather events, has significantly heightened the vulnerability of fisheries production supply chains. This study firstly investigates the input-driven climate risks through intermediate goods trade and their indirect impacts on China’s fisheries sector and constructs the Climate Risk-Trade-Production Model (CRTPM). Key findings include: (1) The input-driven climate risk indicator for China’s fisheries sector has increased over the period 1995–2020, with Brazil, Canada, the United States, Japan, South Korea, and Russia as major contributors. (2) From 1995 to 2020, rising climate risk index in Brazil and Canada negatively affected China’s fisheries output, with a 1% increase in climate risk index resulting in production declines of 0.173% and 0.367%, respectively. (3) In contrast, a reduction in the climate risk index in the United States and Japan lowered intermediate goods prices, boosting China’s output by 0.934% and 0.172%, respectively, for every 1% decrease in the climate risk index. (4) Climate risk index in South Korea and Russia, while initially increasing, eventually stabilized, having minimal impact on China’s fisheries production. It is the importance of monitoring extreme weather events to mitigate the economic vulnerabilities of China’s fisheries. Full article
(This article belongs to the Special Issue Effects of Climate Change on Marine Fisheries)
Show Figures

Figure 1

23 pages, 1585 KiB  
Article
Effects of Climate Change on Korea’s Fisheries Production: An ARDL Approach
by Hoonseok Cho, Pilgyu Jung and Mingyeong Jeong
Fishes 2025, 10(4), 186; https://doi.org/10.3390/fishes10040186 - 18 Apr 2025
Viewed by 1039
Abstract
This study investigates the impact of rising sea surface temperature (SST), increasing carbon dioxide (CO2) emissions, and precipitation variability (PREC) on Korea’s coastal and offshore fisheries production (COFP) from 1993 to 2023 using an autoregressive distributed lag (ARDL) model. The results [...] Read more.
This study investigates the impact of rising sea surface temperature (SST), increasing carbon dioxide (CO2) emissions, and precipitation variability (PREC) on Korea’s coastal and offshore fisheries production (COFP) from 1993 to 2023 using an autoregressive distributed lag (ARDL) model. The results confirm a long-run cointegration relationship, where a 1% increase in SST, CO2, and PREC is associated with respective declines of 3.52%, 0.82%, and 0.34% in COFP, respectively, suggesting persistent negative effects of ocean warming, acidification, and hydrological variability on fisheries production. Robustness checks using Fully Modified Ordinary Least Squares (FMOLS) and Canonical Cointegrating Regression (CCR) validate the stability of the ARDL results. The short-run analysis reveals that past production levels significantly influence current COFP, while SST fluctuations exhibit delayed but economically meaningful effects. The error correction term (−0.75, p < 0.01) confirms a rapid adjustment toward equilibrium following short-term deviations. These findings underscore the necessity of climate-resilient fisheries management. Policy recommendations include adaptive harvest regulations, climate-integrated stock assessments, and enhanced international cooperation for transboundary fish stocks. Additionally, expanding Marine Protected Areas, promoting climate-resilient aquaculture, and strengthening stock enhancement programs through selective breeding and seed release of climate-adapted species are essential for sustaining fisheries under climate change. Full article
(This article belongs to the Special Issue Effects of Climate Change on Marine Fisheries)
Show Figures

Figure 1

Back to TopTop