Mercury and Selenium Trophic Transfer in the Mexican California Current Ecosystem Using a Top Predator as a Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Specimens
2.2. Sampling Procedure
2.3. Data Analysis
3. Results
3.1. Mercury and Selenium Assessment
3.2. Trophic Transfer Models
3.3. Risk Assessment
4. Discussion
4.1. Hg and Se Interaction Assessment in Shark Meat
4.2. Comparison with Similar Studies
4.3. Human Health Risk Assessment and Implications for the Fisheries Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMF | Biomagnification Factor |
TTF | Trophic Transfer Factor |
CCLME | California Current Large Marine Ecosystem |
TL | Trophic Level |
IMIPAS | Mexican Institute for Research in Sustainable Fisheries and Aquaculture |
References
- Valladolid-Garnica, D.E.; Jara-Marini, M.E.; Torres-Rojas, Y.E.; Soto-Jiménez, M.F. Distribution, Bioaccumulation, and Trace Element Transfer among Trophic Levels in the Southeastern Gulf of California. Mar. Pollut. Bull. 2023, 194, 115290. [Google Scholar] [CrossRef] [PubMed]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D. Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, H.; Li, Y. Mercury Stable Isotopes in the Ocean: Analytical Methods, Cycling, and Application as Tracers. Sci. Total Environ. 2023, 874, 162485. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Ali, W.; Zinck, P.; Souissi, S.; Lee, J.-S. Toxicity of Methylmercury in Aquatic Organisms and Interaction with Environmental Factors and Coexisting Pollutants: A Review. Sci. Total Environ. 2024, 943, 173574. [Google Scholar] [CrossRef]
- Bowman, K.L.; Lamborg, C.H.; Agather, A.M. A Global Perspective on Mercury Cycling in the Ocean. Sci. Total Environ. 2020, 710, 136166. [Google Scholar] [CrossRef]
- Rincón-Tomás, B.; Lanzén, A.; Sánchez, P.; Estupiñán, M.; Sanz-Sáez, I.; Bilbao, M.E.; Rojo, D.; Mendibil, I.; Pérez-Cruz, C.; Ferri, M. Revisiting the Mercury Cycle in Marine Sediments: A Potential Multifaceted Role for Desulfobacterota. J. Hazard. Mater. 2024, 465, 133120. [Google Scholar] [CrossRef]
- Zhao, W.; Gan, R.; Xian, B.; Wu, T.; Wu, G.; Huang, S.; Wang, R.; Liu, Z.; Zhang, Q.; Bai, S. Overview of Methylation and Demethylation Mechanisms and Influencing Factors of Mercury in Water. Toxics 2024, 12, 715. [Google Scholar] [CrossRef]
- Sonke, J.E.; Angot, H.; Zhang, Y.; Poulain, A.; Björn, E.; Schartup, A. Global Change Effects on Biogeochemical Mercury Cycling. Ambio 2023, 52, 853–876. [Google Scholar] [CrossRef]
- Teffer, A.K.; Staudinger, M.D.; Taylor, D.L.; Juanes, F. Trophic Influences on Mercury Accumulation in Top Pelagic Predators from Offshore New England Waters of the Northwest Atlantic Ocean. Mar. Environ. Res. 2014, 101, 124–134. [Google Scholar] [CrossRef]
- Pałka, I.; Saniewska, D.; Bielecka, L.; Kobos, J.; Grzybowski, W. Uptake and Trophic Transfer of Selenium into Phytoplankton and Zooplankton of the Southern Baltic Sea. Sci. Total Environ. 2024, 909, 168312. [Google Scholar] [CrossRef]
- Mayland, H.F.; James, L.F.; Panter, K.E.; Sonderegger, J.L. 2 Selenium in Seleniferous Environments. In Selenium in Agriculture and the Environment; American Society of Agronomy, Inc.: Madison, WI, USA, 1989. [Google Scholar]
- Li, X.; Meng, Z.; Bao, L.; Su, H.; Wei, Y.; Liu, X.; Wang, F.; Ji, N.; Zhang, R. Occurrence, Bioaccumulation, and Risk Evaluation of Selenium in Typical Chinese Aquatic Ecosystems. J. Clean. Prod. 2024, 435, 140552. [Google Scholar] [CrossRef]
- Adams, W.J.; Duguay, A. Selenium–Mercury Interactions and Relationship to Aquatic Toxicity: A Review. Integr. Environ. Assess. Manag. 2025, 21, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Spiller, H.A. Rethinking Mercury: The Role of Selenium in the Pathophysiology of Mercury Toxicity. Clin. Toxicol. 2018, 56, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Karimi, R.; Frisk, M.; Fisher, N.S. Contrasting Food Web Factor and Body Size Relationships with Hg and Se Concentrations in Marine Biota. PLoS ONE 2013, 8, e74695. [Google Scholar] [CrossRef]
- Pantoja-Echevarría, L.M.; Marmolejo-Rodríguez, A.J.; Galván-Magaña, F.; Arreola-Mendoza, L.; Tripp-Valdéz, A.; Verplancken, F.E.; Sujitha, S.B.; Jonathan, M.P. Bioaccumulation and Trophic Transfer of Cd in Commercially Sought Brown Smoothhound Mustelus Henlei in the Western Coast of Baja California Sur, Mexico. Mar. Pollut. Bull. 2020, 151, 110879. [Google Scholar] [CrossRef]
- Goyanna, F.A.A.; Fernandes, M.B.; da Silva, G.B.; de Lacerda, L.D. Mercury in Oceanic Upper Trophic Level Sharks and Bony Fishes-A Systematic Review. Environ. Pollut. 2023, 318, 120821. [Google Scholar] [CrossRef]
- Amezcua, F.; Muro-Torres, V.; Soto-Jiménez, M.F. Stable Isotope Analysis versus TROPH: A Comparison of Methods for Estimating Fish Trophic Positions in a Subtropical Estuarine System. Aquat. Ecol. 2015, 49, 235–250. [Google Scholar] [CrossRef]
- Estupiñán-Montaño, C.; Galván-Magaña, F.; Sánchez-González, A.; Elorriaga-Verplancken, F.R.; Delgado-Huertas, A.; Páez-Rosas, D. Dietary Ontogeny of the Blue Shark, Prionace Glauca, Based on the Analysis of δ 13 C and δ 15 N in Vertebrae. Mar. Biol. 2019, 166, 101. [Google Scholar] [CrossRef]
- Souza-Araujo, J.; Souza-Junior, O.G.; Guimarães-Costa, A.; Hussey, N.E.; Lima, M.O.; Giarrizzo, T. The Consumption of Shark Meat in the Amazon Region and Its Implications for Human Health and the Marine Ecosystem. Chemosphere 2021, 265, 129132. [Google Scholar] [CrossRef]
- Maciel, O.L. de C.; Willmer, I.Q.; Saint’Pierre, T.D.; Machado, W.; Siciliano, S.; Hauser-Davis, R.A. Arsenic Contamination in Widely Consumed Caribbean Sharpnose Sharks in Southeastern Brazil: Baseline Data and Concerns Regarding Fisheries Resources. Mar. Pollut. Bull. 2021, 172, 112905. [Google Scholar] [CrossRef]
- Karnad, D.; Narayani, S.; Kottillil, S.; Kottillil, S.; Gupta, T.; Barnes, A.; Dias, A.; Krishna, Y.C. Regional Hotspots and Drivers of Shark Meat Consumption in India. Conserv. Sci. Pract. 2024, 6, e13069. [Google Scholar] [CrossRef]
- da Silva, T.E.F.; Lessa, R.; Santana, F.M. Current Knowledge on Biology, Fishing and Conservation of the Blue Shark (Prionace Glauca). Neotrop. Biol. Conserv. 2021, 16, 71–88. [Google Scholar] [CrossRef]
- Vandeperre, F.; Aires-Da-Silva, A.; Fontes, J.; Santos, M.; Santos, S. Movements of Blue Sharks (Prionace Glauca) across Their Life History. PLoS ONE 2014, 9, 103538. [Google Scholar] [CrossRef] [PubMed]
- Preti, A.; Soykan, C.U.; Dewar, H.; Wells, R.D.; Spear, N.; Kohin, S. Comparative Feeding Ecology of Shortfin Mako, Blue and Thresher Sharks in the California Current. Environ. Biol. Fishes 2012, 95, 127–146. [Google Scholar] [CrossRef]
- Kohin, S.; Sippel, T.; Carvalho, F.; Catch and Size of Blue Sharks Caught in US Fisheries in the North Pacific. ISC-16. 2016. Available online: https://isc.fra.go.jp/pdf/SHARK/ISC16_SHARK_1/ISC2016-SHARKWG-1-15_Kohin_US_Fisheries_BSH_Catch_and_Size.pdf (accessed on 29 April 2025).
- Godínez-Padilla, C.J.; Castillo-Géniz, J.L.; Hernández de la Torre, B.; González-Ania, L.V.; Román-Verdesoto, M.H. Marine-Climate Interactions with the Blue Shark (Prionace Glauca) Catches in the Western Coast of Baja California Peninsula, Mexico. Fish. Oceanogr. 2022, 31, 291–318. [Google Scholar] [CrossRef]
- Zafar, A.; Javed, S.; Akram, N.; Naqvi, S.A.R. Health Risks of Mercury. In Mercury Toxicity Mitigation: Sustainable Nexus Approach; Springer: Berlin/Heidelberg, Germany, 2024; pp. 67–92. [Google Scholar]
- Blanco-Parra, M.P. Edad y Crecimiento Del Tiburón Azul, Prionace Glauca (Linnaeus 1758), En La Costa Occidental de Baja California Sur, México. Master’s Thesis, Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Mexico City, Mexico, 2003. [Google Scholar]
- Escobar-Sánchez, O.; Galván-Magaña, F.; Rosíles-Martínez, R. Biomagnification of Mercury and Selenium in Blue Shark Prionace Glauca from the Pacific Ocean off Mexico. Biol. Trace Elem. Res. 2011, 144, 550–559. [Google Scholar] [CrossRef]
- Hernández-Aguilar, S.B.; Escobar-Sánchez, O.; Galván-Magaña, F.; Abitia-Cárdenas, L.A. Trophic Ecology of the Blue Shark (Prionace Glauca) Based on Stable Isotopes (δ13C and δ15N) and Stomach Content. J. Mar. Biol. Assoc. UK 2016, 96, 1403–1410. [Google Scholar] [CrossRef]
- Markaida, U.; Sosa-Nishizaki, O. Food and Feeding Habits of the Blue Shark Prionace Glauca Caught off Ensenada, Baja California, Mexico, with a Review on Its Feeding. J. Mar. Biol. Assoc. UK 2010, 90, 977–994. [Google Scholar] [CrossRef]
- Ferreira, S.L.; Lemos, V.A.; Silva, L.O.; Queiroz, A.F.; Souza, A.S.; da Silva, E.G.; dos Santos, W.N.; das Virgens, C.F. Analytical Strategies of Sample Preparation for the Determination of Mercury in Food Matrices—A Review. Microchem. J. 2015, 121, 227–236. [Google Scholar] [CrossRef]
- Gil-Manrique, B.; Nateras-Ramírez, O.; Martínez-Salcido, A.I.; Ruelas-Inzunza, J.; Páez-Osuna, F.; Amezcua, F. Cadmium and Lead Concentrations in Hepatic and Muscle Tissue of Demersal Fish from Three Lagoon Systems (SE Gulf of California). Sci. Pollut. Res. 2017, 24, 12927–12937. [Google Scholar] [CrossRef]
- de la Federación, D.O. Norma Oficial Mexicana NOM-242-SSA1-2009. Productos y Servicios. Productos de la Pesca Frescos, Refrigerados, Congelados y Procesados. Especificaciones Sanitarias y Métodos de Prueba. 2009. Available online: https://www.dof.gob.mx/normasOficiales/4295/salud2a/salud2a.htm (accessed on 21 April 2018).
- Gray, J.S. Biomagnification in Marine Systems: The Perspective of an Ecologist. Mar. Pollut. Bull. 2002, 45, 46–52. [Google Scholar] [CrossRef] [PubMed]
- García-Seoane, R.; Antelo, J.; Fiol, S.; Fernández, J.A.; Aboal, J.R. Unravelling the Metal Uptake Process in Mosses: Comparison of Aquatic and Terrestrial Species as Air Pollution Biomonitors. Environ. Pollut. 2023, 333, 122069. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, L.Q.; Letcher, R.; Bradford, S.A.; Feng, X.; Rinklebe, J. Biogeochemical Cycle of Mercury and Controlling Technologies: Publications in Critical Reviews in Environmental Science & Technology in the Period of 2017–2021. Crit. Rev. Environ. Sci. Technol. 2022, 52, 4325–4330. [Google Scholar]
- Nfon, E.; Cousins, I.T.; Järvinen, O.; Mukherjee, A.B.; Verta, M.; Broman, D. Trophodynamics of Mercury and Other Trace Elements in a Pelagic Food Chain from the Baltic Sea. Sci. Total Environ. 2009, 407, 6267–6274. [Google Scholar] [CrossRef]
- Sakata, M.; Miwa, A.; Mitsunobu, S.; Senga, Y. Relationships between Trace Element Concentrations and the Stable Nitrogen Isotope Ratio in Biota from Suruga Bay, Japan. J. Oceanogr. 2015, 71, 141–149. [Google Scholar] [CrossRef]
- Guo, B.; Jiao, D.; Wang, J.; Lei, K.; Lin, C. Trophic Transfer of Toxic Elements in the Estuarine Invertebrate and Fish Food Web of Daliao River, Liaodong Bay, China. Mar. Pollut. Bull. 2016, 113, 258–265. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Zhu, L.; Yan, B.; Wang, L.; Pan, X. Mercury Concentration in the Muscle of Seven Fish Species from Chagan Lake, Northeast China. Environ. Monit. Assess. 2012, 184, 1299–1310. [Google Scholar] [CrossRef]
- National Research Council; Global Affairs; Technology for Sustainability Program; Committee on Incorporating Sustainability in the US Environmental Protection Agency. Sustainability and the US EPA; National Academies Press: Washington, DC, USA, 2011; ISBN 0-309-21252-9. [Google Scholar]
- SEMARNAT. Consumo Nacional Aparente por Destino y Especie. Available online: https://apps1.semarnat.gob.mx:8443/dgeia/compendio_2021/archivos/02_pesca/d2_pesca03_02.pdf (accessed on 5 May 2025).
- Burger, J.; Gochfeld, M. Biomonitoring Selenium, Mercury, and Selenium:Mercury Molar Ratios in Selected Species in Northeastern US Estuaries: Risk to Biota and Humans. Environ. Sci. Pollut. Res. 2021, 28, 18392–18406. [Google Scholar] [CrossRef]
- Dellinger, J.; Dellinger, M.; Yauck, J.S. Mercury Exposure in Vulnerable Populations. In Mercury in the Environment: Pattern and Process; University of California Press: Berkeley, CA, USA, 2012; pp. 289–300. [Google Scholar]
- Sun, T.; Wu, H.; Wang, X.; Ji, C.; Shan, X.; Li, F. Evaluation on the Biomagnification or Biodilution of Trace Metals in Global Marine Food Webs by Meta-Analysis. Environ. Pollut. 2020, 264, 113856. [Google Scholar] [CrossRef]
- Bushkin-Bedient, S.; Carpenter, D.O. Benefits versus Risks Associated with Consumption of Fish and Other Seafood. Rev. Environ. Health 2010, 25, 161–192. [Google Scholar] [CrossRef]
- Baeyens, W.; Leermakers, M.; Papina, T.; Saprykin, A.; Brion, N.; Noyen, J.; De Gieter, M.; Elskens, M.; Goeyens, L. Bioconcentration and Biomagnification of Mercury and Methylmercury in North Sea and Scheldt Estuary Fish. Arch. Environ. Contam. Toxicol. 2003, 45, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.H.; McMichael, R.H., Jr. Mercury Levels in Four Species of Sharks from the Atlantic Coast of Florida. Fish. Bull. 1999, 97, 372–379. [Google Scholar]
- Rechimont, M.; Ruelas-Inzunza, J.; Amezcua, F.; Paéz-Osuna, F.; Castillo-Géniz, J. Hg and Se in Muscle and Liver of Blue Shark (Prionace Glauca) from the Entrance of the Gulf of California: An Insight to the Potential Risk to Human Health. Arch. Environ. Contam. Toxicol. 2024, 86, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Arisekar, U.; Shalini, R.; Shakila, R.J.; Iburahim, S.A.; Anantharaja, K.; Rathinam, R.B.; Sundhar, S. Selenium and Mercury Concentration, Se/Hg Molar Ratio and Risk–Benefit Assessment of Marine Fish Consumption: Human Health Risks and Protective Role of Se against Hg Toxicity. Food Res. Int. 2024, 180, 114086. [Google Scholar] [CrossRef]
- Ralston, N.V.C.; Ralston, C.R.; Raymond, L.J. Selenium Health Benefit Values: Updated Criteria for Mercury Risk Assessments. Biol. Trace Elem. Res. 2016, 171, 262–269. [Google Scholar] [CrossRef]
- Berry, M.J.; Ralston, N.V. Mercury Toxicity and the Mitigating Role of Selenium. EcoHealth 2008, 5, 456–459. [Google Scholar] [CrossRef]
- Pantoja-Echevarría, L.M.; Marmolejo-Rodríguez, A.J.; Galván-Magaña, F.; Elorriaga-Verplancken, F.R.; Tripp-Valdez, A.; Tamburin, E.; Lara, A.; Muthuswamy Ponniah, J.; Suresh Babu, S.; Pintueles-Tamayo, J.F. Risk assessment for shark consumers exposed to mercury, selenium and cadmium in Mexico. Mar. Pollut. Bull 2024, 209, 117205. [Google Scholar] [CrossRef]
- Khan, M.A.; Wang, F. Mercury-selenium Compounds and Their Toxicological Significance: Toward a Molecular Understanding of the Mercury-selenium Antagonism. Environ. Toxicol. Chem. Int. J. 2009, 28, 1567–1577. [Google Scholar] [CrossRef]
- Mangiapane, E.; Pessione, A.; Pessione, E. Selenium and Selenoproteins: An Overview on Different Biological Systems. Curr. Protein Pept. Sci. 2014, 15, 598–607. [Google Scholar] [CrossRef]
- Biton-Porsmoguer, S.; Bǎnaru, D.; Boudouresque, C.F.; Dekeyser, I.; Bouchoucha, M.; Marco-Miralles, F.; Lebreton, B.; Guillou, G.; Harmelin-Vivien, M. Mercury in Blue Shark (Prionace Glauca) and Shortfin Mako (Isurus Oxyrinchus) from North-Eastern Atlantic: Implication for Fishery Management. Mar. Pollut. Bull. 2018, 127, 131–138. [Google Scholar] [CrossRef]
- Ordiano-Flores, A.; Rosíles-Martínez, R.; Galván-Magaña, F. Biomagnification of Mercury and Its Antagonistic Interaction with Selenium in Yellowfin Tuna Thunnus Albacares in the Trophic Web of Baja California Sur, Mexico. Ecotoxicol. Environ. Saf. 2012, 86, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Nishizaki, O.; Márquez-Farías, J.F.; Villavicencio-Garayzar, C.J. Case Study: Pelagic Shark Fisheries along the West Coast of Mexico. In Sharks of the Open Ocean; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2008; pp. 275–282. ISBN 978-1-4443-0251-6. [Google Scholar]
- Sosa-Nishizaki, O.; Galván-Magaña, F.; Larson, S.E.; Lowry, D. Chapter Four—Conclusions: Do We Eat Them or Watch Them, or Both? Challenges for Conservation of Sharks in Mexico and the NEP. In Advances in Marine Biology; Lowry, D., Larson, S.E., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 85, pp. 93–102. ISBN 0065-2881. [Google Scholar]
- IMIPAS. Plan de Acción Nacional para el Manejo y Conservación de Tiburones, Rayas y Especies Afines en México; IMIPAS-CONAPESCA: Mexico City, Mexico, 2025. [Google Scholar]
- Fernández-Méndez, J.I.; Castillo-Géniz, J.L.; Ramírez-Soberón, G.; Haro-Ávalos, H.; González-Ania, L.V. Update on Standardized Catch Rates for Blue Shark (Prionace Glauca) in the 2006-2020 Mexican Pacific Longline Fishery Based upon a Shark Scientific Observer Program; ISC/21/SHARKWG-2/15. 2021. Available online: https://isc.fra.go.jp/pdf/SHARK/ISC21_SHARK_2/ISC_21_SHARKWG_2_15.pdf (accessed on 29 May 2025).
- United States. Environmental Protection Agency; Office of Emergency; Remedial Response. Risk Assessment Guidance for Superfund: Pt. A. Human Health Evaluation Manual; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1989; Volume 1. [Google Scholar]
- Marrugo-Negrete, J.; Verbel, J.O.; Ceballos, E.L.; Benitez, L.N. Total Mercury and Methylmercury Concentrations in Fish from the Mojana Region of Colombia. Environ. Geochem. Health 2008, 30, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Storelli, A.; Barone, G.; Garofalo, R.; Busco, A.; Storelli, M.M.; Storelli, A.; Barone, G.; Garofalo, R.; Busco, A.; Storelli, M.M. Citation: Determination of Mercury, Methylmercury and Selenium Concentrations in Elasmobranch Meat: Fish Consumption Safety. Int. J. Environ. Res. Public Health 2022, 19, 788. [Google Scholar] [CrossRef] [PubMed]
- Liñán-Cabello, M.A.; Álvaro-Berlanga, S.; Flores-Jiménez, G.I.; Calatayud-Pavía, C.E.; Gutiérrez, Á.J.; Cruz-Ramírez, A.; Jacobi-Aguilar, C.; Soto-Jiménez, M.F. Assessment of Potential Risks to Human Health Associated with Trace Elements in Three Commercially Important Shark Species Captured in the Central Mexican Pacific. Environ. Sci. Pollut. Res. 2023, 30, 109769–109783. [Google Scholar] [CrossRef]
- Ray, S.; Vashishth, R. From Water to Plate: Reviewing the Bioaccumulation of Heavy Metals in Fish and Unraveling Human Health Risks in the Food Chain. Emerg. Contam. 2024, 10, 100358. [Google Scholar] [CrossRef]
- Rowe, S.; Hutchings, J.A. Mating Systems and the Conservation of Commercially Exploited Marine Fish. Trends Ecol. Evol. 2003, 18, 567–572. [Google Scholar] [CrossRef]
Specie | TL | Hg | BMF_Hg | Se | BMF_Se | Se:Hg |
---|---|---|---|---|---|---|
P. planipes | 2.4 | 0.223 ± 0.003 | 2.82 | 0.353 ± 0.083 | 0.23 | 4.011 ± 0.903 |
Gonatus sp. | 2.6 | 0.204 ± 0.007 | 3.07 | 0.359 ± 0.172 | 0.29 | 5.345 ± 2.193 |
S. japonicus | 3.9 | 0.232 ± 0.006 | 2.70 | 0.319 ± 0.119 | 0.25 | 2.252 ± 0.436 |
E. mordax | 3.9 | 0.239 ± 0.004 | 2.63 | 0.208 ± 0.056 | 0.38 | 3.500 ± 0.189 |
P. glauca | 4.5 | 0.802 ± 0.360 | 0.086 ± 0.041 | 0.411 ± 0.292 |
Category | N | HQ |
---|---|---|
Males | 16 | 0.34 |
Females | 6 | 0.24 |
Adults | 12 | 0.41 |
Juveniles | 10 | 0.10 |
All | 22 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rechimont, M.E.; Amezcua, F.; Ruelas-Inzunza, J.R.; Cruz-Garcìa, R.; Vallarta-Zárate, J.R.F.; Amezcua-Linares, F. Mercury and Selenium Trophic Transfer in the Mexican California Current Ecosystem Using a Top Predator as a Model. Fishes 2025, 10, 275. https://doi.org/10.3390/fishes10060275
Rechimont ME, Amezcua F, Ruelas-Inzunza JR, Cruz-Garcìa R, Vallarta-Zárate JRF, Amezcua-Linares F. Mercury and Selenium Trophic Transfer in the Mexican California Current Ecosystem Using a Top Predator as a Model. Fishes. 2025; 10(6):275. https://doi.org/10.3390/fishes10060275
Chicago/Turabian StyleRechimont, Maria Emilia, Felipe Amezcua, Jorge Ricardo Ruelas-Inzunza, Roberto Cruz-Garcìa, Juan Roberto Felipe Vallarta-Zárate, and Felipe Amezcua-Linares. 2025. "Mercury and Selenium Trophic Transfer in the Mexican California Current Ecosystem Using a Top Predator as a Model" Fishes 10, no. 6: 275. https://doi.org/10.3390/fishes10060275
APA StyleRechimont, M. E., Amezcua, F., Ruelas-Inzunza, J. R., Cruz-Garcìa, R., Vallarta-Zárate, J. R. F., & Amezcua-Linares, F. (2025). Mercury and Selenium Trophic Transfer in the Mexican California Current Ecosystem Using a Top Predator as a Model. Fishes, 10(6), 275. https://doi.org/10.3390/fishes10060275