Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,726)

Search Parameters:
Journal = Drones
Section = General

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1188 KiB  
Article
Enhanced Array Synthesis and DOA Estimation Exploiting UAV Array with Coprime Frequencies
by Long Zhang, Weijia Cui, Nae Zheng, Song Chen and Yuxi Du
Drones 2025, 9(8), 515; https://doi.org/10.3390/drones9080515 - 22 Jul 2025
Abstract
The challenge of achieving high-precision direction-of-arrival (DOA) estimation with enhanced degrees of freedom (DOFs) under a limited number of physical array elements remains a critical issue in array signal processing. To address this limitation, this paper makes the following three key contributions: (1) [...] Read more.
The challenge of achieving high-precision direction-of-arrival (DOA) estimation with enhanced degrees of freedom (DOFs) under a limited number of physical array elements remains a critical issue in array signal processing. To address this limitation, this paper makes the following three key contributions: (1) a novel moving sparse array synthesis model incorporating time-frequency-spatial joint processing for coprime frequencies signal sources; (2) an optimized coprime frequencies-based unmanned aerial vehicle array (CF-UAVA) configuration with derived closed-form expressions for the distribution of synthesized array; and (3) two DOA estimation methods: a group sparsity-based approach universally applicable to the proposed aperture synthesis model and a joint group sparsity and virtual array interpolation tailored for the proposed CF-UAVA configuration. Comprehensive simulation results demonstrate the superior DOA estimation accuracy and increased DOFs achieved by our proposed aperture synthesis model and DOA estimation algorithms compared to conventional approaches. Full article
Show Figures

Figure 1

22 pages, 6496 KiB  
Article
Real-Time Search and Rescue with Drones: A Deep Learning Approach for Small-Object Detection Based on YOLO
by Francesco Ciccone and Alessandro Ceruti
Drones 2025, 9(8), 514; https://doi.org/10.3390/drones9080514 - 22 Jul 2025
Abstract
Unmanned aerial vehicles are increasingly used in civil Search and Rescue operations due to their rapid deployment and wide-area coverage capabilities. However, detecting missing persons from aerial imagery remains challenging due to small object sizes, cluttered backgrounds, and limited onboard computational resources, especially [...] Read more.
Unmanned aerial vehicles are increasingly used in civil Search and Rescue operations due to their rapid deployment and wide-area coverage capabilities. However, detecting missing persons from aerial imagery remains challenging due to small object sizes, cluttered backgrounds, and limited onboard computational resources, especially when managed by civil agencies. In this work, we present a comprehensive methodology for optimizing YOLO-based object detection models for real-time Search and Rescue scenarios. A two-stage transfer learning strategy was employed using VisDrone for general aerial object detection and Heridal for Search and Rescue-specific fine-tuning. We explored various architectural modifications, including enhanced feature fusion (FPN, BiFPN, PB-FPN), additional detection heads (P2), and modules such as CBAM, Transformers, and deconvolution, analyzing their impact on performance and computational efficiency. The best-performing configuration (YOLOv5s-PBfpn-Deconv) achieved a mAP@50 of 0.802 on the Heridal dataset while maintaining real-time inference on embedded hardware (Jetson Nano). Further tests at different flight altitudes and explainability analyses using EigenCAM confirmed the robustness and interpretability of the model in real-world conditions. The proposed solution offers a viable framework for deploying lightweight, interpretable AI systems for UAV-based Search and Rescue operations managed by civil protection authorities. Limitations and future directions include the integration of multimodal sensors and adaptation to broader environmental conditions. Full article
Show Figures

Figure 1

2 pages, 116 KiB  
Correction
Correction: Wang et al. Cross-Scene Multi-Object Tracking for Drones: Leveraging Meta-Learning and Onboard Parameters with the New MIDDTD. Drones 2025, 9, 341
by Chenghang Wang, Xiaochun Shen, Zhaoxiang Zhang, Chengyang Tao and Yuelei Xu
Drones 2025, 9(7), 510; https://doi.org/10.3390/drones9070510 - 21 Jul 2025
Abstract
In the original publication [...] Full article
37 pages, 3151 KiB  
Review
Systematic Review of Multi-Objective UAV Swarm Mission Planning Systems from Regulatory Perspective
by Luke Checker, Hui Xie, Siavash Khaksar and Iain Murray
Drones 2025, 9(7), 509; https://doi.org/10.3390/drones9070509 - 20 Jul 2025
Viewed by 73
Abstract
Advancements in Unmanned Aerial Vehicle (UAV) technologies have increased exponentially in recent years, with UAV swarm being a key area of interest. UAV swarm overcomes the energy reserve, payload, and single-objective limitations of single UAVs, enabling broader mission scopes. Despite these advantages, UAV [...] Read more.
Advancements in Unmanned Aerial Vehicle (UAV) technologies have increased exponentially in recent years, with UAV swarm being a key area of interest. UAV swarm overcomes the energy reserve, payload, and single-objective limitations of single UAVs, enabling broader mission scopes. Despite these advantages, UAV swarm has yet to see widespread application within global industry. A leading factor hindering swarm application within industry is the divide that currently exists between the functional capacity of modern UAV swarm systems and the functionality required by legislation. This paper investigates this divide through an overview of global legislative practice, contextualized via a case study of Australia’s UAV regulatory environment. The overview highlighted legislative objectives that coincided with open challenges in the UAV swarm literature. These objectives were then formulated into analysis criteria that assessed whether systems presented sufficient functionality to address legislative concern. A systematic review methodology was used to apply analysis criteria to multi-objective UAV swarm mission planning systems. Analysis focused on multi-objective mission planning systems due to their role in defining the functional capacity of UAV swarms within complex real-world operational environments. This, alongside the popularity of these systems within the modern literature, makes them ideal candidates for defining new enabling technologies that could address the identified areas of weakness. The results of this review highlighted several legislative considerations that remain under-addressed by existing technologies. These findings guided the proposal of enabling technologies to bridge the divide between functional capacity and legislative concern. Full article
Show Figures

Figure 1

26 pages, 5914 KiB  
Article
BiDGCNLLM: A Graph–Language Model for Drone State Forecasting and Separation in Urban Air Mobility Using Digital Twin-Augmented Remote ID Data
by Zhang Wen, Junjie Zhao, An Zhang, Wenhao Bi, Boyu Kuang, Yu Su and Ruixin Wang
Drones 2025, 9(7), 508; https://doi.org/10.3390/drones9070508 - 19 Jul 2025
Viewed by 132
Abstract
Accurate prediction of drone motion within structured urban air corridors is essential for ensuring safe and efficient operations in Urban Air Mobility (UAM) systems. Although real-world Remote Identification (Remote ID) regulations require drones to broadcast critical flight information such as velocity, access to [...] Read more.
Accurate prediction of drone motion within structured urban air corridors is essential for ensuring safe and efficient operations in Urban Air Mobility (UAM) systems. Although real-world Remote Identification (Remote ID) regulations require drones to broadcast critical flight information such as velocity, access to large-scale, high-quality broadcast data remains limited. To address this, this study leverages a Digital Twin (DT) framework to augment Remote ID spatio-temporal broadcasts, emulating the sensing environment of dense urban airspace. Using Remote ID data, we propose BiDGCNLLM, a hybrid prediction framework that integrates a Bidirectional Graph Convolutional Network (BiGCN) with Dynamic Edge Weighting and a reprogrammed Large Language Model (LLM, Qwen2.5–0.5B) to capture spatial dependencies and temporal patterns in drone speed trajectories. The model forecasts near-future speed variations in surrounding drones, supporting proactive conflict avoidance in constrained air corridors. Results from the AirSUMO co-simulation platform and a DT replica of the Cranfield University campus show that BiDGCNLLM outperforms state-of-the-art time series models in short-term velocity prediction. Compared to Transformer-LSTM, BiDGCNLLM marginally improves the R2 by 11.59%. This study introduces the integration of LLMs into dynamic graph-based drone prediction. It shows the potential of Remote ID broadcasts to enable scalable, real-time airspace safety solutions in UAM. Full article
Show Figures

Figure 1

23 pages, 5173 KiB  
Article
Improvement of Cooperative Localization for Heterogeneous Mobile Robots
by Efe Oğuzhan Karcı, Ahmet Mustafa Kangal and Sinan Öncü
Drones 2025, 9(7), 507; https://doi.org/10.3390/drones9070507 - 19 Jul 2025
Viewed by 188
Abstract
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By [...] Read more.
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By integrating these sensors and optimizing fusion strategies, the research aims to improve the precision and reliability of cooperative localization in complex and dynamic environments. The primary objective is to develop a practical framework for cooperative localization that addresses the challenges posed by the differences in mobility and sensing capabilities among heterogeneous robots. Sensor fusion is used to compensate for the limitations of individual sensors, providing more accurate and robust localization results. Moreover, a comparative analysis of different sensor combinations and fusion strategies helps to identify the optimal configuration for each robot. This research focuses on the improvement of cooperative localization, path planning, and collaborative tasks for heterogeneous robots. The findings have broad applications in fields such as autonomous transportation, agricultural operation, and disaster response, where the cooperation of diverse robotic platforms is crucial for mission success. Full article
Show Figures

Figure 1

26 pages, 4423 KiB  
Article
Robust Predictive Functional Control for Quadrotor Flight Systems
by Kai Masuda and Kenji Uchiyama
Drones 2025, 9(7), 506; https://doi.org/10.3390/drones9070506 - 18 Jul 2025
Viewed by 174
Abstract
Predictive Functional Control (PFC) has a control structure similar to Model Predictive Control (MPC), determining control inputs by predicting future states using a motion model. However, PFC does not require solving a quadratic programming problem for every control loop like MPC. This feature [...] Read more.
Predictive Functional Control (PFC) has a control structure similar to Model Predictive Control (MPC), determining control inputs by predicting future states using a motion model. However, PFC does not require solving a quadratic programming problem for every control loop like MPC. This feature enables PFC to be implemented in small-scale systems such as actuators, where embedding a high-performance computer is difficult. However, similar to MPC, there are concerns with PFC regarding control performance degradation due to incorrect predictions of future states in environments affected by modeling errors and disturbances. Therefore, in this study, we propose a novel method that employs robustness, Robust Predictive Functional Control (RPFC). The proposed RPFC method was applied to a quadrotor flight control system, and its effectiveness was verified through numerical simulations. Specifically, the control performance of RPFC under disturbance conditions was compared with that of conventional PFC, demonstrating the advantages of the proposed approach. Full article
Show Figures

Figure 1

36 pages, 7426 KiB  
Article
PowerLine-MTYOLO: A Multitask YOLO Model for Simultaneous Cable Segmentation and Broken Strand Detection
by Badr-Eddine Benelmostafa and Hicham Medromi
Drones 2025, 9(7), 505; https://doi.org/10.3390/drones9070505 - 18 Jul 2025
Viewed by 184
Abstract
Power transmission infrastructure requires continuous inspection to prevent failures and ensure grid stability. UAV-based systems, enhanced with deep learning, have emerged as an efficient alternative to traditional, labor-intensive inspection methods. However, most existing approaches rely on separate models for cable segmentation and anomaly [...] Read more.
Power transmission infrastructure requires continuous inspection to prevent failures and ensure grid stability. UAV-based systems, enhanced with deep learning, have emerged as an efficient alternative to traditional, labor-intensive inspection methods. However, most existing approaches rely on separate models for cable segmentation and anomaly detection, leading to increased computational overhead and reduced reliability in real-time applications. To address these limitations, we propose PowerLine-MTYOLO, a lightweight, one-stage, multitask model designed for simultaneous power cable segmentation and broken strand detection from UAV imagery. Built upon the A-YOLOM architecture, and leveraging the YOLOv8 foundation, our model introduces four novel specialized modules—SDPM, HAD, EFR, and the Shape-Aware Wise IoU loss—that improve geometric understanding, structural consistency, and bounding-box precision. We also present the Merged Public Power Cable Dataset (MPCD), a diverse, open-source dataset tailored for multitask training and evaluation. The experimental results show that our model achieves up to +10.68% mAP@50 and +1.7% IoU compared to A-YOLOM, while also outperforming recent YOLO-based detectors in both accuracy and efficiency. These gains are achieved with a smaller model memory footprint and a similar inference speed compared to A-YOLOM. By unifying detection and segmentation into a single framework, PowerLine-MTYOLO offers a promising solution for autonomous aerial inspection and lays the groundwork for future advances in fine-structure monitoring tasks. Full article
Show Figures

Figure 1

33 pages, 4382 KiB  
Article
A Distributed Multi-Robot Collaborative SLAM Method Based on Air–Ground Cross-Domain Cooperation
by Peng Liu, Yuxuan Bi, Caixia Wang and Xiaojiao Jiang
Drones 2025, 9(7), 504; https://doi.org/10.3390/drones9070504 - 18 Jul 2025
Viewed by 195
Abstract
To overcome the limitations in the perception performance of individual robots and homogeneous robot teams, this paper presents a distributed multi-robot collaborative SLAM method based on air–ground cross-domain cooperation. By integrating environmental perception data from UAV and UGV teams across air and ground [...] Read more.
To overcome the limitations in the perception performance of individual robots and homogeneous robot teams, this paper presents a distributed multi-robot collaborative SLAM method based on air–ground cross-domain cooperation. By integrating environmental perception data from UAV and UGV teams across air and ground domains, this method enables more efficient, robust, and globally consistent autonomous positioning and mapping. First, to address the challenge of significant differences in the field of view between UAVs and UGVs, which complicates achieving a unified environmental understanding, this paper proposes an iterative registration method based on semantic and geometric features assistance. This method calculates the correspondence probability of the air–ground loop closure keyframes using these features and iteratively computes the rotation angle and translation vector to determine the coordinate transformation matrix. The resulting matrix provides strong initialization for back-end optimization, which helps to significantly reduce global pose estimation errors. Next, to overcome the convergence difficulties and high computational complexity of large-scale distributed back-end nonlinear pose graph optimization, this paper introduces a multi-level partitioning majorization–minimization DPGO method incorporating loss kernel optimization. This method constructs a multi-level, balanced pose subgraph based on the coupling degree of robot nodes. Then, it uses the minimization substitution function of non-trivial loss kernel optimization to gradually converge the distributed pose graph optimization problem to a first-order critical point, thereby significantly improving global pose estimation accuracy. Finally, experimental results on benchmark SLAM datasets and the GRACO dataset demonstrate that the proposed method effectively integrates environmental feature information from air–ground cross-domain UAV and UGV teams, achieving high-precision global pose estimation and map construction. Full article
Show Figures

Figure 1

19 pages, 3520 KiB  
Article
Vision-Guided Maritime UAV Rescue System with Optimized GPS Path Planning and Dual-Target Tracking
by Suli Wang, Yang Zhao, Chang Zhou, Xiaodong Ma, Zijun Jiao, Zesheng Zhou, Xiaolu Liu, Tianhai Peng and Changxing Shao
Drones 2025, 9(7), 502; https://doi.org/10.3390/drones9070502 - 16 Jul 2025
Viewed by 323
Abstract
With the global increase in maritime activities, the frequency of maritime accidents has risen, underscoring the urgent need for faster and more efficient search and rescue (SAR) solutions. This study presents an intelligent unmanned aerial vehicle (UAV)-based maritime rescue system that combines GPS-driven [...] Read more.
With the global increase in maritime activities, the frequency of maritime accidents has risen, underscoring the urgent need for faster and more efficient search and rescue (SAR) solutions. This study presents an intelligent unmanned aerial vehicle (UAV)-based maritime rescue system that combines GPS-driven dynamic path planning with vision-based dual-target detection and tracking. Developed within the Gazebo simulation environment and based on modular ROS architecture, the system supports stable takeoff and smooth transitions between multi-rotor and fixed-wing flight modes. An external command module enables real-time waypoint updates. This study proposes three path-planning schemes based on the characteristics of drones. Comparative experiments have demonstrated that the triangular path is the optimal route. Compared with the other schemes, this path reduces the flight distance by 30–40%. Robust target recognition is achieved using a darknet-ROS implementation of the YOLOv4 model, enhanced with data augmentation to improve performance in complex maritime conditions. A monocular vision-based ranging algorithm ensures accurate distance estimation and continuous tracking of rescue vessels. Furthermore, a dual-target-tracking algorithm—integrating motion prediction with color-based landing zone recognition—achieves a 96% success rate in precision landings under dynamic conditions. Experimental results show a 4% increase in the overall mission success rate compared to traditional SAR methods, along with significant gains in responsiveness and reliability. This research delivers a technically innovative and cost-effective UAV solution, offering strong potential for real-world maritime emergency response applications. Full article
Show Figures

Figure 1

25 pages, 732 KiB  
Article
Accuracy-Aware MLLM Task Offloading and Resource Allocation in UAV-Assisted Satellite Edge Computing
by Huabing Yan, Hualong Huang, Zijia Zhao, Zhi Wang and Zitian Zhao
Drones 2025, 9(7), 500; https://doi.org/10.3390/drones9070500 - 16 Jul 2025
Viewed by 183
Abstract
This paper presents a novel framework for optimizing multimodal large language model (MLLM) inference through task offloading and resource allocation in UAV-assisted satellite edge computing (SEC) networks. MLLMs leverage transformer architectures to integrate heterogeneous data modalities for IoT applications, particularly real-time monitoring in [...] Read more.
This paper presents a novel framework for optimizing multimodal large language model (MLLM) inference through task offloading and resource allocation in UAV-assisted satellite edge computing (SEC) networks. MLLMs leverage transformer architectures to integrate heterogeneous data modalities for IoT applications, particularly real-time monitoring in remote areas. However, cloud computing dependency introduces latency, bandwidth, and privacy challenges, while IoT device limitations require efficient distributed computing solutions. SEC, utilizing low-earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs), extends mobile edge computing to provide ubiquitous computational resources for remote IoTDs. We formulate the joint optimization of MLLM task offloading and resource allocation as a mixed-integer nonlinear programming (MINLP) problem, minimizing latency and energy consumption while optimizing offloading decisions, power allocation, and UAV trajectories. To address the dynamic SEC environment characterized by satellite mobility, we propose an action-decoupled soft actor–critic (AD-SAC) algorithm with discrete–continuous hybrid action spaces. The simulation results demonstrate that our approach significantly outperforms conventional deep reinforcement learning methods in convergence and system cost reduction compared to baseline algorithms. Full article
Show Figures

Figure 1

21 pages, 3826 KiB  
Article
UAV-OVD: Open-Vocabulary Object Detection in UAV Imagery via Multi-Level Text-Guided Decoding
by Lijie Tao, Guoting Wei, Zhuo Wang, Zhaoshuai Qi, Ying Li and Haokui Zhang
Drones 2025, 9(7), 495; https://doi.org/10.3390/drones9070495 - 14 Jul 2025
Viewed by 271
Abstract
Object detection in drone-captured imagery has attracted significant attention due to its wide range of real-world applications, including surveillance, disaster response, and environmental monitoring. Although the majority of existing methods are developed under closed-set assumptions, and some recent studies have begun to explore [...] Read more.
Object detection in drone-captured imagery has attracted significant attention due to its wide range of real-world applications, including surveillance, disaster response, and environmental monitoring. Although the majority of existing methods are developed under closed-set assumptions, and some recent studies have begun to explore open-vocabulary or open-world detection, their application to UAV imagery remains limited and underexplored. In this paper, we address this limitation by exploring the relationship between images and textual semantics to extend object detection in UAV imagery to an open-vocabulary setting. We propose a novel and efficient detector named Unmanned Aerial Vehicle Open-Vocabulary Detector (UAV-OVD), specifically designed for drone-captured scenes. To facilitate open-vocabulary object detection, we propose improvements from three complementary perspectives. First, at the training level, we design a region–text contrastive loss to replace conventional classification loss, allowing the model to align visual regions with textual descriptions beyond fixed category sets. Structurally, building on this, we introduce a multi-level text-guided fusion decoder that integrates visual features across multiple spatial scales under language guidance, thereby improving overall detection performance and enhancing the representation and perception of small objects. Finally, from the data perspective, we enrich the original dataset with synonym-augmented category labels, enabling more flexible and semantically expressive supervision. Experiments conducted on two widely used benchmark datasets demonstrate that our approach achieves significant improvements in both mean mAP and Recall. For instance, for Zero-Shot Detection on xView, UAV-OVD achieves 9.9 mAP and 67.3 Recall, 1.1 and 25.6 higher than that of YOLO-World. In terms of speed, UAV-OVD achieves 53.8 FPS, nearly twice as fast as YOLO-World and five times faster than DetrReg, demonstrating its strong potential for real-time open-vocabulary detection in UAV imagery. Full article
(This article belongs to the Special Issue Applications of UVs in Digital Photogrammetry and Image Processing)
Show Figures

Figure 1

27 pages, 9802 KiB  
Article
Flight-Safe Inference: SVD-Compressed LSTM Acceleration for Real-Time UAV Engine Monitoring Using Custom FPGA Hardware Architecture
by Sreevalliputhuru Siri Priya, Penneru Shaswathi Sanjana, Rama Muni Reddy Yanamala, Rayappa David Amar Raj, Archana Pallakonda, Christian Napoli and Cristian Randieri
Drones 2025, 9(7), 494; https://doi.org/10.3390/drones9070494 - 14 Jul 2025
Viewed by 353
Abstract
Predictive maintenance (PdM) is a proactive strategy that enhances safety, minimizes unplanned downtime, and optimizes operational costs by forecasting equipment failures before they occur. This study presents a novel Field Programmable Gate Array (FPGA)-accelerated predictive maintenance framework for UAV engines using a Singular [...] Read more.
Predictive maintenance (PdM) is a proactive strategy that enhances safety, minimizes unplanned downtime, and optimizes operational costs by forecasting equipment failures before they occur. This study presents a novel Field Programmable Gate Array (FPGA)-accelerated predictive maintenance framework for UAV engines using a Singular Value Decomposition (SVD)-optimized Long Short-Term Memory (LSTM) model. The model performs binary classification to predict the likelihood of imminent engine failure by processing normalized multi-sensor data, including temperature, pressure, and vibration measurements. To enable real-time deployment on resource-constrained UAV platforms, the LSTM’s weight matrices are compressed using Singular Value Decomposition (SVD), significantly reducing computational complexity while preserving predictive accuracy. The compressed model is executed on a Xilinx ZCU-104 FPGA and uses a pipelined, AXI-based hardware accelerator with efficient memory mapping and parallelized gate calculations tailored for low-power onboard systems. Unlike prior works, this study uniquely integrates a tailored SVD compression strategy with a custom hardware accelerator co-designed for real-time, flight-safe inference in UAV systems. Experimental results demonstrate a 98% classification accuracy, a 24% reduction in latency, and substantial FPGA resource savings—specifically, a 26% decrease in BRAM usage and a 37% reduction in DSP consumption—compared to the 32-bit floating-point SVD-compressed FPGA implementation, not CPU or GPU. These findings confirm the proposed system as an efficient and scalable solution for real-time UAV engine health monitoring, thereby enhancing in-flight safety through timely fault prediction and enabling autonomous engine monitoring without reliance on ground communication. Full article
(This article belongs to the Special Issue Advances in Perception, Communications, and Control for Drones)
Show Figures

Figure 1

22 pages, 8767 KiB  
Article
Towards Efficiency and Endurance: Energy–Aerodynamic Co-Optimization for Solar-Powered Micro Air Vehicles
by Weicheng Di, Xin Dong, Zixing Wei, Haoji Liu, Zhan Tu, Daochun Li and Jinwu Xiang
Drones 2025, 9(7), 493; https://doi.org/10.3390/drones9070493 - 11 Jul 2025
Viewed by 207
Abstract
Despite decades of development, micro air vehicles (MAVs) still face challenges related to endurance. While solar power has been successfully implemented in larger aircraft as a clean and renewable source of energy, its adaptation to MAVs presents unique challenges due to payload constraints [...] Read more.
Despite decades of development, micro air vehicles (MAVs) still face challenges related to endurance. While solar power has been successfully implemented in larger aircraft as a clean and renewable source of energy, its adaptation to MAVs presents unique challenges due to payload constraints and complex surface geometries. To address this, this work proposes an automated algorithm for optimal solar panel arrangement on complex upper surfaces of the MAV. In addition to that, the aerodynamic performance is evaluated through computational fluid dynamics (CFD) simulations based on the Reynolds-Averaged Navier–Stokes (RANS) method. A multi-objective optimization approach simultaneously considers photovoltaic energy generation and aerodynamic efficiency. Wind tunnel validation and stability analysis of flight dynamics confirm the advantages of our optimized design. To our knowledge, this represents the first systematic framework for the energy–aerodynamic co-optimization of solar-powered MAVs (SMAVs). Flight tests of a 500mm-span tailless prototype demonstrate the practical feasibility of our approach with maximum solar cell deployment. Full article
Show Figures

Figure 1

26 pages, 14110 KiB  
Article
Gemini: A Cascaded Dual-Agent DRL Framework for Task Chain Planning in UAV-UGV Collaborative Disaster Rescue
by Mengxuan Wen, Yunxiao Guo, Changhao Qiu, Bangbang Ren, Mengmeng Zhang and Xueshan Luo
Drones 2025, 9(7), 492; https://doi.org/10.3390/drones9070492 - 11 Jul 2025
Viewed by 416
Abstract
In recent years, UAV (unmanned aerial vehicle)-UGV (unmanned ground vehicle) collaborative systems have played a crucial role in emergency disaster rescue. To improve rescue efficiency, heterogeneous network and task chain methods are introduced to cooperatively develop rescue sequences within a short time for [...] Read more.
In recent years, UAV (unmanned aerial vehicle)-UGV (unmanned ground vehicle) collaborative systems have played a crucial role in emergency disaster rescue. To improve rescue efficiency, heterogeneous network and task chain methods are introduced to cooperatively develop rescue sequences within a short time for collaborative systems. However, current methods also overlook resource overload for heterogeneous units and limit planning to a single task chain in cross-platform rescue scenarios, resulting in low robustness and limited flexibility. To this end, this paper proposes Gemini, a cascaded dual-agent deep reinforcement learning (DRL) framework based on the Heterogeneous Service Network (HSN) for multiple task chains planning in UAV-UGV collaboration. Specifically, this framework comprises a chain selection agent and a resource allocation agent: The chain selection agent plans paths for task chains, and the resource allocation agent distributes platform loads along generated paths. For each mission, a well-trained Gemini can not only allocate resources in load balancing but also plan multiple task chains simultaneously, which enhances the robustness in cross-platform rescue. Simulation results show that Gemini can increase rescue effectiveness by approximately 60% and improve load balancing by approximately 80%, compared to the baseline algorithm. Additionally, Gemini’s performance is stable and better than the baseline in various disaster scenarios, which verifies its generalization. Full article
Show Figures

Figure 1

Back to TopTop