Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Journal = Biology
Section = Ecology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1458 KiB  
Article
Effect of Precipitation Change on Desert Steppe Aboveground Productivity
by Yonghong Luo, Jiming Cheng, Ziyu Cao, Haixiang Zhang, Pengcuo Danba, Jiazhi Wang, Ying Wang, Rong Zhang, Chao Zhang, Yingqun Feng and Shuhua Wei
Biology 2025, 14(8), 1010; https://doi.org/10.3390/biology14081010 - 6 Aug 2025
Abstract
Precipitation changes have significant impacts on biodiversity and ecosystem productivity. However, the effects of precipitation changes on species diversity have been the focus of most previous studies. Little is known about the contributions of different dimensions of biodiversity (species, functional, and phylogenetic diversity) [...] Read more.
Precipitation changes have significant impacts on biodiversity and ecosystem productivity. However, the effects of precipitation changes on species diversity have been the focus of most previous studies. Little is known about the contributions of different dimensions of biodiversity (species, functional, and phylogenetic diversity) in linking long-term precipitation changes to ecosystem functions. In this study, a randomized design was conducted in the desert steppes of Ningxia, which included three treatments: natural rainfall, precipitation reduced by 50%, and precipitation increased by 50%. After 4 years of treatment, the effects of precipitation changes on aboveground productivity and its underlying mechanisms were explored. The results showed that (1) reduced precipitation significantly decreased phylogenetic diversity and species diversity, but had no significant effect on functional diversity; (2) reduced precipitation significantly decreased aboveground productivity, while increased precipitation significantly enhanced aboveground productivity; and (3) changes in precipitation primarily regulated aboveground productivity by altering soil nitrogen availability and the size of dominant plant species. This study provides important theoretical and practical guidance for the protection and management of desert steppe vegetation under future climate change. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 - 6 Aug 2025
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

17 pages, 5553 KiB  
Article
Effects of Interspecific Competition on Habitat Shifts of Sardinops melanostictus (Temminck et Schlegel, 1846) and Scomber japonicus (Houttuyn, 1782) in the Northwest Pacific
by Siyuan Liu, Hanji Zhu, Jianhua Wang, Famou Zhang, Shengmao Zhang and Heng Zhang
Biology 2025, 14(8), 968; https://doi.org/10.3390/biology14080968 (registering DOI) - 1 Aug 2025
Viewed by 172
Abstract
As economically important sympatric species in the Northwest Pacific, the Japanese sardine (Sardinops melanostictus) and Chub mackerel (Scomber japonicus) exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the [...] Read more.
As economically important sympatric species in the Northwest Pacific, the Japanese sardine (Sardinops melanostictus) and Chub mackerel (Scomber japonicus) exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the sustainable development and management of these interconnected species resources. This study utilizes fisheries data of S. melanostictus and S. japonicus from the Northwest Pacific, collected from June to November between 2017 and 2020. We integrated various environmental parameters, including temperature at different depths (0, 50, 100, 150, and 200 m), eddy kinetic energy (EKE), sea surface height (SSH), chlorophyll-a concentration (Chl-a), and the oceanic Niño index (ONI), to construct interspecific competition species distribution model (icSDM) for both species. We validated these models by overlaying the predicted habitats with fisheries data from 2021 and performing cross-validation to assess the models’ reliability. Furthermore, we conducted correlation analyses of the habitats of these two species to evaluate the impact of interspecies relationships on their habitat dynamics. The results indicate that, compared to single-species habitat models, the interspecific competition species distribution model (icSDM) for these two species exhibit a significantly higher explanatory power, with R2 values increasing by up to 0.29; interspecific competition significantly influences the habitat dynamics of S. melanostictus and S. japonicus, strengthening the correlation between their habitat changes. This relationship exhibits a positive correlation at specific stages, with the highest correlations observed in June, July, and October, at 0.81, 0.80, and 0.88, respectively; interspecific competition also demonstrates stage-specific differences in its impact on the habitat dynamics of S. melanostictus and S. japonicus, with the most pronounced differences occurring in August and November. Compared to S. melanostictus, interspecific competition is more beneficial for the expansion of the optimal habitat (HIS ≥ 0.6) for S. japonicus and, to some extent, inhibits the habitat expansion of S. melanostictus. The variation in migratory routes and predatory interactions (with larger individuals of S. japonicus preying on smaller individuals of S. melanostictus) likely constitutes the primary factors contributing to these observed differences. Full article
(This article belongs to the Special Issue Adaptation of Living Species to Environmental Stress)
Show Figures

Figure 1

18 pages, 4241 KiB  
Article
Distribution Patterns and Assembly Mechanisms of Rhizosphere Soil Microbial Communities in Schisandra sphenanthera Across Altitudinal Gradients
by Weimin Li, Luyao Yang, Xiaofeng Cong, Zhuxin Mao and Yafu Zhou
Biology 2025, 14(8), 944; https://doi.org/10.3390/biology14080944 - 27 Jul 2025
Viewed by 246
Abstract
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 [...] Read more.
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 m (HB3), and 1500 m (HB4). High-throughput sequencing and molecular ecological network analysis were employed to analyze the microbial community composition and species interactions. A null model was applied to elucidate community assembly mechanisms. The results demonstrated that bacterial communities were dominated by Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi. The relative abundance of Proteobacteria increased with elevation, while that of Acidobacteriota and Actinobacteriota declined. Fungal communities were primarily composed of Ascomycota and Basidiomycota, with both showing elevated relative abundances at higher altitudes. Diversity indices revealed that HB2 exhibited the highest bacterial Chao, Ace, and Shannon indices but the lowest Simpson index. For fungi, HB3 displayed the highest Chao and Ace indices, whereas HB4 showed the highest Shannon index and the lowest Simpson index. Ecological network analysis indicated stronger bacterial competition at lower elevations and enhanced cooperation at higher elevations, contrasting with fungal communities that exhibited increased competition at higher altitudes. Altitude and soil nutrients were negatively correlated with soil carbon content, while plant nutrients and fungal diversity positively correlated with soil carbon. Null model analysis suggested that deterministic processes dominated bacterial community assembly, whereas stochastic processes governed fungal assembly. These findings highlight significant altitudinal shifts in the microbial community structure and assembly mechanisms in S. sphenanthera rhizosphere soils, driven by the synergistic effects of soil nutrients, plant growth, and fungal diversity. This study provides critical insights into microbial ecology and carbon cycling in alpine ecosystems, offering a scientific basis for ecosystem management and conservation. Full article
(This article belongs to the Section Ecology)
Show Figures

Graphical abstract

22 pages, 2461 KiB  
Article
Environmental Drivers of Phytoplankton Structure in a Semi-Arid Reservoir
by Fangze Zi, Tianjian Song, Wenxia Cai, Jiaxuan Liu, Yanwu Ma, Xuyuan Lin, Xinhong Zhao, Bolin Hu, Daoquan Ren, Yong Song and Shengao Chen
Biology 2025, 14(8), 914; https://doi.org/10.3390/biology14080914 - 22 Jul 2025
Viewed by 310
Abstract
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental [...] Read more.
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental drivers in 17 artificial reservoirs in the Ili region of Xinjiang in August and October 2024. The Ili region is located in the temperate continental arid zone of northwestern China. A total of 209 phytoplankton species were identified, with Bacillariophyta, Chlorophyta, and Cyanobacteria comprising over 92% of the community, indicating an oligarchic dominance pattern. The decoupling between numerical dominance (diatoms) and biomass dominance (cyanobacteria) revealed functional differentiation and ecological complementarity among major taxa. Through multivariate analyses, including Mantel tests, principal component analysis (PCA), and redundancy analysis (RDA), we found that phytoplankton community structures at different ecological levels responded distinctly to environmental gradients. Oxidation-reduction potential (ORP), dissolved oxygen (DO), and mineralization parameters (EC, TDS) were key drivers of morphological operational taxonomic unit (MOTU). In contrast, dominant species (SP) were more responsive to salinity and pH. A seasonal analysis demonstrated significant shifts in correlation structures between summer and autumn, reflecting the regulatory influence of the climate on redox conditions and nutrient solubility. Machine learning using the random forest model effectively identified core taxa (e.g., MOTU1 and SP1) with strong discriminatory power, confirming their potential as bioindicators for water quality assessments and the early warning of ecological shifts. These core taxa exhibited wide spatial distribution and stable dominance, while localized dominant species showed high sensitivity to site-specific environmental conditions. Our findings underscore the need to integrate taxonomic resolution with functional and spatial analyses to reveal ecological response mechanisms in arid-zone reservoirs. This study provides a scientific foundation for environmental monitoring, water resource management, and resilience assessments in climate-sensitive freshwater ecosystems. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

22 pages, 6781 KiB  
Article
Seasonal Variation in Flower Traits, Visitor Traits, and Reproductive Success of Solanum sisymbriifolium Lamarck (Solanaceae) in the Rarh Region of West Bengal, India
by Ujjwal Layek, Pappu Majhi, Alokesh Das, Prakash Karmakar and Arijit Kundu
Biology 2025, 14(7), 865; https://doi.org/10.3390/biology14070865 - 16 Jul 2025
Viewed by 858
Abstract
The wild tomato (Solanum sisymbriifolium) is a globally distributed shrubby weed with both negative and positive impacts, including its invasive properties and the potential for pharmaceutical and traditional medicinal uses. Despite its ecological significance, the plant’s reproductive biology and pollination ecology [...] Read more.
The wild tomato (Solanum sisymbriifolium) is a globally distributed shrubby weed with both negative and positive impacts, including its invasive properties and the potential for pharmaceutical and traditional medicinal uses. Despite its ecological significance, the plant’s reproductive biology and pollination ecology remain poorly understood. This study aimed to investigate the floral biology, pollination ecology, and plant reproduction of the weed species. Some flower traits, such as flowering intensity, flower display size, and pollen and ovule production, peaked during spring, summer, and the monsoon, while flower longevity and stigmatic receptivity were the longest in winter. The plant species was self-compatible (ISI = 0.02), heavily depended on pollinators (IDP = 0.72), and experienced minimal pollination limitation (D = 0.10) under open-pollination conditions. Flower visitors’ traits (e.g., abundance, diversity, and richness) were higher in the spring, summer, and the monsoon, and these were lower in winter. The vital pollination service was provided by Amegilla zonata, Ceratina binghami, Lasioglossum cavernifrons, Nomia (Curvinomia) strigata, Tetragonula pagdeni, Xylocopa aestuans, Xylocopa amethystina, Xylocopa fenestrata, and Xylocopa latipes. Reproductive success, as indicated by fruit and seed set, varied seasonally, being higher during the spring–monsoon period and lower in winter. These findings support effective management of this weed species and help conserve the associated bee populations. Full article
(This article belongs to the Special Issue Pollination Biology)
Show Figures

Graphical abstract

40 pages, 1029 KiB  
Review
Biotechnological Potential of Extremophiles: Environmental Solutions, Challenges, and Advancements
by Fabrizia Sepe, Ezia Costanzo, Elena Ionata and Loredana Marcolongo
Biology 2025, 14(7), 847; https://doi.org/10.3390/biology14070847 - 11 Jul 2025
Viewed by 656
Abstract
Extremophiles are microorganisms capable of living on Earth in ecological niches characterized by peculiar conditions, including extreme temperatures and/or pH, high salt concentrations, and the presence of heavy metals. The development of unique structural and functional adaptation strategies has stimulated an increasing scientific [...] Read more.
Extremophiles are microorganisms capable of living on Earth in ecological niches characterized by peculiar conditions, including extreme temperatures and/or pH, high salt concentrations, and the presence of heavy metals. The development of unique structural and functional adaptation strategies has stimulated an increasing scientific interest since their discovery. The importance of extremophiles lies in their exploitability in significant bioprocesses with several biotechnological applications and their role as a fundamental source of numerous high-value-added biomolecules. This review aims to examine the diversity and specificities of extremophilic archaea and bacteria, with particular emphasis on their potential applications and development in biotechnology and biomedicine. The use of extremophiles and their extremozymes has allowed applications in several fields, such as bioremediation, sustainable agriculture, the recovery of bioactive molecules for use in bioenergy, biomedicine, and nanoparticle production. The comprehension and exploitation of the complex molecular mechanisms that enable life in extreme environments represent a challenge to mitigate current climate change problems and to invest in sustainable development towards a green transition. Full article
(This article belongs to the Special Issue Adaptation of Living Species to Environmental Stress)
Show Figures

Figure 1

16 pages, 1041 KiB  
Article
Isolation and Characterization of Cultivable Microbes from the Gut of Zophobas atratus (Coleoptera: Tenebrionidae) Larvae Reared on Two Types of Artificial Diets
by Vladislava Baklanova, Alexander Kuprin, Ivan Baklanov and Vadim Kumeiko
Biology 2025, 14(7), 824; https://doi.org/10.3390/biology14070824 - 7 Jul 2025
Viewed by 415
Abstract
Gut microbes are important for saproxylophagous insects, but little is known about the specific types of microbes that we can grow in the lab and how their diet affects them. We characterized aerobic culturable microbes from the superworm Zophobas atratus larvae reared on [...] Read more.
Gut microbes are important for saproxylophagous insects, but little is known about the specific types of microbes that we can grow in the lab and how their diet affects them. We characterized aerobic culturable microbes from the superworm Zophobas atratus larvae reared on a standard diet (SD) and a fungal-based diet (FD) using the selective plating and 16S rRNA sequencing of isolates. Five functional groups were cultured: amino acid autotrophs, enterobacteria, yeasts, cellulolytic bacteria, and molds. A quantitative assessment revealed distinct diet-dependent patterns: SD-fed larvae showed the dominance of enterobacteria and amino acid autotrophs, while FD-fed larvae exhibited a higher abundance of enterobacteria and yeasts. Mold populations remained minimal under both diets. A phylogenetic analysis of bacterial isolates showed four core bacterial phyla (Pseudomonadota, Actinobacteria, Bacillota, and Bacteroidota) with diet-sensitive genus-level variations. Pseudomonadota dominated both diets, but certain genera were associated with different diets: Micrococcus and Brucella in the SD versus Citrobacter and Pseudomonas in the FD. Shared genera (Klebsiella, Enterobacter, and Bacillus) may represent a core culturable community. These findings demonstrate the influence of diet on culturable gut microbes while highlighting the need for complementary molecular approaches to study unculturable taxa. The isolated strains provide resources for investigating microbial functions in insect nutrition. Full article
(This article belongs to the Special Issue Feeding Biology and Nutrition in Insects)
Show Figures

Figure 1

19 pages, 6337 KiB  
Article
Responses of Fish Zeta Diversity (ζ) to Human Pressure and Cumulative Effects: A Feasibility Study of Fishing Ban Measures in the Pearl River Basin, China
by Jiayang He, Hao Liu, Xianda Bi and Zhiqiang Wu
Biology 2025, 14(7), 796; https://doi.org/10.3390/biology14070796 - 30 Jun 2025
Viewed by 307
Abstract
Amid declining fish diversity and human pressures in freshwater ecosystems, robust basin-scale assessments are vital for effective fisheries management. This study collated nearly four decades of fishery yields from the Pearl and Yangtze Rivers to identify conservation priorities in the Pearl River Basin. [...] Read more.
Amid declining fish diversity and human pressures in freshwater ecosystems, robust basin-scale assessments are vital for effective fisheries management. This study collated nearly four decades of fishery yields from the Pearl and Yangtze Rivers to identify conservation priorities in the Pearl River Basin. It introduced a novel cumulative effect indicator based on zeta diversity—a biodiversity pattern metric—integrated with cumulative effects analysis for management decision-making. The research employed a multi-site generalized dissimilarity model to examine the non-linear relationships between fish species composition (ζn) and human pressures, environmental factors, and geospatial variations across elevation gradients. The cumulative effect indicator, reflecting responses to anthropogenic stress when assessing ζ2 (related to β diversity), helped evaluate basins for conservation or restoration needs based on their unique or homogenized biotic communities. The results suggest that ζ diversity in low-elevation sub-basins has a stronger filtering effect on ζ by human pressures than in mid- to high-elevation sub-basins, where community aggregation is more random. The impact varied with diversity aspects (nestedness vs. turnover) and zeta order. A negative correlation between cumulative effects and community uniqueness validated the novel cumulative effect indicator’s effectiveness for guiding restoration in the Pearl River Delta, potential fishing bans, and karst conservation. This approach offers a theoretical basis for prioritizing areas for freshwater fish diversity conservation and fishing restrictions in the Pearl River Basin. Full article
Show Figures

Figure 1

17 pages, 1056 KiB  
Review
HSP70-Mediated Autophagy-Apoptosis-Inflammation Network and Neuroprotection Induced by Heat Acclimatization
by Yuchen Su and Xinyan Zheng
Biology 2025, 14(7), 774; https://doi.org/10.3390/biology14070774 - 27 Jun 2025
Viewed by 617
Abstract
Global warming has intensified the health risks associated with heat stress, such as heatstroke and dehydration, underscoring the importance of understanding heat acclimatization (HA). HA involves physiological, psychological, and structural adaptations to prolonged high temperatures, improving heat tolerance and reducing heat-related harm. A [...] Read more.
Global warming has intensified the health risks associated with heat stress, such as heatstroke and dehydration, underscoring the importance of understanding heat acclimatization (HA). HA involves physiological, psychological, and structural adaptations to prolonged high temperatures, improving heat tolerance and reducing heat-related harm. A key player in this process is HSP70, a conserved protein essential for maintaining cellular balance, regulating cell death, and controlling waste removal. While HA mechanisms like temperature regulation and metabolic changes are well studied, the relationship between HSP70 and brain self-repair processes remains unclear. This study uncovers how HSP70, and these processes work together to aid heat adaptation, reveals how environmental stress drives inherited resilience through genetic adjustments, and offers insights for designing targeted health strategies to protect vulnerable populations, connecting lab discoveries to global health needs. Full article
(This article belongs to the Special Issue Adaptation of Living Species to Environmental Stress)
Show Figures

Figure 1

23 pages, 4572 KiB  
Article
Mechanisms of Zooplankton Community Assembly and Their Associations with Environmental Drivers in Arid-Region Reservoirs of Northwest China
by Xuelian Qiu, Fangze Zi, Long Yun, Qiang Huo, Liting Yang, Yong Song and Shengao Chen
Biology 2025, 14(6), 732; https://doi.org/10.3390/biology14060732 - 19 Jun 2025
Viewed by 448
Abstract
This study investigates the mechanisms of zooplankton community assembly and their relationship to environmental factors in high-latitude arid regions. We conducted seasonal sampling at four reservoirs in the upper Tarim River Basin from 2023 to 2024: Shangyou Reservoir (SY), Shengli Reservoir (SL), Duolang [...] Read more.
This study investigates the mechanisms of zooplankton community assembly and their relationship to environmental factors in high-latitude arid regions. We conducted seasonal sampling at four reservoirs in the upper Tarim River Basin from 2023 to 2024: Shangyou Reservoir (SY), Shengli Reservoir (SL), Duolang Reservoir (DL) and Xinjingzi Reservoir (XJZ). The zooplankton community was categorized into five functional groups based on the predominant species, with small crustacean filter feeders (SCF) in all reservoirs except XJZ, where a seasonal shift between rotifer collectors (RC) in the wet season and SCF in the dry season was observed. Pearson correlation and canonical correspondence analysis (CCA) revealed that interspecific competition, pH, conductivity (COND), and salinity (SALIN) were the main determinants of zooplankton community composition. Significant correlations (p < 0.05) were detected among functional groups RC (rotifers carnivora), RF (rotifers filter feeders), SCF (small copepods and claocera filter feeders), and MCC (middle copepods and claocera carnivora). Environmental factors showed significant spatial heterogeneity, while zooplankton biomass was positively correlated with pH and COND. Cluster similarity analyses indicated complex interactions between 29 zooplankton species, with RF identified as an important positive predictor for larger groups. The network of co-occurrences showed predominantly positive relationships, emphasizing the mutual facilitation between the species. Our results suggest that interspecific interactions have stronger effects on community structuring than environmental factors, with mutual facilitation emerging as an important survival strategy. This study provides important insights into the dynamics of zooplankton communities in dry reservoirs and establishes a framework for understanding ecological patterns and assembly mechanisms under drought conditions. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

42 pages, 6908 KiB  
Article
Vegetation Analysis of Wetland Ecosystems in Southern Turkey Using the Fuzzy Means Method
by Deniz Boz
Biology 2025, 14(6), 710; https://doi.org/10.3390/biology14060710 - 17 Jun 2025
Viewed by 436
Abstract
In this study, the vegetation of the natural area of the Göksu Delta Special Environmental Protection Agency (SEPA), one of Turkey’s most important wetlands, is researched. The importance of this study in terms of contributing to environmental protection and land use planning studies [...] Read more.
In this study, the vegetation of the natural area of the Göksu Delta Special Environmental Protection Agency (SEPA), one of Turkey’s most important wetlands, is researched. The importance of this study in terms of contributing to environmental protection and land use planning studies reveals that this natural area, where rare ecosystems are found, has started to degrade and disappear under human influence. This study was conducted because the area is not only a designated RAMSAR wetland (a wetland site designated of international importance especially for the Waterfowl Habitat under the Ramsar Convention) but also includes nearby residential developments. With this study, the vegetation of the area was studied to determine the syntaxonomic units across different habitats. The natural area of Göksu Delta is divided into three main habitat groups: aquatic, sand dune, and halophytic. In the research, the Braun-Blanquet method was used. During the research in the Göksu Delta, 279 sample areas were surveyed. The data were analysed according to the fuzzy means cluster method. During the investigation, 29 associations were identified, and 16 of them are considered a new finding for science. These 29 associations can be classified as follows: aquatic vegetation is represented with four associations (three of them belong to Phragmito-Magnocaricetea and one of them belongs to Potametea classes), sand dune vegetation is represented with 12 associations (belonging to Ammophiletea Br.-Bl. & Tüxen ex Westhoff, Dijk, & Passchier 1946 class), and halophytic vegetation is represented with 13 associations (six of them belong to Salicornietea fruticosae Br.-Bl. & Tüxen ex A. & O. Bolòs 1950, six of them belong to Juncetea maritimi Br.-Bl. in Br.-Bl., Roussine & Nègre 1952, and one of them belong to Molinio-Juncetea Br.-Bl. (1931) 1947 classes). Three (Onopordum boissieri, Ambrosia maritima, and Chlamydophora tridentata) of the endemics and rare plants that were explored during the study were recorded as new alliance characteristics. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

17 pages, 1898 KiB  
Article
Wildfire-Driven Shifts in Bird and Red Fox Activity: A Case Study from Biebrza National Park
by Jakub Gryz, Dagny Krauze-Gryz and Michał Brach
Biology 2025, 14(6), 685; https://doi.org/10.3390/biology14060685 - 12 Jun 2025
Viewed by 1216
Abstract
Fires of natural or anthropogenic origin shape some ecosystems on Earth; this disturbance can maintain the landscape and influence many processes like vegetation structure, carbon, and hydrological cycle, climate, and others [...] Full article
Show Figures

Figure 1

17 pages, 8099 KiB  
Article
Linking Ecological Stoichiometry to Biomass Allocation in Plants Under Cadmium and Petroleum Stress in the Yellow River Delta
by Shuo Li, Haidong Xu, Hui Ye, Cheng Chang, Jinxiang Zhao and Jiangbao Xia
Biology 2025, 14(6), 673; https://doi.org/10.3390/biology14060673 - 10 Jun 2025
Viewed by 905
Abstract
Cadmium and petroleum are the main pollutants in coastal wetland ecosystems that affect plant nutrient balance and growth. Scholars have discovered how saline plants adapt to single stresses. How plant ecology and physiology correspond to complex cadmium and petroleum pollution, especially regarding the [...] Read more.
Cadmium and petroleum are the main pollutants in coastal wetland ecosystems that affect plant nutrient balance and growth. Scholars have discovered how saline plants adapt to single stresses. How plant ecology and physiology correspond to complex cadmium and petroleum pollution, especially regarding the pollution impacts on carbon (C), nitrogen (N), and phosphorus (P) stoichiometry and biomass allocation in coastal wetland plants, remains unclear, limiting their application in regard to pollution remediation. This study focuses on Suaeda salsa, a popular species used in vegetation restoration in the Yellow River Delta’s coastal wetlands. Through the use of pot experiments, the dynamic changes in plant–soil ecological stoichiometry and biomass allocation were systematically investigated in response to individual and combined cadmium (0, 5, and 10 mg kg−1) and petroleum (0, 6, and 12 g kg−1) treatments. Compared with the control (CK), petroleum stress significantly increased the total nitrogen (TN) and plant total phosphorus (TP) contents, but did not substantially impact the total carbon (TC) content, resulting in 19.7% and 26.6% decreases in the plant C/N and C/P ratios, respectively. The soil organic carbon (SOC) content increased significantly under petroleum stress, whereas the TN and TP contents did not notably change, considerably increasing the soil C/N and C/P ratios, which were 1.5 times and 1.3 times greater than those of the CK, respectively. Cadmium stress alone or with petroleum stress did not significantly affect the C, N, or P stoichiometry or biomass allocation in S. salsa. The soil C/N/P stoichiometry redundancy analysis revealed that the contribution rates (especially the soil C/P and C/N ratios) to the total biomass and its allocation in S. salsa (64.5%) were greater than those of the control group plants (35.5%). The correlation analysis revealed that the total growth biomass of S. salsa was negatively correlated with the soil carbon content, C/N ratio, and C/P ratio, but positively correlated with the plant C/N and C/P ratios. The aboveground biomass proportion in S. salsa was significantly negatively correlated with the soil N/P ratio. The belowground biomass proportion exhibited the opposite trend. Petroleum pollution was the main factor driving S. salsa stoichiometry and growth changes, increasing the soil C/N and C/P ratios, reducing the nitrogen and phosphorus nutrient absorption capacities in plant roots, limiting plant nitrogen and phosphorus nutrients, and inhibiting biomass accumulation. Appropriate N and P supplementation alleviated plant growth inhibition due to petroleum pollution stress, which was conducive to improving vegetation ecological restoration in the Yellow River Delta. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

21 pages, 19072 KiB  
Article
Spatiotemporal Assessment and Driving Factors of Ecosystem Health: A Case Study of Two Provinces in Southern China
by Yujun Cai, Yu Zhang, Yefeng Jiang and Xi Guo
Biology 2025, 14(6), 671; https://doi.org/10.3390/biology14060671 - 9 Jun 2025
Viewed by 841
Abstract
The concept of ecosystem health (EH), proposed in the 1980s [...] Full article
(This article belongs to the Special Issue Young Researchers in Ecology)
Show Figures

Figure 1

Back to TopTop