Biotechnological Potential of Extremophiles: Environmental Solutions, Challenges, and Advancements
Simple Summary
Abstract
1. Introduction
2. Extremophiles
2.1. Thermophiles
2.2. Psicrophiles
2.3. Acidophiles
2.4. Alkaliphiles
2.5. Halophiles
3. Applications
3.1. Bioremediation
3.1.1. Heavy Metals
3.1.2. Organic Compounds
3.1.3. Radioactive Waste Treatment
3.2. Plant Growth Promotion
3.3. Production of Biofuels and Biosurfactants
3.4. Medical Applications
3.5. Nanoparticles Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacElroy, R.D. Some comments on the evolution of extremophiles. BioSystems 1974, 6, 74–75. [Google Scholar] [CrossRef]
- Brock, T.D.; Freeze, H. Thermus aquaticus gen. n. and sp. n., a Nonsporulating Extreme Thermophile. J. Bacteriol. 1969, 98, 289–297. [Google Scholar] [CrossRef]
- Horikoshi, K.; Bull, A.T. Prologue: Definition, Categories, Distribution, Origin and Evolution, Pioneering Studies, and Emerging Fields of Extremophiles. In Extremophiles Handbook; Springer: Tokyo, Japan, 2011; pp. 3–15. ISBN 978-4-431-53898-1. [Google Scholar]
- Mukherjee, A.; Chakraborty, D.; Das, S.; Pal, N.; Das, N. Potentiality of Polyextremophilic Organisms in Bioremediation of Aromatic Hydrocarbons and Persistent Organic Pollutants: A Biotechnological Approach. In Trends in Biotechnology of Polyextremophiles; Shah, M.P., Dey, S., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 267–299. ISBN 978-3-031-55032-4. [Google Scholar]
- Espina, G.; Muñoz-Ibacache, S.A.; Cáceres-Moreno, P.; Amenabar, M.J.; Blamey, J.M. From the Discovery of Extremozymes to an Enzymatic Product: Roadmap Based on Their Applications. Front. Bioeng. Biotechnol. 2022, 9, 752281. [Google Scholar] [CrossRef] [PubMed]
- Shandilya, H.; Griffiths, K.; Flynn, E.K.; Astatke, M.; Shih, P.-J.; Lee, J.E.; Gerard, G.F.; Gibbs, M.D.; Bergquist, P.L. Thermophilic Bacterial DNA Polymerases with Reverse-Transcriptase Activity. Extremophiles 2004, 8, 243–251. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. In A New Era in Global Health; Rosa, W., Ed.; Springer Publishing Company: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Cowan, D.A.; Albers, S.V.; Antranikian, G.; Atomi, H.; Averhoff, B.; Basen, M.; Driessen, A.J.M.; Jebbar, M.; Kelman, Z.; Kerou, M.; et al. Extremophiles in a Changing World. Extremophiles 2024, 28, 26. [Google Scholar] [CrossRef] [PubMed]
- Jones, W.J.; Leigh, J.A.; Mayer, F.; Woese, C.R.; Wolfe, R.S. Methanococcus jannaschii sp. nov., an Extremely Thermophilic Methanogen from a Submarine Hydrothermal Vent. Arch. Microbiol. 1983, 136, 254–261. [Google Scholar] [CrossRef]
- Kurr, M.; Huber, R.; König, H.; Jannasch, H.W.; Fricke, H.; Trincone, A.; Kristjansson, J.K.; Stetter, K.O. Methanopyrus kandleri, gen. and sp. nov. Represents a Novel Group of Hyperthermophilic Methanogens, Growing at 110 °C. Arch. Microbiol. 1991, 156, 239–247. [Google Scholar] [CrossRef]
- Takai, K.; Nakamura, K.; Toki, T.; Tsunogai, U.; Miyazaki, M.; Miyazaki, J.; Hirayama, H.; Nakagawa, S.; Nunoura, T.; Horikoshi, K. Cell Proliferation at 122 Degrees C and Isotopically Heavy CH4 Production by a Hyperthermophilic Methanogen Under High-Pressure Cultivation. Proc. Natl. Acad. Sci. USA 2008, 105, 10949–10954. [Google Scholar] [CrossRef]
- Kashefi, K.; Lovley, D.R. Extending the Upper Temperature Limit for Life. Science 2003, 301, 934. [Google Scholar] [CrossRef]
- Fiala, G.; Stetter, K.O. Pyrococcus furiosus sp. nov. Represents a Novel Genus of Marine Heterotrophic Archaebacteria Growing Optimally at 100 °C. Arch. Microbiol. 1986, 145, 56–61. [Google Scholar] [CrossRef]
- González, J.M.; Masuchi, Y.; Robb, F.T.; Ammerman, J.W.; Maeder, D.L.; Yanagibayashi, M.; Tamaoka, J.; Kato, C. Pyrococcus horikoshii sp. nov., a Hyperthermophilic Archaeon Isolated from a Hydrothermal Vent at the Okinawa Trough. Extremophiles 1998, 2, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Erauso, G.; Reysenbach, A.-L.; Godfroy, A.; Meunier, J.-R.; Crump, B.; Partensky, F.; Baross, J.A.; Marteinsson, V.; Barbier, G.; Pace, N.R.; et al. Pyrococcus abyssi sp. nov., a New Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent. Arch. Microbiol. 1993, 160, 338–349. [Google Scholar] [CrossRef]
- Huber, R.; Wilharm, T.; Huber, D.; Trincone, A.; Burggraf, S.; König, H.; Reinhard, R.; Rockinger, I.; Fricke, H.; Stetter, K.O. Aquifex pyrophilus gen. nov. sp. nov., Represents a Novel Group of Marine Hyperthermophilic Hydrogen-Oxidizing Bacteria. Syst. Appl. Microbiol. 1992, 15, 340–351. [Google Scholar] [CrossRef]
- Zillig, W.; Stetter, K.O.; Wunderl, S.; Schulz, W.; Priess, H.; Scholz, I. The Sulfolobus-“Caldariella” Group: Taxonomy on the Basis of the Structure of DNA-Dependent RNA Polymerases. Arch. Microbiol. 1980, 125, 259–269. [Google Scholar] [CrossRef]
- Suzuki, T.; Iwasaki, T.; Uzawa, T.; Hara, K.; Nemoto, N.; Kon, T.; Ueki, T.; Yamagishi, A.; Oshima, T. Sulfolobus tokodaii sp. nov. (F. sulfolobus sp. Strain 7), a New Member of the Genus Sulfolobus Isolated from Beppu Hot Springs, Japan. Extremophiles 2002, 6, 39–44. [Google Scholar] [CrossRef]
- Huber, R.; Langworthy, T.A.; König, H.; Thomm, M.; Woese, C.R.; Sleytr, U.B.; Stetter, K.O. Thermotoga maritima sp. nov. Represents a New Genus of Unique Extremely Thermophilic Eubacteria Growing up to 90 °C. Arch. Microbiol. 1986, 144, 324–333. [Google Scholar] [CrossRef]
- Jannasch, H.W.; Huber, R.; Belkin, S.; Stetter, K.O. Thermotoga neapolitana sp. nov. of the Extremely Thermophilic, Eubacterial Genus Thermotoga. Arch. Microbiol. 1988, 150, 103–104. [Google Scholar] [CrossRef]
- Breezee, J.; Cady, N.; Staley, J.T. Subfreezing Growth of the Sea Ice Bacterium “Psychromonas ingrahamii”. Microbial. Ecol. 2004, 47, 300–304. [Google Scholar] [CrossRef]
- Mykytczuk, N.C.S.; Foote, S.J.; Omelon, C.R.; Southam, G.; Greer, C.W.; Whyte, L.G. Bacterial Growth at −15 °C; Molecular Insights from the Permafrost Bacterium Planococcus halocryophilus Or1. ISME J. 2013, 7, 1211–1226. [Google Scholar] [CrossRef]
- Tendulkar, S.; Hattiholi, A.; Chavadar, M.; Dodamani, S. Psychrophiles: A Journey of Hope. J. Biosci. 2021, 46, 64. [Google Scholar] [CrossRef]
- Kato, C. Molecular Analyses of the Sediment and Isolation of Extreme Barophiles from the Deepest Mariana Trench. In Extremophiles in Deep-Sea Environments; Horikoshi, K., Tsujii, K., Eds.; Springer: Tokyo, Japan, 1999; pp. 27–37. ISBN 978-4-431-67925-7. [Google Scholar]
- Nogi, Y. Bacteria in the Deep Sea: Psychropiezophiles. In Psychrophiles: From Biodiversity to Biotechnology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 73–82. ISBN 978-3-540-74335-4. [Google Scholar]
- Gilbert, J.A.; Hill, P.J.; Dodd, C.E.R.; Laybourn-Parry, J. Demonstration of Antifreeze Protein Activity in Antarctic Lake Bacteria. Microbiology 2004, 150, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.A.; Davies, P.L.; Laybourn-Parry, J. A Hyperactive, Ca2+-Dependent Antifreeze Protein in an Antarctic Bacterium. FEMS Microbiol. Lett. 2005, 245, 67–72. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, D.; Yang, J.; Wang, W.; Chen, P.; Zhang, S.; Yan, L. Acidithiobacillus thiooxidans and Its Potential Application. Appl. Microbiol. Biotechnol. 2019, 103, 7819–7833. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ren, Y.; Lin, J.; Liu, X.; Pang, X.; Lin, J. Acidithiobacillus caldus Sulfur Oxidation Model Based on Transcriptome Analysis Between the Wild Type and Sulfur Oxygenase Reductase Defective Mutant. PLoS ONE 2012, 7, e39470. [Google Scholar] [CrossRef]
- Kimura, S.; Bryan, C.G.; Hallberg, K.B.; Johnson, D.B. Biodiversity and Geochemistry of an Extremely Acidic, Low-Temperature Subterranean Environment Sustained by Chemolithotrophy. Environ. Microbiol. 2011, 13, 2092–2104. [Google Scholar] [CrossRef]
- Beolchini, F.; Dell’Anno, A.; Propris, L.D.; Ubaldini, S.; Cerrone, F.; Danovaro, R. Auto- and Heterotrophic Acidophilic Bacteria Enhance the Bioremediation Efficiency of Sediments Contaminated by Heavy Metals. Chemosphere 2009, 74, 1321–1326. [Google Scholar] [CrossRef]
- Schleper, C.; Puehler, G.; Holz, I.; Gambacorta, A.; Janekovic, D.; Santarius, U.; Klenk, H.P.; Zillig, W. Picrophilus gen. nov., Fam. nov.: A Novel Aerobic, Heterotrophic, Thermoacidophilic Genus and Family Comprising Archaea Capable of Growth around pH 0. J. Bacter. 1995, 177, 7050–7059. [Google Scholar] [CrossRef] [PubMed]
- Fütterer, O.; Angelov, A.; Liesegang, H.; Gottschalk, G.; Schleper, C.; Schepers, B.; Dock, C.; Antranikian, G.; Liebl, W. Genome Sequence of Picrophilus torridus and Its Implications for Life around pH 0. Proc. Natl. Acad. Sci. USA 2004, 101, 9091–9096. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Ting, Y.-P. Bioleaching of Spent Hydrotreating Catalyst by Acidophilic Thermophile Acidianus Brierleyi: Leaching Mechanism and Effect of Decoking. Biores. Technol. 2013, 130, 673–680. [Google Scholar] [CrossRef]
- Suzuki, I.; Lee, D.; Mackay, B.; Harahuc, L.; Oh, J.K. Effect of Various Ions, pH, and Osmotic Pressure on Oxidation of Elemental Sulfur by Thiobacillus thiooxidans. Appl. Environ. Microbiol. 1999, 65, 5163–5168. [Google Scholar] [CrossRef]
- Sultanpuram, V.R.; Mothe, T.; Chintalapati, S.; Chintalapati, V.R. Bacillus alcaliphilum sp. nov., a Bacterium Isolated from a Soda Lake. Arch. Microbiol. 2017, 199, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Menes, R.J.; Machin, E.V.; Iriarte, A.; Langleib, M. Bacillus natronophilus sp. nov., an Alkaliphilic Bacterium Isolated from a Soda Lake. Int. J. Syst. Evol. Microbiol. 2020, 70, 562–568. [Google Scholar] [CrossRef]
- Grant, W.D.; Sorokin, D.Y. Distribution and Diversity of Soda Lake Alkaliphiles. In Extremophiles Handbook; Horikoshi, K., Ed.; Springer: Tokyo, Japan, 2011; pp. 27–54. ISBN 978-4-431-53898-1. [Google Scholar]
- Zhilina, T.N.; Zavarzin, G.A.; Rainey, F.A.; Pikuta, E.N.; Osipov, G.A.; Kostrikina, N.A. Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an Alkaliphilic, Sulfate-Reducing Bacterium. Int. J. Syst. Bacteriol. 1997, 47, 144–149. [Google Scholar] [CrossRef]
- Challacombe, J.F.; Majid, S.; Deole, R.; Brettin, T.S.; Bruce, D.; Delano, S.F.; Detter, J.C.; Gleasner, C.D.; Han, C.S.; Misra, M.; et al. Complete Genome Sequence of Halorhodospira Halophila SL1. Stand. Genom. Sci. 2013, 8, 206–214. [Google Scholar] [CrossRef]
- Pikuta, E.V.; Hoover, R.B.; Bej, A.K.; Marsic, D.; Whitman, W.B.; Cleland, D.; Krader, P. Desulfonatronum thiodismutans sp. nov., a Novel Alkaliphilic, Sulfate-Reducing Bacterium Capable of Lithoautotrophic Growth. Int. J. Syst. Evol. Microbiol. 2003, 53, 1327–1332. [Google Scholar] [CrossRef]
- Hashim, S.O.; Delgado, O.; Hatti-Kaul, R.; Mulaa, F.J.; Mattiasson, B. Starch Hydrolysing Bacillus Halodurans Isolates from a Kenyan Soda Lake. Biotechnol. Lett. 2004, 26, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xue, Y.; Ma, Y.; Grant, W.D.; Ventosa, A.; Zhou, P. Marinospirillum alkaliphilum sp. nov., a New Alkaliphilic Helical Bacterium from Haoji Soda Lake in Inner Mongolia Autonomous Region of China. Extremophiles 2002, 6, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Tiwary, B.K.; Sar, A.; Rabari, A.; Gurung, A.; Mitra, A.; Banik, A.; Pandit, B.; Tiwary, B.K.; Dam, B.; et al. Extremophiles: Diversity, Adaptation and Applications; Bentham Science Publishers: Sharjah, United Arab Emirates, 2022; ISBN 978-981-5080-35-3. [Google Scholar]
- Woldie, A.A.; Chowdhary, A.K.; Sekine, M.; Kishi, M.; Zegeye, M.B.; Kurosawa, N.; Toda, T. Growth Characteristics and Molecular Identification of Indigenous Limnospira Strains from Ethiopian Soda Lakes as a Protein Source. Biocatal. Agric. Biotechnol. 2024, 60, 103336. [Google Scholar] [CrossRef]
- Tsukatani, Y.; Hirose, Y.; Harada, J.; Yonekawa, C.; Tamiaki, H. Unusual Features in the Photosynthetic Machinery of Halorhodospira Halochloris DSM 1059 Revealed by Complete Genome Sequencing. Photosynth. Res. 2019, 140, 311–319. [Google Scholar] [CrossRef]
- Zakharyuk, A.G.; Kozyreva, L.P.; Khijniak, T.V.; Namsaraev, B.B.; Shcherbakova, V.A. Desulfonatronum zhilinae sp. nov., a Novel Haloalkaliphilic Sulfate-Reducing Bacterium from Soda Lake Alginskoe, Trans-Baikal Region, Russia. Extremophiles 2015, 19, 673–680. [Google Scholar] [CrossRef]
- Boltyanskaya, Y.V.; Kevbrin, V.V.; Grouzdev, D.S.; Detkova, E.N.; Koziaeva, V.V.; Novikov, A.A.; Zhilina, T.N. Halonatronomonas betaini gen. nov., sp. nov., a Haloalkaliphilic Isolate from Soda Lake Capable of Betaine Degradation and Proposal of Halarsenatibacteraceae Fam. nov. and Halothermotrichaceae Fam. nov. within the Order Halanaerobiales. Syst. Appl. Microbiol. 2023, 46, 126407. [Google Scholar] [CrossRef] [PubMed]
- Doronina, N.V.; Trotsenko, Y.A.; Tourova, T.P. Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: Novel Aerobic, Moderately Halophilic, Facultatively Methylotrophic Bacteria from Coastal Saline Environments. Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 5, 1849–1859. [Google Scholar] [CrossRef]
- Gunde-Cimerman, N.; Plemenitaš, A.; Oren, A. Strategies of Adaptation of Microorganisms of the Three Domains of Life to High Salt Concentrations. FEMS Microbiol. Rev. 2018, 42, 353–375. [Google Scholar] [CrossRef]
- Rossi, M.; Ciaramella, M.; Cannio, R.; Pisani, F.M.; Moracci, M.; Bartolucci, S. Extremophiles 2002. J. Bacteriol. 2003, 185, 3683–3689. [Google Scholar] [CrossRef]
- Rivkina, E.M.; Friedmann, E.I.; McKay, C.P.; Gilichinsky, D.A. Metabolic Activity of Permafrost Bacteria Below the Freezing Point. App. Environ. Microbiol. 2000, 66, 3230–3233. [Google Scholar] [CrossRef]
- Stetter, K.O. Extremophiles and Their Adaptation to Hot Environments. FEBS Lett. 1999, 452, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Finore, I.; Feola, A.; Russo, L.; Cattaneo, A.; Di Donato, P.; Nicolaus, B.; Poli, A.; Romano, I. Thermophilic Bacteria and Their Thermozymes in Composting Processes: A Review. Chem. Biol. Technol. Agric. 2023, 10, 7. [Google Scholar] [CrossRef]
- Schönheit, P.; Schäfer, T. Metabolism of Hyperthermophiles. World J. Microbiol. Biotechnol. 1995, 11, 26–57. [Google Scholar] [CrossRef]
- Bhandari, V.; Gupta, R.S. The Phylum Thermotogae. In The Prokaryotes: Other Major Lineages of Bacteria and The Archaea; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 989–1015. ISBN 978-3-642-38954-2.1. [Google Scholar]
- Arbab, S.; Ullah, H.; Khan, M.I.U.; Khattak, M.N.K.; Zhang, J.; Li, K.; Hassan, I.U. Diversity and Distribution of Thermophilic Microorganisms and Their Applications in Biotechnology. J. Basic Microbiol. 2022, 62, 95–108. [Google Scholar] [CrossRef]
- Nicolaus, B.; Trincone, A.; Esposito, E.; Vaccaro, M.R.; Gambacorta, A.; De Rosa, M. Calditol Tetraether Lipids of the Archaebacterium Sulfolobus solfataricus. Biosynthetic Studies. Biochem. J. 1990, 266, 785–791. [Google Scholar]
- Driessen, A.J.M.; Albers, S.-V. Membrane Adaptations of (Hyper)Thermophiles to High Temperatures. In Physiology and Biochemistry of Extremophiles; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 104–116. ISBN 978-1-68367-165-7. [Google Scholar]
- Zeldovich, K.B.; Berezovsky, I.N.; Shakhnovich, E.I. Protein and DNA Sequence Determinants of Thermophilic Adaptation. PLoS Comput. Biol. 2007, 3, e5. [Google Scholar] [CrossRef] [PubMed]
- Feller, G. Protein Stability and Enzyme Activity at Extreme Biological Temperatures. J. Phys. Condens. Matter. 2010, 22, 323101. [Google Scholar] [CrossRef] [PubMed]
- Margesin, R.; Collins, T. Microbial Ecology of the Cryosphere (Glacial and Permafrost Habitats): Current Knowledge. Appl. Microbiol. Biotechnol. 2019, 103, 2537–2549. [Google Scholar] [CrossRef] [PubMed]
- MacDonell, M.T.; Colwell, R.R. Phylogeny of the Vibrionaceae, and Recommendation for Two New Genera, Listonella and Shewanella. Syst. Appl. Microbiol. 1985, 6, 171–182. [Google Scholar] [CrossRef]
- Deming, J.W. Psychrophiles and Polar Regions. Curr. Opin. Microbiol. 2002, 5, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.; Morris, G.J.; Fonseca, F.; Murray, B.J.; Acton, E.; Price, H.C. A Low Temperature Limit for Life on Earth. PLoS ONE 2013, 8, e66207. [Google Scholar] [CrossRef] [PubMed]
- Rahman, R.; Bheemasetti, T.V.; Govil, T.; Sani, R. Psychrophiles to Control Ice-Water Phase Changes in Frost-Susceptible Soils. Sci. Rep. 2024, 14, 477. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Yang, F.; Zhou, M.; Wang, R.; Huang, J.; Rong, Y.; Liu, J.; Wang, S. New Insight into the Mechanism by Which Antifreeze Peptides Regulate the Physiological Function of Streptococcus thermophilus Subjected to Freezing Stress. J. Adv. Res. 2023, 45, 127–140. [Google Scholar] [CrossRef]
- Tanghe, A.; Van Dijck, P.; Thevelein, J.M. Determinants of Freeze Tolerance in Microorganisms, Physiological Importance, and Biotechnological Applications. Adv. Appl. Microbiol. 2003, 53, 129–176. [Google Scholar] [CrossRef]
- Finore, I.; Vigneron, A.; Vincent, W.F.; Leone, L.; Di Donato, P.; Schiano Moriello, A.; Nicolaus, B.; Poli, A. Novel Psychrophiles and Exopolymers from Permafrost Thaw Lake Sediments. Microorganisms 2020, 8, 1282. [Google Scholar] [CrossRef]
- Kaur, A.; Capalash, N.; Sharma, P. Communication Mechanisms in Extremophiles: Exploring Their Existence and Industrial Applications. Microbiol. Res. 2019, 221, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, N.; Ma, J.; Zhou, Y.; Wei, Q.; Tian, C.; Fang, Y.; Zhong, R.; Chen, G.; Zhang, S. Advances in Cold-Adapted Enzymes Derived from Microorganisms. Front. Microbiol. 2023, 14, 1152847. [Google Scholar] [CrossRef]
- Qian, Y.-F.; Yu, J.-Y.; Xie, J.; Yang, S.-P. A Mini-Review on Cold-Adapted Enzymes from Psychrotrophic Microorganisms in Foods: Benefits and Challenges. Curr. Res. Biotechnol. 2023, 6, 100162. [Google Scholar] [CrossRef]
- Johnson, D.B.; Quatrini, R. Acidophile microbiology in space and time. Curr. Issues Mol. Biol. 2020, 39, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Andrea, I.; Rodríguez, N.; Amils, R.; Sanz, J.L. Microbial Diversity in Anaerobic Sediments at Río Tinto, a Naturally Acidic Environment with a High Heavy Metal Content. Appl. Environ. Microbiol. 2011, 77, 6085–6093. [Google Scholar] [CrossRef] [PubMed]
- Kochhar, N.; I․k, K.; Shrivastava, S.; Ghosh, A.; Rawat, V.S.; Sodhi, K.K.; Kumar, M. Perspectives on the Microorganism of Extreme Environments and Their Applications. Curr. Res. Microb. Sci. 2022, 3, 100134. [Google Scholar] [CrossRef] [PubMed]
- Mykytczuk, N.C.S.; Trevors, J.T.; Ferroni, G.D.; Leduc, L.G. Cytoplasmic Membrane Fluidity and Fatty Acid Composition of Acidithiobacillus ferrooxidans in Response to pH Stress. Extremophiles 2010, 14, 427–441. [Google Scholar] [CrossRef]
- Tyson, G.W.; Chapman, J.; Hugenholtz, P.; Allen, E.E.; Ram, R.J.; Richardson, P.M.; Solovyev, V.V.; Rubin, E.M.; Rokhsar, D.S.; Banfield, J.F. Community Structure and Metabolism through Reconstruction of Microbial Genomes from the Environment. Nature 2004, 428, 37–43. [Google Scholar] [CrossRef]
- Richard, H.; Foster, J.W. Escherichia Coli Glutamate- and Arginine-Dependent Acid Resistance Systems Increase Internal pH and Reverse Transmembrane Potential. J. Bacteriol. 2004, 186, 6032–6041. [Google Scholar] [CrossRef]
- Cortez, D.; Neira, G.; González, C.; Vergara, E.; Holmes, D.S. A Large-Scale Genome-Based Survey of Acidophilic Bacteria Suggests That Genome Streamlining is an Adaption for Life at Low pH. Front. Microbiol. 2022, 13, 803241. [Google Scholar] [CrossRef]
- Gao, X.-Y.; Fu, C.-A.; Hao, L.; Gu, X.-F.; Wang, R.; Lin, J.-Q.; Liu, X.-M.; Pang, X.; Zhang, C.-J.; Lin, J.-Q.; et al. The Substrate-Dependent Regulatory Effects of the AfeI/R System in Acidithiobacillus ferrooxidans Reveals the Novel Regulation Strategy of Quorum Sensing in Acidophiles. Environ. Microbiol. 2021, 23, 757–773. [Google Scholar] [CrossRef] [PubMed]
- Yumoto, I.; Hirota, K.; Yoshimune, K. Environmental Distribution and Taxonomic Diversity of Alkaliphiles. In Extremophiles Handbook; Horikoshi, K., Ed.; Springer: Tokyo, Japan, 2011; pp. 55–79. ISBN 978-4-431-53898-1. [Google Scholar]
- Paul Antony, C.; Kumaresan, D.; Hunger, S.; Drake, H.L.; Murrell, J.C.; Shouche, Y.S. Microbiology of Lonar Lake and Other Soda Lakes. ISME J. 2013, 7, 468–476. [Google Scholar] [CrossRef]
- Hensel, R.; Matussek, K.; Michalke, K.; Tacke, L.; Tindall, B.J.; Kohlhoff, M.; Siebers, B.; Dielenschneider, J. Sulfophobococcus zilligii gen. nov., spec. nov. a Novel Hyperthermophilic Archaeum Isolated from Hot Alkaline Springs of Iceland. Syst. Appl. Microbiol. 1997, 20, 102–110. [Google Scholar] [CrossRef]
- Kulkarni, S.; Dhakar, K.; Joshi, A. Alkaliphiles: Diversity and Bioprospection. Diversity and Bioprospection. In Microbial Diversity in the Genomic Era; Elsevier: Amsterdam, The Netherlands, 2019; pp. 239–263. ISBN 978-0-12-814850-1.1. [Google Scholar]
- Foti, M.; Sorokin, D.Y.; Lomans, B.; Mussman, M.; Zacharova, E.E.; Pimenov, N.V.; Kuenen, J.G.; Muyzer, G. Diversity, Activity, and Abundance of Sulfate-Reducing Bacteria in Saline and Hypersaline Soda Lakes. Appl. Environ. Microbiol. 2007, 73, 2093–2100. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Abbas, B.; Geleijnse, M.; Pimenov, N.V.; Sukhacheva, M.V.; van Loosdrecht, M.C.M. Methanogenesis at Extremely Haloalkaline Conditions in the Soda Lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol. Ecol. 2015, 91, fiv016. [Google Scholar] [CrossRef] [PubMed]
- Antony, C.P.; Kumaresan, D.; Ferrando, L.; Boden, R.; Moussard, H.; Scavino, A.F.; Shouche, Y.S.; Murrell, J.C. Active Methylotrophs in the Sediments of Lonar Lake, a Saline and Alkaline Ecosystem Formed by Meteor Impact. ISME J. 2010, 4, 1470–1480. [Google Scholar] [CrossRef] [PubMed]
- Tindall, B.J.; Ross, H.N.M.; Grant, W.D. Natronobacterium gen. nov. and Natronococcus gen. nov., Two New Genera of Haloalkaliphilic Archaebacteria. Syst. Appl. Microbiol. 1984, 5, 41–57. [Google Scholar] [CrossRef]
- Hauß, T.; Dante, S.; Dencher, N.A.; Haines, T.H. Squalane is in the Midplane of the Lipid Bilayer: Implications for its Function as a Proton Permeability Barrier. Biochim. Biophys. Acta-Bioenerg. 2002, 1556, 149–154. [Google Scholar] [CrossRef]
- Barozzi, A.; Mapelli, F.; Michoud, G.; Crotti, E.; Merlino, G.; Molinari, F.; Borin, S.; Daffonchio, D. Microbial Diversity and Biotechnological Potential of Microorganisms Thriving in the Deep-Sea Brine Pools. In Extremophiles; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-315-15469-5. [Google Scholar]
- Ma, Y.; Galinski, E.A.; Grant, W.D.; Oren, A.; Ventosa, A. Halophiles 2010: Life in Saline Environments. Appl. Environ. Microbiol. 2010, 76, 6971–6981. [Google Scholar] [CrossRef]
- Oren, A. The Order Halobacteriales. In The Prokaryotes: Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 113–164. ISBN 978-0-387-30743-5. [Google Scholar]
- Oren, A. Taxonomy of Halophilic Archaea: Current Status and Future Challenges. Extremophiles 2014, 18, 825–834. [Google Scholar] [CrossRef]
- de la Haba, R.R.; Sánchez-Porro, C.; Marquez, M.C.; Ventosa, A. Taxonomy of Halophiles. In Extremophiles Handbook; Horikoshi, K., Ed.; Springer: Tokyo, Japan, 2011; pp. 255–308. ISBN 978-4-431-53898-1. [Google Scholar]
- Shivanand, P.; Mugeraya, G. Halophilic Bacteria and Their Compatible Solutes—Osmoregulation and Potential Applications. Curr. Sci. 2011, 100, 1516–1521. [Google Scholar]
- Blanquart, S.; Groussin, M.; Le Roy, A.; Szöllosi, G.J.; Girard, E.; Franzetti, B.; Gouy, M.; Madern, D. Resurrection of Ancestral Malate Dehydrogenases Reveals the Evolutionary History of Halobacterial Proteins: Deciphering Gene Trajectories and Changes in Biochemical Properties. Mol. Biol. Evol. 2021, 38, 3754–3774. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-W.; Choi, Y.J. Extremophilic Microorganisms for the Treatment of Toxic Pollutants in the Environment. Molecules 2020, 25, 4916. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Dong, J.; Shen, Z.; Zhou, Y. Microplastics as Vectors for Antibiotic Resistance: Role of Pathogens, Heavy Metals, and Pharmaceuticals and Personal Care Products. J. Water Proc. Eng. 2024, 67, 106124. [Google Scholar] [CrossRef]
- Hickey, W.J. Chapter 21—Biodegradation of Environmental Pollutants. In Principles and Applications of Soil Microbiology, 3rd ed.; Gentry, T.J., Fuhrmann, J.J., Zuberer, D.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 581–605. ISBN 978-0-12-820202-9. [Google Scholar]
- Kamizela, T.; Grobelak, A.; Worwag, M. Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the Recovery of Heavy Metals from Landfill Leachates. Energies 2021, 14, 3336. [Google Scholar] [CrossRef]
- Tonietti, L.; Esposito, M.; Cascone, M.; Barosa, B.; Fiscale, S.; Muscari Tomajoli, M.T.; Sbaffi, T.; Santomartino, R.; Covone, G.; Cordone, A.; et al. Unveiling the Bioleaching Versatility of Acidithiobacillus ferrooxidans. Microorganisms 2024, 12, 2407. [Google Scholar] [CrossRef]
- Kremser, K.; Thallner, S.; Strbik, D.; Spiess, S.; Kucera, J.; Vaculovic, T.; Vsiansky, D.; Haberbauer, M.; Mandl, M.; Guebitz, G.M. Leachability of Metals from Waste Incineration Residues by Iron- and Sulfur-Oxidizing Bacteria. J. Environ. Manag. 2021, 280, 111734. [Google Scholar] [CrossRef]
- Okibe, N.; Maki, M.; Nakayama, D.; Sasaki, K. Microbial Recovery of Vanadium by the Acidophilic Bacterium, Acidocella aromatica. Biotechnol. Lett. 2016, 38, 1475–1481. [Google Scholar] [CrossRef]
- Chakravarty, R.; Banerjee, P.C. Mechanism of Cadmium Binding on the Cell Wall of an Acidophilic Bacterium. Biores. Technol. 2012, 108, 176–183. [Google Scholar] [CrossRef]
- Biswas, J.; Bose, P.; Mandal, S.; Paul, A.K. Reduction of Hexavalent Chromium by a Moderately Halophilic Bacterium, Halomonas smyrnensis KS802 under Saline Environment. Environ. Sustain. 2018, 1, 411–423. [Google Scholar] [CrossRef]
- Panyushkina, A.; Matyushkina, D.; Pobeguts, O.; Muravyov, M.; Letarov, A. Mechanisms of Microbial Hyper-Resistance to Heavy Metals: Cellular Metal Accumulation, Metabolic Reorganization, and GroEL Chaperonin in Extremophilic Bacterium Sulfobacillus thermotolerans in Response to Zinc. J. Hazard. Mater. 2025, 488, 137490. [Google Scholar] [CrossRef]
- Huang, Y.; Li, M.; Yang, Y.; Zeng, Q.; Loganathan, P.; Hu, L.; Zhong, H.; He, Z. Sulfobacillus thermosulfidooxidans: An Acidophile Isolated from Acid Hot Spring for the Biosorption of Heavy Metal Ions. Int. J. Environ. Sci. Technol. 2020, 17, 2655–2666. [Google Scholar] [CrossRef]
- Maleke, M.; Valverde, A.; Vermeulen, J.-G.; Cason, E.; Gomez-Arias, A.; Moloantoa, K.; Coetsee-Hugo, L.; Swart, H.; van Heerden, E.; Castillo, J. Biomineralization and Bioaccumulation of Europium by a Thermophilic Metal Resistant Bacterium. Front. Microbiol. 2019, 10, 81. [Google Scholar] [CrossRef]
- Özdemir, S.; Kilinc, E.; Poli, A.; Nicolaus, B.; Güven, K. Cd, Cu, Ni, Mn and Zn Resistance and Bioaccumulation by Thermophilic Bacteria, Geobacillus toebii Subsp. Decanicus and Geobacillus thermoleovorans Subsp. Stromboliensis. World J. Microbiol. Biotechnol. 2012, 28, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.K.; Bhattacharjee, I.; Chandra, G. Biosorption of Heavy Metals from Industrial Waste Water by Geobacillus thermodenitrificans. J. Hazard. Mater. 2010, 175, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, S.; Kılınç, E.; Poli, A.; Nicolaus, B. Biosorption of Heavy Metals (Cd2+, Cu2+, Co2+, and Mn2+) by Thermophilic Bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus: Equilibrium and Kinetic Studies. Bioremediat. J. 2013, 17, 86–96. [Google Scholar] [CrossRef]
- Sundar, K.; Sadiq, I.M.; Mukherjee, A.; Chandrasekaran, N. Bioremoval of Trivalent Chromium Using Bacillus Biofilms through Continuous Flow Reactor. J. Hazard. Mater. 2011, 196, 44–51. [Google Scholar] [CrossRef]
- Mwandira, W.; Nakashima, K.; Kawasaki, S.; Arabelo, A.; Banda, K.; Nyambe, I.; Chirwa, M.; Ito, M.; Sato, T.; Igarashi, T.; et al. Biosorption of Pb (II) and Zn (II) from Aqueous Solution by Oceanobacillus profundus Isolated from an Abandoned Mine. Sci. Rep. 2020, 10, 21189. [Google Scholar] [CrossRef]
- Ahmady-Asbchin, S.; Akbari Nasab, M.; Gerente, C. Heavy Metals Biosorption in Unary, Binary, and Ternary Systems onto Bacteria in a Moving Bed Biofilm Reactor. Sci. Rep. 2024, 14, 19168. [Google Scholar] [CrossRef]
- Puopolo, R.; Sorrentino, I.; Gallo, G.; Piscitelli, A.; Giardina, P.; Le Goff, A.; Fiorentino, G. Self-Assembling Thermostable Chimeras as New Platform for Arsenic Biosensing. Sci. Rep. 2021, 11, 2991. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, M.; Han, F.; Liu, Z.; Han, Y.; Li, Q.; Zhou, W. Thermophilic Adsorption of Pb2+ onto Bacterium from Deep-Sea Hydrothermal Vent. J. Environ. Chem. Eng. 2022, 10, 107364. [Google Scholar] [CrossRef]
- Imron, M.F.; Kurniawan, S.B.; Abdullah, S.R.S. Resistance of Bacteria Isolated from Leachate to Heavy Metals and the Removal of Hg by Pseudomonas aeruginosa Strain FZ-2 at Different Salinity Levels in a Batch Biosorption System. Sustain. Environ. Res. 2021, 31, 14. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; El-khateeb, A.Y.; Ghoniem, A.A.; El-Hersh, M.S.; Saber, W.I.A. Innovative Low-Cost Biosorption Process of Cr6+ by Pseudomonas Alcaliphila NEWG-2. Sci. Rep. 2020, 10, 14043. [Google Scholar] [CrossRef]
- Giovanella, P.; Vieira, G.A.L.; Otero, I.V.R.; Pellizzer, E.P.; de Fontes, B.J.; Sette, L.D. Metal and Organic Pollutants Bioremediation by Extremophile Microorganisms. J. Hazard. Mater. 2020, 382, 121024. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Li, L.; Ding, W.; Liu, J.; Xue, S. A Full-Scale Thermophilic Biofilter in the Treatment of Sludge Drying Exhaust: Performance, Microbial Characteristics and Bioaerosol Emission. J. Chem. Technol. Biotechnol 2018, 93, 2216–2225. [Google Scholar] [CrossRef]
- Perfumo, A.; Banat, I.M.; Marchant, R.; Vezzulli, L. Thermally Enhanced Approaches for Bioremediation of Hydrocarbon-Contaminated Soils. Chemosphere 2007, 66, 179–184. [Google Scholar] [CrossRef]
- Meintanis, C.; Chalkou, K.I.; Kormas, K.A.; Karagouni, A.D. Biodegradation of Crude Oil by Thermophilic Bacteria Isolated from a Volcano Island. Biodegradation 2006, 17, 3–9. [Google Scholar] [CrossRef]
- Viamajala, S.; Peyton, B.M.; Richards, L.A.; Petersen, J.N. Solubilization, Solution Equilibria, and Biodegradation of PAH’s Under Thermophilic Conditions. Chemosphere 2007, 66, 1094–1106. [Google Scholar] [CrossRef]
- Zhou, J.; Li, G.; Xie, J.; Cui, X.; Dai, X.; Tian, H.; Gao, P.; Wu, M.; Ma, T. A Novel Bioemulsifier from Geobacillus Stearothermophilus A-2 and Its Potential Application in Microbial Enhanced Oil Recovery. RSC Adv. 2016, 6, 96347–96354. [Google Scholar] [CrossRef]
- Khanpour-Alikelayeh, E.; Partovinia, A.; Talebi, A.; Kermanian, H. Investigation of Bacillus licheniformis in the Biodegradation of Iranian Heavy Crude Oil: A Two-Stage Sequential Approach Containing Factor-Screening and Optimization. Ecotoxicol. Environ. Saf. 2020, 205, 111103. [Google Scholar] [CrossRef]
- Guevara-Luna, J.; Alvarez-Fitz, P.; Ríos-Leal, E.; Acevedo-Quiroz, M.; Encarnación-Guevara, S.; Moreno-Godinez, M.E.; Castellanos-Escamilla, M.; Toribio-Jiménez, J.; Romero-Ramírez, Y. Biotransformation of Benzo[a]Pyrene by the Thermophilic Bacterium Bacillus licheniformis M2-7. World J. Microbiol. Biotechnol. 2018, 34, 88. [Google Scholar] [CrossRef] [PubMed]
- Bertović, B.; Šabić Runjavec, M.; Todorović, N.; Zgrebec, I.; Vuković Domanovac, M. Biotechnological Potential of Oil-Tolerant Strains for Possible Use in Bioremediation. Sustainability 2024, 16, 563. [Google Scholar] [CrossRef]
- Ravi, A.; Ravuri, M.; Krishnan, R.; Narenkumar, J.; Anu, K.; Alsalhi, M.S.; Devanesan, S.; Kamala-Kannan, S.; Rajasekar, A. Characterization of Petroleum Degrading Bacteria and Its Optimization Conditions on Effective Utilization of Petroleum Hydrocarbons. Microbiol. Res. 2022, 265, 127184. [Google Scholar] [CrossRef] [PubMed]
- Nazina, T.N.; Sokolova, D.S.; Shestakova, N.M.; Grigoryan, A.A.; Mikhailova, E.M.; Babich, T.L.; Lysenko, A.M.; Tourova, T.P.; Poltaraus, A.B.; Feng, Q.; et al. The Phylogenetic Diversity of Aerobic Organotrophic Bacteria from the Dagang High-Temperature Oil Field. Microbiology 2005, 74, 343–351. [Google Scholar] [CrossRef]
- Elumalai, P.; Parthipan, P.; Karthikeyan, O.P.; Rajasekar, A. Enzyme-Mediated Biodegradation of Long-Chain n-Alkanes (C32 and C40) by Thermophilic Bacteria. 3 Biotech 2017, 7, 116. [Google Scholar] [CrossRef]
- Chen, C.-I.; Taylor, R.T. Thermophilic Biodegradation of BTEX by Two Thermus Species. Biotechnol. Bioeng. 1995, 48, 614–624. [Google Scholar] [CrossRef]
- Feitkenhauer, H.; Müller, R.; Märkl, H. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70 degrees C by Thermus and Bacillus spp. Biodegradation. 2003, 14, 367–372. [Google Scholar] [CrossRef]
- Gallo, G.; Puopolo, R.; Carbonaro, M.; Maresca, E.; Fiorentino, G. Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering. Int. J. Environ. Res. Public Health 2021, 18, 5228. [Google Scholar] [CrossRef]
- Comte, A.; Christen, P.; Davidson, S.; Pophillat, M.; Lorquin, J.; Auria, R.; Simon, G.; Casalot, L. Biochemical, Transcriptional and Translational Evidences of the Phenol-Meta-Degradation Pathway by the Hyperthermophilic Sulfolobus solfataricus 98/2. PLoS ONE 2013, 8, e82397. [Google Scholar] [CrossRef]
- Khemili-Talbi, S.; Kebbouche-Gana, S.; Akmoussi-Toumi, S.; Angar, Y.; Gana, M.L. Isolation of an Extremely Halophilic Arhaeon Natrialba sp. C21 Able to Degrade Aromatic Compounds and to Produce Stable Biosurfactant at High Salinity. Extremophiles 2015, 19, 1109–1120. [Google Scholar] [CrossRef]
- Bonfá, M.R.L.; Grossman, M.J.; Mellado, E.; Durrant, L.R. Biodegradation of Aromatic Hydrocarbons by Haloarchaea and Their Use for the Reduction of the Chemical Oxygen Demand of Hypersaline Petroleum Produced Water. Chemosphere 2011, 84, 1671–1676. [Google Scholar] [CrossRef]
- Zhao, D.; Kumar, S.; Zhou, J.; Wang, R.; Li, M.; Xiang, H. Isolation and Complete Genome Sequence of Halorientalis hydrocarbonoclasticus sp. nov., a Hydrocarbon-Degrading Haloarchaeon. Extremophiles 2017, 21, 1081–1090. [Google Scholar] [CrossRef]
- Ibrahim, I.M.; Konnova, S.A.; Sigida, E.N.; Lyubun, E.V.; Muratova, A.Y.; Fedonenko, Y.P.; Elbanna, K. Bioremediation Potential of a Halophilic halobacillus sp. Strain, EG1HP4QL: Exopolysaccharide Production, Crude Oil Degradation, and Heavy Metal Tolerance. Extremophiles 2020, 24, 157–166. [Google Scholar] [CrossRef]
- Gutierrez, T.; Berry, D.; Yang, T.; Mishamandani, S.; McKay, L.; Teske, A.; Aitken, M.D. Role of Bacterial Exopolysaccharides (EPS) in the Fate of the Oil Released During the Deepwater Horizon Oil Spill. PLoS ONE 2013, 8, e67717. [Google Scholar] [CrossRef] [PubMed]
- Al-Mailem, D.M.; Eliyas, M.; Radwan, S.S. Oil-Bioremediation Potential of Two Hydrocarbonoclastic, Diazotrophic Marinobacter Strains from Hypersaline Areas along the Arabian Gulf Coasts. Extremophiles 2013, 17, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Cui, Z.; Li, Q.; Xu, G.; Jia, X.; Zheng, L. Marinobacter nanhaiticus sp. nov., Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Isolated from the Sediment of the South China Sea. Antonie Leeuwenhoek 2013, 103, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Gentile, G.; Bonsignore, M.; Santisi, S.; Catalfamo, M.; Giuliano, L.; Genovese, L.; Yakimov, M.M.; Denaro, R.; Genovese, M.; Cappello, S. Biodegradation Potentiality of Psychrophilic Bacterial Strain Oleispira antarctica RB-8T. Mar. Pollut. Bull. 2016, 105, 125–130. [Google Scholar] [CrossRef]
- de Jesus, H.E.; Peixoto, R.S.; Cury, J.C.; van Elsas, J.D.; Rosado, A.S. Evaluation of Soil Bioremediation Techniques in an Aged Diesel Spill at the Antarctic Peninsula. Appl. Microbiol. Biotechnol. 2015, 99, 10815–10827. [Google Scholar] [CrossRef]
- Lin, X.; Yang, B.; Shen, J.; Du, N. Biodegradation of Crude Oil by an Arctic Psychrotrophic Bacterium Pseudoalteromomas sp. P29. Curr. Microbiol. 2009, 59, 341–345. [Google Scholar] [CrossRef]
- Stallwood, B.; Shears, J.; Williams, P.A.; Hughes, K.A. Low Temperature Bioremediation of Oil-contaminated Soil Using Biostimulation and Bioaugmentation with a Pseudomonas sp. from Maritime Antarctica. J. Appl. Microbiol. 2005, 99, 794–802. [Google Scholar] [CrossRef]
- Hassan, H.A.; Aly, A.A. Isolation and Characterization of Three Novel Catechol 2,3-Dioxygenase from Three Novel Haloalkaliphilic BTEX-Degrading Pseudomonas Strains. Int. J. Biol. Macromol. 2018, 106, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, Y.; Zang, T.; Wei, J.; Wu, H.; Wei, C.; Qiu, G.; Li, F. A Biosurfactant-Producing Pseudomonas aeruginosa S5 Isolated from Coking Wastewater and Its Application for Bioremediation of Polycyclic Aromatic Hydrocarbons. Bioresour. Technol. 2019, 281, 421–428. [Google Scholar] [CrossRef]
- Liu, H.; Yang, G.; Jia, H.; Sun, B. Crude Oil Degradation by a Novel Strain Pseudomonas Aeruginosa AQNU-1 Isolated from an Oil-Contaminated Lake Wetland. Processes 2022, 10, 307. [Google Scholar] [CrossRef]
- Medić, A.; Lješević, M.; Inui, H.; Beškoski, V.; Kojić, I.; Stojanović, K.; Karadžić, I. Efficient Biodegradation of Petroleum N-Alkanes and Polycyclic Aromatic Hydrocarbons by Polyextremophilic Pseudomonas aeruginosa San Ai with Multidegradative Capacity. RSC Adv. 2020, 10, 14060–14070. [Google Scholar] [CrossRef]
- Liu, F.; Li, N.; Zhang, Y. The Radioresistant and Survival Mechanisms of Deinococcus Radiodurans. Radiat. Med. Prot. 2023, 4, 70–79. [Google Scholar] [CrossRef]
- Misra, C.S.; Appukuttan, D.; Kantamreddi, V.S.; Rao, A.S.; Apte, S.K.; Recombinant, D. Radiodurans Cells for Bioremediation of Heavy Metals from Acidic/Neutral Aqueous Wastes. Bioengineered 2012, 3, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Ballal, A.; Apte, S.K. Bioprecipitation of Uranium from Alkaline Waste Solutions Using Recombinant Deinococcus radiodurans. J. Hazard. Mater. 2013, 262, 853–861. [Google Scholar] [CrossRef]
- Gogada, R.; Singh, S.S.; Lunavat, S.K.; Pamarthi, M.M.; Rodrigue, A.; Vadivelu, B.; Phanithi, P.-B.; Gopala, V.; Apte, S.K. Engineered Deinococcus radiodurans R1 with NiCoT Genes for Bioremoval of Trace Cobalt from Spent Decontamination Solutions of Nuclear Power Reactors. Appl. Microbiol. Biotechnol. 2015, 99, 9203–9213. [Google Scholar] [CrossRef]
- Shim, H.E.; Yang, J.E.; Jeong, S.-W.; Lee, C.H.; Song, L.; Mushtaq, S.; Choi, D.S.; Choi, Y.J.; Jeon, J. Silver Nanomaterial-Immobilized Desalination Systems for Efficient Removal of Radioactive Iodine Species in Water. Nanomaterials 2018, 8, 660. [Google Scholar] [CrossRef]
- Suresh, K.; Reddy, G.S.N.; Sengupta, S.; Shivaji, S. Deinococcus indicus sp. nov., an Arsenic-Resistant Bacterium from an Aquifer in West Bengal, India. Int. J. Syst. Evol. Microbiol. 2004, 54, 457–461. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, P.; Sánchez-Castro, I.; Ojeda, J.J.; Abad, M.M.; Descostes, M.; Merroun, M.L. Effect of Different Phosphate Sources on Uranium Biomineralization by the Microbacterium sp. Be9 Strain: A Multidisciplinary Approach Study. Front. Microbiol. 2023, 13, 113315. [Google Scholar] [CrossRef]
- Newsome, L.; Morris, K.; Lloyd, J.R. The Biogeochemistry and Bioremediation of Uranium and Other Priority Radionuclides. Chem. Geol. 2014, 363, 164–184. [Google Scholar] [CrossRef]
- Icopini, G.A.; Lack, J.G.; Hersman, L.E.; Neu, M.P.; Boukhalfa, H. Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 2009, 75, 3641–3647. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, S.; Kılınc, E.; Yalcin, M.S.; Soylak, M.; Sen, F. A New Magnetized Thermophilic Bacteria to Preconcentrate Uranium and Thorium from Environmental Samples through Magnetic Solid-Phase Extraction. J. Pharm. Biomed. Anal. 2020, 186, 113315. [Google Scholar] [CrossRef]
- Lagorce, A.; Fourçans, A.; Dutertre, M.; Bouyssiere, B.; Zivanovic, Y.; Confalonieri, F. Genome-Wide Transcriptional Response of the Archaeon Thermococcus gammatolerans to Cadmium. PLoS ONE 2012, 7, e41935. [Google Scholar] [CrossRef]
- Bader, M.; Moll, H.; Steudtner, R.; Lösch, H.; Drobot, B.; Stumpf, T.; Cherkouk, A. Association of Eu(III) and Cm(III) onto an Extremely Halophilic Archaeon. Environ. Sci. Pollut. Res. 2019, 26, 9352–9364. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.T.; Vrionis, H.A.; Ortiz-Bernad, I.; Resch, C.T.; Long, P.E.; Dayvault, R.; Karp, K.; Marutzky, S.; Metzler, D.R.; Peacock, A.; et al. Stimulating the In Situ Activity of Geobacter Species To Remove Uranium from the Groundwater of a Uranium-ContaminatedAquifer. Appl. Environ. Microbiol. 2003, 69, 5884–5891. [Google Scholar] [CrossRef]
- Yadav, A.N. Beneficial Role of Extremophilic Microbes for Plant Health and Soil Fertility. J. Agric. Sci. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Kumari, P.; Meena, M.; Gupta, P.; Dubey, M.K.; Nath, G.; Upadhyay, R.S. Plant Growth Promoting Rhizobacteria and Their Biopriming for Growth Promotion in Mung Bean (Vigna radiata (L.) R. Wilczek). Biocatal. Agric. Biotechno. 2018, 16, 163–171. [Google Scholar] [CrossRef]
- Paul, D.; Lade, H. Plant-Growth-Promoting Rhizobacteria to Improve Crop Growth in Saline Soils: A Review. Agron. Sustain. Dev. 2014, 34, 737–752. [Google Scholar] [CrossRef]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Jan, R.; Kang, S.-M.; Kim, K.-M.; Lee, I.-J. Thermotolerance Effect of Plant Growth-Promoting Bacillus cereus SA1 on Soybean during Heat Stress. BMC Microbiol. 2020, 20, 175. [Google Scholar] [CrossRef]
- Gohil, R.B.; Raval, V.H.; Panchal, R.R.; Rajput, K.N. Plant Growth-Promoting Activity of Bacillus sp. PG-8 Isolated From Fermented Panchagavya and Its Effect on the Growth of Arachis hypogea. Front. Agron. 2022, 4, 805454. [Google Scholar] [CrossRef]
- Garcia, J.; Schmidt, J.E.; Gidekel, M.; Gaudin, A.C.M. Impact of an Antarctic Rhizobacterium on Root Traits and Productivity of Soybean (Glycine max L.). J. Plant Nutr. 2021, 44, 1818–1825. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. A Halotolerant Bacterium Bacillus licheniformis HSW-16 Augments Induced Systemic Tolerance to Salt Stress in Wheat Plant (Triticum aestivum). Front. Plant Sci. 2016, 7, 1890. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Iqbal, A.; Ahmed, F.; Ahmad, M. Phytobeneficial and Salt Stress Mitigating Efficacy of IAA Producing Salt Tolerant Strains in Gossypium hirsutum. Saudi J. Biol. Sci. 2021, 28, 5317–5324. [Google Scholar] [CrossRef] [PubMed]
- Aslam, F.; Ali, B. Halotolerant Bacterial Diversity Associated with Suaeda fruticosa (L.) Forssk. Improved Growth of Maize under Salinity Stress. Agronomy 2018, 8, 131. [Google Scholar] [CrossRef]
- Kang, S.-M.; Khan, A.L.; Waqas, M.; Asaf, S.; Lee, K.-E.; Park, Y.-G.; Kim, A.-Y.; Khan, M.A.; You, Y.-H.; Lee, I.-J. Integrated Phytohormone Production by the Plant Growth-Promoting Rhizobacterium Bacillus tequilensis SSB07 Induced Thermotolerance in Soybean. J. Plant Interact. 2019, 14, 416–423. [Google Scholar] [CrossRef]
- Santos, A.P.; Belfiore, C.; Úrbez, C.; Ferrando, A.; Blázquez, M.A.; Farías, M.E. Extremophiles as Plant Probiotics to Promote Germination and Alleviate Salt Stress in Soybean. J. Plant Growth Regul. 2023, 42, 946–959. [Google Scholar] [CrossRef]
- Batista, B.D.; Dourado, M.N.; Figueredo, E.F.; Hortencio, R.O.; Marques, J.P.R.; Piotto, F.A.; Bonatelli, M.L.; Settles, M.L.; Azevedo, J.L.; Quecine, M.C. The Auxin-Producing Bacillus thuringiensis RZ2MS9 Promotes the Growth and Modifies the Root Architecture of Tomato (Solanum lycopersicum cv. Micro-Tom). Arch. Microbiol. 2021, 203, 3869–3882. [Google Scholar] [CrossRef]
- Egamberdieva, D. Alleviation of Salt Stress by Plant Growth Regulators and IAA Producing Bacteria in Wheat. Acta Physiol. Plant. 2009, 31, 861–864. [Google Scholar] [CrossRef]
- Robas Mora, M.; Jiménez Gómez, P.A.; González Reguero, D.; Probanza Lobo, A. Effect of Plant Growth-Promoting Bacteria on Biometrical Parameters and Antioxidant Enzymatic Activities of Lupinus albus Var. Orden Dorado Under Mercury Stress. Front. Microbiol. 2022, 13, 891882. [Google Scholar] [CrossRef]
- Montalbán, B.; Thijs, S.; Lobo, M.C.; Weyens, N.; Ameloot, M.; Vangronsveld, J.; Pérez-Sanz, A. Cultivar and Metal-Specific Effects of Endophytic Bacteria in Helianthus tuberosus Exposed to Cd and Zn. Int. J. Mol. Sci. 2017, 18, 2026. [Google Scholar] [CrossRef]
- Rai, A.K.; Al Makishah, N.H.; Wen, Z.; Gupta, G.; Pandit, S.; Prasad, R. Recent Developments in Lignocellulosic Biofuels, a Renewable Source of Bioenergy. Fermentation 2022, 8, 161. [Google Scholar] [CrossRef]
- Zhu, D.; Adebisi, W.A.; Ahmad, F.; Sethupathy, S.; Danso, B.; Sun, J. Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Front. Bioeng. Biotechnol. 2020, 8, 483. [Google Scholar] [CrossRef]
- Zambare, V.P.; Bhalla, A.; Muthukumarappan, K.; Sani, R.K.; Christopher, L.P. Bioprocessing of Agricultural Residues to Ethanol Utilizing a Cellulolytic Extremophile. Extremophiles 2011, 15, 611. [Google Scholar] [CrossRef] [PubMed]
- Mesbah, N.M.; Wiegel, J. A Halophilic, Alkalithermostable, Ionic Liquid-Tolerant Cellulase and Its Application in In Situ Saccharification of Rice Straw. Bioenerg. Res. 2017, 10, 583–591. [Google Scholar] [CrossRef]
- Yadav, P.; Maharjan, J.; Korpole, S.; Prasad, G.S.; Sahni, G.; Bhattarai, T.; Sreerama, L. Production, purification, and characterization of thermostable alkaline xylanase from Anoxybacillus kamchatkensis NASTPD13. Front. Bioeng. Biotechnol. 2018, 6, 65. [Google Scholar] [CrossRef]
- Marcolongo, L.; La Cara, F.; del Monaco, G.; Paixão, S.M.; Alves, L.; Marques, I.P.; Ionata, E. A Novel β-Xylosidase from Anoxybacillus sp. 3M towards an Improved Agro-Industrial Residues Saccharification. Int. J. Biol. Macromol. 2019, 122, 1224–1234. [Google Scholar] [CrossRef] [PubMed]
- Marcolongo, L.; La Cara, F.; Morana, A.; Di Salle, A.; del Monaco, G.; Paixão, S.M.; Alves, L.; Ionata, E. Properties of an Alkali-Thermo Stable Xylanase from Geobacillus thermodenitrificans A333 and Applicability in Xylooligosaccharides Generation. World J. Microbiol. Biotechnol. 2015, 31, 633–648. [Google Scholar] [CrossRef]
- Tan, H.; Miao, R.; Liu, T.; Yang, L.; Yang, Y.; Chen, C.; Lei, J.; Li, Y.; He, J.; Sun, Q. A bifunctional cellulase–xylanase of a new Chryseobacterium strain isolated from the dung of a straw-fed cattle. Microb. Biotechnol. 2018, 11, 381–398. [Google Scholar] [CrossRef]
- Shanmugam, S.; Sun, C.; Chen, Z.; Wu, Y.-R. Enhanced Bioconversion of Hemicellulosic Biomass by Microbial Consortium for Biobutanol Production with Bioaugmentation Strategy. Bioresour. Technol. 2019, 279, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Gau, E.; Braun, S.; Pich, A.; Elling, L. Enzymatic Synthesis of 2-(β-Galactosyl)-Ethyl Methacrylate by β-Galactosidase from Pyrococcus woesei and Application for Glycopolymer Synthesis and Lectin Studies. Biomacromolecules 2020, 21, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Elmansy, E.A.; Asker, M.S.; El-Kady, E.M.; Hassanein, S.M.; El-Beih, F.M. Production and Optimization of α-Amylase from Thermo-Halophilic Bacteria Isolated from Different Local Marine Environments. Bull. Natl. Res. Cent. 2018, 42, 31. [Google Scholar] [CrossRef]
- Gutiérrez-García, A.K.; Alvarez-Guzmán, C.L.; De Leon-Rodriguez, A. Autodisplay of Alpha Amylase from Bacillus Megaterium in E. Coli for the Bioconversion of Starch into Hydrogen, Ethanol and Succinic Acid. Enzym. Microb. Technol. 2020, 134, 109477. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, P.; Xie, C.; Zhang, W.; Sun, J.; Qian, W.-J.; Yang, B. Biodegradation of Alkaline Lignin by Bacillus ligniniphilus L1. Biotechnol. Biofuels 2017, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.; Baghmare, P.; Verma, A.; Verma, J.S.; Geed, S.R. Recent Progress in Microbial Biosurfactants Production Strategies: Applications, Technological Bottlenecks, and Future Outlook. Bioresour. Technol. 2024, 408, 131211. [Google Scholar] [CrossRef]
- Balan, S.S.; Kumar, C.G.; Jayalakshmi, S. Aneurinifactin, a New Lipopeptide Biosurfactant Produced by a Marine Aneurinibacillus Aneurinilyticus SBP-11 Isolated from Gulf of Mannar: Purification, Characterization and Its Biological Evaluation. Microbiol. Res. 2017, 194, 1–9. [Google Scholar] [CrossRef]
- Haidar, C.N.; Pereira, M.M.; Lima, Á.S.; Nerli, B.B.; Malpiedi, L.P. Biosurfactants Produced by Pseudomonas Syringae Pv Tabaci: A Versatile Mixture with Interesting Emulsifying Properties. Proc. Biochem. 2020, 97, 121–129. [Google Scholar] [CrossRef]
- Gallo, G.; Aulitto, M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life 2024, 14, 1205. [Google Scholar] [CrossRef]
- Coker, J.A. Extremophiles and Biotechnology: Current Uses and Prospects. F1000Research 2016, 5, F1000-Faculty. [Google Scholar] [CrossRef]
- Aparici-Carratalá, D.; Esclapez, J.; Bautista, V.; Bonete, M.-J.; Camacho, M. Archaea: Current and Potential Biotechnological Applications. Res. Microbiol. 2023, 174, 104080. [Google Scholar] [CrossRef]
- Barreda-García, S.; Miranda-Castro, R.; de-Los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. Helicase-Dependent Isothermal Amplification: A Novel Tool in the Development of Molecular-Based Analytical Systems for Rapid Pathogen Detection. Anal. Bioanal. Chem. 2018, 410, 679–693. [Google Scholar] [CrossRef]
- Littlechild, J.A. Enzymes from Extreme Environments and Their Industrial Applications. Front. Bioeng. Biotechnol. 2015, 3, 161. [Google Scholar] [CrossRef] [PubMed]
- Nugrahadi, P.P.; Hinrichs, W.L.J.; Frijlink, H.W.; Schöneich, C.; Avanti, C. Designing Formulation Strategies for Enhanced Stability of Therapeutic Peptides in Aqueous Solutions: A Review. Pharmaceutics 2023, 15, 935. [Google Scholar] [CrossRef]
- Pais, T.M.; Lamosa, P.; Matzapetakis, M.; Turner, D.L.; Santos, H. Mannosylglycerate Stabilizes Staphylococcal Nuclease with Restriction of Slow β-Sheet Motions. Protein Sci. 2012, 21, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Avanti, C.; Saluja, V.; van Streun, E.L.P.; Frijlink, H.W.; Hinrichs, W.L.J. Stability of Lysozyme in Aqueous Extremolyte Solutions During Heat Shock and Accelerated Thermal Conditions. PLoS ONE 2014, 9, e86244. [Google Scholar] [CrossRef]
- Santhosh, P.B.; Genova, J. Archaeosomes: New Generation of Liposomes Based on Archaeal Lipids for Drug Delivery and Biomedical Applications. ACS Omega 2023, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vidakovic, I.; Kornmueller, K.; Fiedler, D.; Khinast, J.; Fröhlich, E.; Leitinger, G.; Horn, C.; Quehenberger, J.; Spadiut, O.; Prassl, R. Archaeosomes for Oral Drug Delivery: From Continuous Microfluidics Production to Powdered Formulations. Pharmaceutics 2024, 16, 694. [Google Scholar] [CrossRef]
- Haq, K.; Jia, Y.; and Krishnan, L. Archaeal Lipid Vaccine Adjuvants for Induction of Cell-Mediated Immunity. Expert Rev. Vaccines 2016, 15, 1557–1566. [Google Scholar] [CrossRef]
- Assandri, M.H.; Malamud, M.; Trejo, F.M.; Serradell, M.d.L.A. S-Layer Proteins as Immune Players: Tales from Pathogenic and Non-Pathogenic Bacteria. Curr. Res. Microb. Sci. 2023, 4, 100187. [Google Scholar] [CrossRef]
- Akache, B.; McCluskie, M.J. Sulfated Lactosyl Archaeol (SLA) Archaeosomes as a Vaccine Adjuvant. Hum. Vaccin. Immunother. 2024, 20, 2395081. [Google Scholar] [CrossRef]
- McCluskie, M.J.; Deschatelets, L.; Krishnan, L. Sulfated Archaeal Glycolipid Archaeosomes as a Safe and Effective Vaccine Adjuvant for Induction of Cell-Mediated Immunity. Hum. Vaccin. Immunother. 2017, 13, 2772–2779. [Google Scholar] [CrossRef] [PubMed]
- Lach, J.; Krupińska, M.; Mikołajczyk, A.; Strapagiel, D.; Stączek, P.; Matera-Witkiewicz, A. Novel Antimicrobial Peptides from Saline Environments Active Against E. Faecalis and S. Aureus: Identification, Characterisation and Potential Usage. Int. J. Mol. Sci. 2023, 24, 11787. [Google Scholar] [CrossRef]
- Nowruzi, B.; Ahmadi, M.; Bouaïcha, N.; Khajerahimi, A.E.; Anvar, S.A.A. Studying the Impact of Phycoerythrin on Antioxidant and Antimicrobial Activity of the Fresh Rainbow Trout Fillets. Sci. Rep. 2024, 14, 2470. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, Y.; Jia, X.; Liu, D.; Huang, X.; Wang, C.; Zhu, Y.; Yue, C.; Deng, S.; Lyu, Y. Lactic Acid Bacteria with a Strong Antioxidant Function Isolated from “Jiangshui,” Pickles, and Feces. Front. Microbiol. 2023, 14, 1163662. [Google Scholar] [CrossRef]
- Seo, M.-J. Fermented Foods and Food Microorganisms: Antioxidant Benefits and Biotechnological Advancements. Antioxidants 2024, 13, 1120. [Google Scholar] [CrossRef]
- Slade, D.; Radman, M. Oxidative Stress Resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 2011, 75, 133–191. [Google Scholar] [CrossRef] [PubMed]
- Purcarea, C.; Ruginescu, R.; Banciu, R.M.; Vasilescu, A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. Biosensors 2024, 14, 143. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xue, W.; Zhao, J.; Bao, Q.; Zhang, K.; Liu, Y.; Li, H. Direct Electrochemistry of Glucose Dehydrogenase-Functionalized Polymers on a Modified Glassy Carbon Electrode and Its Molecular Recognition of Glucose. Int. J. Mol. Sci. 2023, 24, 6152. [Google Scholar] [CrossRef]
- Oshima, S.; Oku, Y.; Sriwong, K.T.; Kimura, Y.; Matsuda, T. Immobilization of Thermoplasma Acidophilum Glucose Dehydrogenase and Isocitrate Dehydrogenase Through Enzyme-Inorganic Hybrid Nanocrystal Formation. Curr. Microbiol. 2024, 81, 67. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Bachas, L.G. Biosensor for Asparagine Using a Thermostable Recombinant Asparaginase from Archaeoglobus Fulgidus. Anal. Chem. 2002, 74, 3336–3341. [Google Scholar] [CrossRef]
- Iyer, R.; Pavlov, V.; Katakis, I.; Bachas, L.G. Amperometric Sensing at High Temperature with a “Wired” Thermostable Glucose-6-Phosphate Dehydrogenase from Aquifex aeolicus. Anal. Chem. 2003, 75, 3898–3901. [Google Scholar] [CrossRef] [PubMed]
- Liefeith, K.; Frant, M.; Müller, U.; Stenstad, P.; Johnsen, H.; Schmid, R. Archaeal Tetraether Lipid Coatings—A Strategy for the Development of Membrane Analog Spacer Systems for the Site-Specific Functionalization of Medical Surfaces. Biointerphases 2018, 13, 011004. [Google Scholar] [CrossRef] [PubMed]
- Chong, P.L.-G. Archaea Membranes in Response to Extreme Acidic Environments. Front. Biophys. 2024, 1, 1338019. [Google Scholar] [CrossRef]
- Straub, C.T.; Zeldes, B.M.; Schut, G.J.; Adams, M.W.; Adams, M.W.; Kelly, R.M. Extremely Thermophilic Energy Metabolisms: Biotechnological Prospects. Curr. Opin. Biotechnol. 2017, 45, 104–112. [Google Scholar] [CrossRef]
- Schwarz, T.S.; Schreiber, S.S.; Marchfelder, A. CRISPR Interference as a Tool to Repress Gene Expression in Haloferax volcanii. Methods Mol. Biol. 2022, 2522, 57–85. [Google Scholar] [CrossRef]
- Garzón-Posse, F.; Becerra-Figueroa, L.; Hernández-Arias, J.; Gamba-Sánchez, D. Whole Cells as Biocatalysts in Organic Transformations. Molecules 2018, 23, 1265. [Google Scholar] [CrossRef]
- Li, Y.; Peng, N. Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials: Review and Prospects. Front. Microbiol. 2019, 10, 2471. [Google Scholar] [CrossRef]
- Wang, J.; Wei, J.; Li, H.; Li, Y. High-Efficiency Genome Editing of an Extreme Thermophile Thermus Thermophilus Using Endogenous Type I and Type III CRISPR-Cas Systems. mLife 2022, 1, 412–427. [Google Scholar] [CrossRef]
- Atalah, J.; Espina, G.; Blamey, L.; Muñoz-Ibacache, S.A.; Blamey, J.M. Advantages of Using Extremophilic Bacteria for the Biosynthesis of Metallic Nanoparticles and Its Potential for Rare Earth Element Recovery. Front. Microbiol. 2022, 13, 855077. [Google Scholar] [CrossRef]
- Pan, J.; Qian, H.; Sun, Y.; Miao, Y.; Zhang, J.; Li, Y. Microbially Synthesized Nanomaterials: Advances and Applications in Biomedicine. Precis. Med. Eng. 2025, 2, 100019. [Google Scholar] [CrossRef]
- Romano, I.; Vitiello, G.; Gallucci, N.; Di Girolamo, R.; Cattaneo, A.; Poli, A.; Di Donato, P. Extremophilic Microorganisms for the Green Synthesis of Antibacterial Nanoparticles. Microorganisms 2022, 10, 1885. [Google Scholar] [CrossRef]
- Correa-Llantén, D.N.; Muñoz-Ibacache, S.A.; Castro, M.E.; Muñoz, P.A.; Blamey, J.M. Gold Nanoparticles Synthesized by Geobacillus sp. Strain ID17 a Thermophilic Bacterium Isolated from Deception Island, Antarctica. Microb. Cell Fact. 2013, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.I.; Giménez, M.I. Metal Nanoparticles Biosynthesis Using the Halophilic Archaeon Haloferax volcanii. Methods Mol. Biol. 2022, 2522, 345–350. [Google Scholar] [CrossRef]
- Martínez-Espinosa, R.M. Halophilic Archaea as Tools for Bioremediation Technologies. Appl. Microbiol. Biotechnol. 2024, 108, 401. [Google Scholar] [CrossRef] [PubMed]
- Beeler, E.; Singh, O.V. Extremophiles as Sources of Inorganic Bio-Nanoparticles. World J. Microbiol. Biotechnol. 2016, 32, 156. [Google Scholar] [CrossRef]
- Patil, S.; Fernandes, J.; Tangasali, R.; Furtado, I. Exploitation of Haloferax alexandrinus for Biogenic Synthesis of Silver Nanoparticles Antagonistic to Human and Lower Mammalian Pathogens. J. Clust. Sci. 2014, 25, 423–433. [Google Scholar] [CrossRef]
- Cekuolyte, K.; Gudiukaite, R.; Klimkevicius, V.; Mazrimaite, V.; Maneikis, A.; Lastauskiene, E. Biosynthesis of Silver Nanoparticles Produced Using Geobacillus spp. Bacteria. Nanomater. 2023, 13, 702. [Google Scholar] [CrossRef]
- Srivastava, P.; Bragança, J.; Ramanan, S.R.; Kowshik, M. Synthesis of Silver Nanoparticles Using Haloarchaeal Isolate Halococcus salifodinae BK3. Extremophiles 2013, 17, 821–831. [Google Scholar] [CrossRef]
- Erasmus, M.; Idris, O.A.; Adetunji, A.I.; Cason, E.D. Biogenic Synthesis and Characterization of Gold Nanoparticles Using Transformed Mesophilic Escherichia coli BL21 and Thermophilic Thermus thermophilus HB27. Biologia 2024, 79, 2605–2619. [Google Scholar] [CrossRef]
- Abdelkawi, A.; Slim, A.; Zinoune, Z.; Pathak, Y. Surface Modification of Metallic Nanoparticles for Targeting Drugs. Coatings 2023, 13, 1660. [Google Scholar] [CrossRef]
- Velmathi, G.; Sekar, V.; Kavitha, N.S.; Albeshr, M.F.; Santhanam, A. Biosynthesis of Gold Nanoparticles by the Extremophile Bacterium Deinococcus radiodurans and an Evaluation of Its Application in Drug Delivery. Process Biochem. 2024, 145, 250–260. [Google Scholar] [CrossRef]
- Oves, M.; Rauf, M.A.; Hussain, A.; Qari, H.A.; Khan, A.A.P.; Muhammad, P.; Rehman, M.T.; Alajmi, M.F.; Ismail, I.I.M. Antibacterial Silver Nanomaterial Synthesis From Mesoflavibacter zeaxanthinifaciens and Targeting Biofilm Formation. Front. Pharmacol. 2019, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Dhanker, R.; Hussain, T.; Tyagi, P.; Singh, K.J.; Kamble, S.S. The Emerging Trend of Bio-Engineering Approaches for Microbial Nanomaterial Synthesis and Its Applications. Front. Microbiol. 2021, 12, 638003. [Google Scholar] [CrossRef] [PubMed]
- DasSarma, P.; Negi, V.D.; Balakrishnan, A.; Kim, J.-M.; Karan, R.; Chakravortty, D.; DasSarma, S. Haloarchaeal Gas Vesicle Nanoparticles Displaying Salmonella Antigens as a Novel Approach to Vaccine Development. Procedia Vaccinol. 2015, 9, 16–23. [Google Scholar] [CrossRef]
- Childs, T.S.; Webley, W.C. In Vitro Assessment of Halobacterial Gas Vesicles as a Chlamydia Vaccine Display and Delivery System. Vaccine 2012, 30, 5942–5948. [Google Scholar] [CrossRef]
- Adamiak, N.; Krawczyk, K.T.; Locht, C.; Kowalewicz-Kulbat, M. Archaeosomes and Gas Vesicles as Tools for Vaccine Development. Front. Immunol. 2021, 12, 746235. [Google Scholar] [CrossRef]
- Caimi, A.T.; Parra, F.; de Farias, M.A.; Portugal, R.V.; Perez, A.P.; Romero, E.L.; Morilla, M.J. Topical Vaccination with Super-Stable Ready to Use Nanovesicles. Colloids Surf. B Biointerfaces 2017, 152, 114–123. [Google Scholar] [CrossRef]
- Bruna, N.; Collao, B.; Tello, A.; Caravantes, P.; Díaz-Silva, N.; Monrás, J.P.; Órdenes-Aenishanslins, N.; Flores, M.; Espinoza-Gonzalez, R.; Bravo, D.; et al. Synthesis of Salt-Stable Fluorescent Nanoparticles (Quantum Dots) by Polyextremophile Halophilic Bacteria. Sci. Rep. 2019, 9, 1953. [Google Scholar] [CrossRef]
- Al-Kordy, H.M.; Sabry, S.A.; Mabrouk, M.E. Photocatalytic and Antimicrobial Activity of Zinc Oxide Nanoparticles Synthesized by Halophilic alkalibacillus sp. W7 Isolated from a Salt Lake. Egypt. J. Aquat. Biol. Fish. 2020, 24, 43–56. [Google Scholar] [CrossRef]
- Mohammed Fayaz, A.; Girilal, M.; Rahman, M.; Venkatesan, R.; Kalaichelvan, P.T. Biosynthesis of Silver and Gold Nanoparticles Using Thermophilic Bacterium Geobacillus Stearothermophilus. Process Biochem. 2011, 46, 1958–1962. [Google Scholar] [CrossRef]
- Kandiah, K.; Jeevanantham, T.; Ramasamy, B. Reliability of Antioxidant Potential and in Vivo Compatibility with Extremophilic Actinobacterial-Mediated Magnesium Oxide Nanoparticle Synthesis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 862–872. [Google Scholar] [CrossRef]
- Nadeem, T.; Kaleem, M.; Minhas, L.A.; Batool, S.; Sattar, M.M.; Bashir, R.; Mumtaz, A.S. Biogenic Synthesis and Characterization of Antimicrobial, Antioxidant, and Antihemolytic Zinc Oxide Nanoparticles from Desertifilum sp. TN-15 Cell Extract. Discov. Nano 2024, 19, 161. [Google Scholar] [CrossRef] [PubMed]
- Nadhe, S.B.; Wadhwani, S.A.; Singh, R.; Chopade, B.A. Green Synthesis of AuNPs by Acinetobacter sp. GWRVA25: Optimization, Characterization, and Its Antioxidant Activity. Front. Chem. 2020, 8, 474. [Google Scholar] [CrossRef]
- Liu, P.; Long, H.; Cheng, H.; Liang, M.; Liu, Z.; Han, Z.; Guo, Z.; Shi, H.; Sun, M.; He, S. Highly-Efficient Synthesis of Biogenic Selenium Nanoparticles by Bacillus paramycoides and Their Antibacterial and Antioxidant Activities. Front. Bioeng. Biotechnol. 2023, 11, 1227619. [Google Scholar] [CrossRef]
- Higa, L.H.; Schilrreff, P.; Briski, A.M.; Jerez, H.E.; de Farias, M.A.; Villares Portugal, R.; Romero, E.L.; Morilla, M.J. Bacterioruberin from Haloarchaea plus Dexamethasone in Ultra-Small Macrophage-Targeted Nanoparticles as Potential Intestinal Repairing Agent. Colloids Surf. B Biointerfaces 2020, 191, 110961. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Q.; Ma, X.; Tian, B.; Li, T.; Yu, J.; Dai, S.; Weng, Y.; Hua, Y. Biosynthesis of Gold Nanoparticles by the Extreme Bacterium Deinococcus radiodurans and an Evaluation of Their Antibacterial Properties. Int. J. Nanomed. 2016, 11, 5931–5944. [Google Scholar] [CrossRef]
- Shakeri, F.; Zaboli, F.; Fattahi, E.; Babavalian, H. Biosynthesis of Selenium Nanoparticles and Evaluation of Its Antibacterial Activity Against Pseudomonas Aeruginosa. Adv. Mater. Sci. Eng. 2022, 2022, 4118048. [Google Scholar] [CrossRef]
Groups of Microorganisms | Species | Growth Conditions | Ref. |
---|---|---|---|
Thermophiles | Methanocaldococcus jannaschii | 85 °C, 20 Mpa | [9] |
Methanopyrus kandleri | 122 °C, 20 MPa | [10,11] | |
Geogemma barossii strain 121 | 121 °C | [12] | |
Pyrococcus furiosus | 100 °C, 0.1 MPa | [13] | |
Pyrococcus horikoshii | 100 °C, 15 MPa | [14] | |
Pyrococcus abyssii | 100 °C, 20 MPa | [15] | |
Aquifex aeolicus | 85–95 °C, pH 5.4–7.5 | [16] | |
Aquifex pyrophilus | 95 °C, pH 5.4–7.5 | [16] | |
Saccharolobus solfataricus (formerly Sulfolobus solfataricus) | 80 °C, pH 2.0–4.0 | [17] | |
Sulfolobus acidocaldarius | 80 °C, pH 2.0 | [17] | |
Sulfurisphaera tokodaii (formerly Sulfolobus tokodaii) | 80 °C, pH 2.0–3.0 | [18] | |
Saccharolobus islandicus (formerly Sulfolobus islandicus) | 75–80 °C, pH 2.0–3.0 | [17] | |
Thermotoga maritima | 65–80 °C, pH 7.0 | [19] | |
Thermotoga neapolitana | 65–80 °C, pH 7.0 | [20] | |
Psycrophiles | Psychromonas ingrahamii | −12 °C | [21] |
Planococcus halocryophilus Or1 | −15 °C | [22] | |
Shewanella benthica | 4–10 °C, 50 MPa | [23] | |
Colwellia hadaliensis | 2 °C, 70 MPa | [24] | |
Moritella yayanosii | 4 °C, 100 MPa | [25] | |
Micrococcus cryophilus | 20–26 °C | [26,27] | |
Rhodococcus erythropolis | 4–37 °C | [26,27] | |
Marinomonas protea | 4–30 °C | [26,27] | |
Marinomonas primoryensis | 5–30 °C | [26,27] | |
Acidophiles | Acidithiobacillus thiooxidans | pH 2.0–3.0 | [28] |
Acidithiobacillus caldus | pH 2.0–2.5 | [29] | |
Acidithiobacillus ferroxidans | pH 2.0 | [30] | |
Leptospirillum ferrooxidans | pH 1.0–2.0 | [31] | |
Picrophilus torridus | pH 0.7, 60 °C | [32,33] | |
Picrophilus oshimae | pH 0.0, 65 °C | [32] | |
Sulfolobus acidocaldarius | pH 2.0, 80 °C | [17] | |
Saccharolobus solfataricus (formerly Sulfolobus solfataricus) | pH 2.0–4.0, 80 °C | [17] | |
Acidianus brierleyi | pH 1.2–2.0, 70 °C | [34] | |
Acidianus infernus | pH 2.0, 96 °C | [34] | |
Metallosphaera sedula | pH 2.0, 75 °C | [34] | |
Thiobacillus thiooxidans | pH 2.0–3.0 | [35] | |
Alkaliphiles | Bacillus alkaliphilus | pH 9.5–10.5 | [36] |
Alteribacter natronophilus (formerly Bacillus natronophilus) | pH 8.0–12.0 | [37] | |
Natronospira bacteriovora | pH 8.0–10.4 | [38] | |
Desulfonatronovibrio hydrogenovorans | pH 9.5–10.0, 3% NaCl | [39] | |
Halorhodospira halophila | pH 9.0, 13% NaCl | [40] | |
Desulfonatronum lacustre | pH 9.0, 0.2% NaCl | [41] | |
Desulfonatronum thiodismutans | pH 8.0–10.0, 1.7% NaCl | [41] | |
Sporosarcina pasteurii (formerly Bacillus pasteurii) | pH 7.0–9.0 | [38] | |
Bacillus halodurans | pH 10.0–10.5 | [42] | |
Marinospirillum alkaliphilum | pH 7.0–11.0, 0.2–5% NaCl | [43] | |
Nitrincola tapanii | pH 8.0–10.5, 1% NaCl | [44] | |
Limnospira fusiformis (formerly Arthrospira fusiformis) | pH 8.0–10.0 | [45] | |
Halorhodospira halochloris | pH 8.0–9.0, 14–27% NaCl, 50 °C | [46] | |
Desulfonatronum zhilinae | pH 8.0–10.5, 0.5–10% NaCl | [47] | |
Halonatronomonas betaini | pH 7.0–10.0, 6–17.5% NaCl | [48] | |
Halophiles | Halomonas elongata | 10–16% NaCl | [49] |
Methylarcula marina | 3–6% NaCl, pH 7.5–8.5 | [49] | |
Methylarcula terricola | 3–6% NaCl | [49] | |
Spiribacter salinus | 6% NaCl, pH 7.0–9.0 | [50] | |
Chromohalobacter salexigens | 3–20% NaCl | [50] |
Microorganisms | Process | Heavy Metals | Ref. |
---|---|---|---|
Acidithiobacillus ferrooxidans | Biomining Bioleaching | Cr, Co, Cu, Li, Mn, Ni, Pb, U, Zn | [101,102] |
Acidithiobacillus thiooxidans | Bioleaching | Cd, Cu, Cr, Ni, Pb, Pu, Zn | [28] |
Consortium of A. thiooxidans, A. ferrooxidans and L. ferrooxidans and heterotrophic bacteria Fe/S-oxidizing | Bioaugmentation | Cu, Cd, Hg and Zn | [31] |
Acidocella aromatica | Biosorption | V | [103] |
Acidiphilium symbioticum | Biosorption | Cd | [104] |
Halomonas smyrnensis KS802 | Bioreduction | Cr | [105] |
Sulfobacillus thermotolerans | Biosorption | Zn | [106] |
Sulfobacillus thermosulfidooxidans | Biosorption | Cd, Cu, Ni, Zn | [107] |
Thermus scotoductus | Biosorption | Eu | [108] |
Geobacillus toebii subsp. decanicus | Bioaccumulation | Cd, Cu, Mn, Ni, Zn | [109] |
Geobacillus thermodenitrificans | Biosorption | As, Cr | [110] |
Geobacillus thermantarcticus—Anoxybacillus amylolyticus | Biosorption | Cd, Co, Cu, Mn | [111] |
Consotium of B. subtilis–B. cereus–Bacillus sp. | Bioremoval Biosorption | Cr, Cd, Ni, Pb | [112,113,114] |
Oceanobacillus profundus KBZ 3-2 | Biosorption | Pb, Zn | [113] |
Thermus thermophilus | Biosensing | As | [115] |
Pseudomonas sp. 4-2 | Biosorption | Pb | [116] |
Pseudomonas aeruginosa FZ-2 | Biosorption | Hg | [117] |
Pseudomonas alcaliphila NEWG-2 | Biosorption | Cr | [118] |
Microorganism | Conditions | Organic Target | Ref. |
---|---|---|---|
Geobacillus thermoleovorans T80 | 60 °C—pH 7.0 | Hexadecane | [121] |
Geobacillus sp.—Bacillus sp. | 60–80 °C—pH 7.8 | crude oil, phenanthrene, PAH | [122,123] |
Geobacillus stearothermophilus A-2 | 70 °C—pH 7.0 | PHA, n-alkanes | [124] |
Geobacillus jurassicus–Geobacillus subterraneus | 55–60 °C—pH 7.0 | Crude oil, phenols | [129] |
Consortium of G. thermoparaffinivorans IR2, G. stearothermophillus IR4 and B. licheniformis | 50 °C—pH 7.0 | long-chain n-alkanes | [130] |
Bacillus licheniformis | 37 °C—pH 8.5—2.5 g/L NaCl | crude oil, benzo[a]pyrene | [125,126] |
Pseudoalteromonas sp. P29 | 5 °C—pH 7.0–8.0—1–5% NaCl | short-chain alkanes | [144] |
Pseudomonas strain ST41 | 4 °C—pH 7.5 | hydrocarbons alkanes | [145] |
P. aeruginosa S5 | 30 °C—pH 7.5 | PHA | [147] |
P. aeruginosa san ai | 30 °C—pH 8.0–9.0 | Hexadecane, nonadecane, fluorene, phenanthrene, and pyrene | [149] |
Consortium of B. megaterium, B. licheniformis, B. cereus, P. chlororaphis Consortium of B. licheniformis ARMP2 and P. aeruginosa ARMP8 | 25 °C—pH 7.25 30–40 °C—pH 7.0–9.0 | Hydrocarbon | [127,128] |
Thermus aquaticus | 60–70 °C—pH 7.5 | benzene, toluene, ethylbenzene, xylene | [131] |
Thermus brockii | 60–70 °C—pH 6.5 | Pyrene–hexadecane | [132] |
S. solfataricus | 80 °C—pH 3.2 | Benzaldehyde, salicylate, phenols | [133,134] |
Natrialba sp. C21 | 40 °C—pH 3.0—25% NaCl | PHA | [135] |
Halorientalis hydrocarbonoclasticus sp., | 37 °C—pH 7.0—3.6 M NaCl | hexadecane | [137] |
Halobacillus sp. EG1HP4QL | 35 °C—pH 8.0—5% NaCl | aromatic hydrocarbons, PHA, naphthalene, paraffin, alcohol-benzene resins | [138] |
Halomonas strain TG39 | 28 °C—pH 8.0 | PHA-phenanthrene | [139] |
M. sedimentarum, M. flavimaris, M. nanhaiticus D15-8W | 30 °C—pH 7.0—1–1.5 M NaCl | aliphatic hydrocarbons, benzene, phenanthrene, anthracene naphthalene PHA | [140,141] |
Oleispira antarctica RB 8T | 4–15 °C—pH 7.0 | Hydrocarbon | [142] |
Microorganisms | Sources | Process | Heavy Metals | Ref. |
---|---|---|---|---|
Deinococcus radiodurans | Terrestrial and aquatic environments. | Bioprecipitation Bioleaching | Cd, Co, I, U | [151,152,153,154] |
Deinococcus indicus Wt/1aT | Arsenic-polluted water | Bioleaching | As(III), As(V) | [155] |
Microbacterium sp. Be9 | U-mill tailings | Biomineralization | U | [156] |
Shewanella putrefaciens Geobacter sulfurreducens | Water sources, natural gas and petroleum reserves | Biomineralization bioaccumulation | U | [157] |
Geobacter metallireducens GS-15 Shewanella oneidensis MR-1 | sediments of frozen Lakes, freshwater sediments | Bioprecipitation | Pu, U | [158] |
Bacillus cereus | Soil, vegetation | Biosorption | Th, U | [159] |
Halomonas sp., Halobacterium salinarum, Halobacterium halobium | Rock salt | Biosorption | Eu,Cu | [160] |
Halobacterium noricense DSM-15987 Halobacterium sp. | Waste Isolation Pilot Plant landfill | Biosorption Biomineralization | U(VI) | [161] |
Geobacter sp. | Contaminated groundwater | Biomineralization bioaccumulation | U(VI) and Fe (III) | [162] |
Biotic/Abiotic Stress | Extremophiles | Crops | Action | [Ref.] |
---|---|---|---|---|
Plant pathogens | P. aeruginosa BHU-B13-398 B. subtilis BHU M P. fluorescens | Vigna radiata Black pepper | P solubilization, ammonia, siderophore, HCN, IAA and GA production | [164,165] |
Heat stress | Bacillus cereus SA1 Bacillus sp. PG-8 Pseudomonas PTA-122608, Bacillus tequilensis (SSB07) | Soybean Arachis hypogea, Cabbage seedlings | metabolites production (GA, IAA, ABS) plant–microorganism interactions | [166,167,168,173] |
Salinity | B. licheniformis HSW-16, Bacilli spp., S. jettensis F-11, Z. flava F-9, B. megaterium F-58, S. arlettae F-71, Stenotrophomonas, Exiguobacterium sp., P. aureantiaca TSAU22, P. extremorientalis TSAU6—TSAU20, Achromobacter, Pseudomonas, Rhizobium sp. | Wheat, Cotton, Zea mays L, Soybean | regulation of the K+/Na+ ratio; production of EPS, ACC-deaminase activity; P solubilization; biofilm formation, up-regulation of growth gene, IAA and GA production, ACC-deaminase activity | [165,169,170,171,172,175] |
Drought and salinity | Bacillus thuringiensis RZ2MS9 | Tomato | IAA | [174] |
Heavy metals | B. toyonensis, P. syringae Pseudomonas sp. 228–262, Serratia sp. 246 | Lupinus albus Helianthus tuberosus | ACC deaminase, CAT and SOD activity, IAA production | [176,177] |
Extremophiles | Carbon Source | Enzymes | Applications | [Ref.] |
---|---|---|---|---|
Geobacillus sp. R7 | Corn stover, Cord grass | Cellulase | Bioethanol | [180] |
Alkalilimnicola sp. NM-DCM1 | Rice straw, CMC, Avicel, cellobiose | Cellulase | saccharification of lignocellulosic material | [181] |
Anoxybacillus kamchatkensis | birchwood xylan | Xylanase | Hemicellulose saccharification, pulping. | [182] |
Anoxybacillus sp. 3M | BSG | β-xylosidase | Food, pharmaceutical, Bioethanol | [183] |
Geobacillus thermodenitrificans A333 | BSG, corn cobs, grape cane, wheat straw | Xylanase | Xylooligosaccharides, Bioethanol | [184] |
Chryseobacterium genus | straw and spent mushroom | Cellulase/xylanase | Biofuel | [185] |
Ruminococcus sp., Clostridium sp. | Corn cob | Hemicellulolytics enzymes | Bio-butanol | [186] |
Pyrococcus woesei | Lactose | Glycosidase | Acrylic polymers | [187] |
Bacillus sp. NRC22017 | Starch | α-amylase | brewing industry | [188] |
Bacillus megaterium | Starch | α-amylase | Biohydrogen, bioethanol, succinic acid | [189] |
Application Area | Key Extremophile-Derived Components | Source Organism/Type | Medical Relevance | Ref. |
---|---|---|---|---|
Molecular Diagnostics and Enzyme Therapy | Taq DNA polymerase, ligases, reverse transcriptases, helicases | Thermus aquaticus, hyperthermophilic archaea | PCR and nucleic acid amplification for diagnostics and genetic testing | [6,195,196,197] |
Thermophilic aminoacylases | Thermococcus litoralis | Production of enantiopure amino acids for drug synthesis | [198] | |
Drug Delivery | Extremolytes (cDPG, mannosylglycerate) | Hyperthermophilic archaea | Stabilize proteins/peptides during formulation and delivery | [199,200,201] |
Liposomes mimicking archaeal membranes (ether-linked lipids) | Archaea (e.g., Sulfolobus spp.) | Oral and tumor-targeted drug delivery in acidic or oxidative environments | [202,203] | |
Vaccine Adjuvants | Glycosylated S-layer proteins, archaeal lipids archaeosomes | Archaea | Immune activation via TLRs; enhance antigen presentation; experimental vaccines | [204,205,206,207] |
Antimicrobial/Antioxidant/Radioprotective | Halocins (antimicrobial peptides) | Halobacterium salinarum | Novel antimicrobial agents | [208] |
Antioxidant compounds | Psychrophilic, acidophilic bacteria | Cytoprotection in oxidative stress conditions | [209,210,211] | |
DNA repair enzymes, radioprotective molecules | Deinococcus radiodurans | Radioprotection in cancer therapy and high-radiation environments | [212] | |
Biosensors | Thermostable oxidases, dehydrogenases (e.g., G6PDH) | Thermoplasma, Sulfolobus, Aquifex aeolicus | Electrochemical biosensors for metabolites under extreme pH/temperature | [214,215,217] |
Thermostable asparaginase | Archaeoglobus fulgidus | High-temperature biosensing of amino acids | [216] | |
Archaeal membrane lipids (e.g., PLFE) | Sulfolobus acidocaldarius | Biomimetic platforms for biosensors in hostile or resource-limited environments | [219] | |
Genome Editing | CRISPR-Cas systems | Halophiles (e.g., Haloferax volcanii) | Tools for therapeutic genome editing and synthetic biology applications | [222] |
Application Area | Extremophiles Involved | Type of NPs | Key Features/Mechanisms | Ref. |
---|---|---|---|---|
Nanoparticle Biosynthesis | Geobacillus sp., Haloferax volcanii, acidophilic/alkaliphilic bacteria | AuNPs, AgNPs, SeNPs, TeNPs | Enzymatic reduction, redox-active metabolites, biomineralization, stable and eco-friendly | [225,227,228,229,230,231] |
Drug Delivery | Geobacillus spp., Deinococcus radiodurans, Mesoflavibacter zeaxanthinifaciens | AuNPs, AgNPs, SeNPs | Small, biocompatible NPs functionalized for drug-binding and pH-responsive delivery | [225,229,237,238] |
Vaccine Adjuvants | Halobacterium sp., Halorubrum tebenquichense, Deinococcus radiodurans | GVNPs, archaeosomes, AuNPs | Antigen presentation, immune response stimulation, mucosal delivery potential | [237,239,242] |
Biosensors | Halococcus salifodinae, Halobacillus sp., Alkalibacillus sp. | TeNPs, CdS QDs, ZnO NPs, AuNPs, AgNPs | High fluorescence, plasmon resonance, stability in saline, high sensitivity | [237,244,245] |
Antioxidant Uses | Actinobacteria, Desertifilum sp., Acinetobacter sp., Bacillus paramycoides | MgO NPs, ZnO NPs, AuNPs, SeNPs | ROS scavenging, antihemolytic effects, low cytotoxicity, macrophage targeting | [247,248,249,250] |
Antibacterial Uses | Geobacillus spp., Deinococcus radiodurans, Haloferax spp. | AgNPs, AuNPs, SeNPs | Membrane disruption, ROS generation, anti-biofilm, antibacteria | [232,252,253] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepe, F.; Costanzo, E.; Ionata, E.; Marcolongo, L. Biotechnological Potential of Extremophiles: Environmental Solutions, Challenges, and Advancements. Biology 2025, 14, 847. https://doi.org/10.3390/biology14070847
Sepe F, Costanzo E, Ionata E, Marcolongo L. Biotechnological Potential of Extremophiles: Environmental Solutions, Challenges, and Advancements. Biology. 2025; 14(7):847. https://doi.org/10.3390/biology14070847
Chicago/Turabian StyleSepe, Fabrizia, Ezia Costanzo, Elena Ionata, and Loredana Marcolongo. 2025. "Biotechnological Potential of Extremophiles: Environmental Solutions, Challenges, and Advancements" Biology 14, no. 7: 847. https://doi.org/10.3390/biology14070847
APA StyleSepe, F., Costanzo, E., Ionata, E., & Marcolongo, L. (2025). Biotechnological Potential of Extremophiles: Environmental Solutions, Challenges, and Advancements. Biology, 14(7), 847. https://doi.org/10.3390/biology14070847