Differentiation of various crops in small-scale crops is important for food security and economic development in many rural communities. Despite being the oldest and simplest classification technique, thresholding continues to gain popularity for classifying complex images. This study aimed to evaluate the effectiveness of a multilevel thresholding technique in differentiating various crop types in small-scale farms. Three (3) types of crops were identified in the study area, and these were cabbage, maize, and sugar bean. Analytical Spectral Devices (ASD) spectral reflectance data were used to detect subtle differences in the spectral reflectance of crops. Analysis of ASD reflectance data revealed reflectance disparities among the surveyed crops in the Green, red, near-infrared (NIR), and shortwave infrared (SWIR) wavelengths. The ASD reflectance data in the Green, red, and NIR were then used to define thresholds for different crop types. The multilevel thresholding technique was used to classify the surveyed crops on the unmanned aerial vehicle (UAV) imagery, using the defined thresholds as input. Three (3) other machine learning classification techniques were also used to offer a baseline for evaluating the performance of the MLT approach, and these were the multilayer perceptron (MLP) neural network, radial basis function neural network (RBFNN), and the Kohonen’s self-organizing maps (SOM). An analysis of crop cover patterns revealed variations in crop area cover as predicted by the MLT and selected machine learning techniques. The classification results of the surveyed crops revealed the area covered by cabbage crops to be 7.46%, 6.01%, 10.33%, 7.05%, 9.48%, and 7.04% as predicted by the MLT on Blue band, MLT on Green band, MLT on NIR, MLP, RBFNN, and SOM, respectively. The area covered by maize crops as predicted by the MLT on Blue band, MLT on Green band, MLT on NIR, MLP, RBFNN, and SOM were noted to be 13.62%, 26.41%, 12.12%, 11.03%, 12.19% and 15.11%, respectively. Sugar bean was noted to occupy 57.51%, 43.72%, 26.77%, 27.44%, 24.15%, and 16.33% as predicted by the MLT on Blue band, MLT on Green band, MLT on NIR, MLP, RBFNN, and SOM, respectively. Accuracy assessment results generally showed poor crop pattern prediction with all tested classifiers in categorizing the surveyed crops, with the kappa index of agreement (KIA) values of 0.372, 0.307, 0.488, 0.531, 0.616, and 0.659 for the MLT on Blue band, MLT on Green band, MLT on NIR, MLP, RBFNN, and Kohonen’s SOM, respectively. Despite recommendations by recent studies, we noted that the MLT was noted to be unsuitable for classifying complex features such as spectrally overlapping crops.
Full article