Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,572)

Search Parameters:
Authors = Ying Yan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5064 KiB  
Article
Study on Reasonable Well Spacing for Geothermal Development of Sandstone Geothermal Reservoir—A Case Study of Dezhou, Shandong Province, China
by Shuai Liu, Yan Yan, Lanxin Zhang, Weihua Song, Ying Feng, Guanhong Feng and Jingpeng Chen
Energies 2025, 18(15), 4149; https://doi.org/10.3390/en18154149 - 5 Aug 2025
Abstract
Shandong Province is rich in geothermal resources, mainly stored in sandstone reservoirs. The setting of reasonable well spacing in the early stage of large-scale recharge has not attracted enough attention. The problem of small well spacing in geothermal engineering is particularly prominent in [...] Read more.
Shandong Province is rich in geothermal resources, mainly stored in sandstone reservoirs. The setting of reasonable well spacing in the early stage of large-scale recharge has not attracted enough attention. The problem of small well spacing in geothermal engineering is particularly prominent in the sandstone thermal reservoir production area represented by Dezhou. Based on the measured data of temperature, flow, and water level, this paper constructs a typical engineering numerical model by using TOUGH2 software. It is found that when the distance between production and recharge wells is 180 m, the amount of production and recharge is 60 m3/h, and the temperature of reinjection is 30 °C, the temperature of the production well will decrease rapidly after 10 years of production and recharge. In order to solve the problem of thermal breakthrough, three optimization schemes are assumed: reducing the reinjection temperature to reduce the amount of re-injection when the amount of heat is the same, reducing the amount of production and injection when the temperature of production and injection is constant, and stopping production after the temperature of the production well decreases. However, the results show that the three schemes cannot solve the problem of thermal breakthrough or meet production demand. Therefore, it is necessary to set reasonable well spacing. Therefore, based on the strata near the Hydrological Homeland in Decheng District, the reasonable spacing of production and recharge wells is achieved by numerical simulation. Under a volumetric flux scenario ranging from 60 to 80 m3/h, the well spacing should exceed 400 m. For a volumetric flux between 80 and 140 m3/h, it is recommended that the well spacing be greater than 600 m. Full article
Show Figures

Figure 1

19 pages, 94974 KiB  
Article
Promotion of Bone Defect Repair Using Decellularized Antler Cancellous Bone Loaded with Deer Osteoglycin
by Yusu Wang, Ying Zong, Weijia Chen, Naichao Diao, Quanmin Zhao, Boyin Jia, Miao Zhang, Jianming Li, Yan Zhao, Zhongmei He and Rui Du
Biomolecules 2025, 15(8), 1124; https://doi.org/10.3390/biom15081124 - 4 Aug 2025
Abstract
The combination of scaffold materials and bioactive factors is a promising strategy for promoting bone defect repair in tissue engineering. Previous studies have shown that osteoglycin (OGN) is highly expressed in the bone repair process using deer antler as an animal model of [...] Read more.
The combination of scaffold materials and bioactive factors is a promising strategy for promoting bone defect repair in tissue engineering. Previous studies have shown that osteoglycin (OGN) is highly expressed in the bone repair process using deer antler as an animal model of bone defects. It suggests that OGN may be a key active component involved in the bone repair process. The aim of this study was to investigate whether deer OGN (dOGN) could effectively promote bone regeneration. We successfully expressed dOGN using the E. coli pET30a system and evaluated its biological activity through cell proliferation and migration assays. At a concentration of 5 μg/mL, dOGN significantly promoted cell proliferation and migration. We then incorporated dOGN onto decellularized antler cancellous bone (DACB) scaffolds and assessed their osteogenic potential both in vitro and in vivo. The results indicated that dOGN loading enhanced cell proliferation, adhesion, and osteogenic activity. In vivo experiments confirmed that the dOGN-DACB scaffold significantly improved bone regeneration compared to DACB alone. This study demonstrates that dOGN-loaded DACB scaffolds hold great potential for clinical applications in treating critical-sized bone defects by mimicking the rapid regenerative properties of deer antlers. Full article
(This article belongs to the Special Issue Tissue Calcification in Normal and Pathological Environments)
Show Figures

Figure 1

31 pages, 4845 KiB  
Article
Mechanism Analysis and Establishment of a Prediction Model for the Total Pressure Loss in the Multi-Branch Pipeline System of the Pneumatic Seeder
by Wei Qin, Cheng Qian, Yuwu Li, Daoqing Yan, Zhuorong Fan, Minghua Zhang, Ying Zang and Zaiman Wang
Agriculture 2025, 15(15), 1681; https://doi.org/10.3390/agriculture15151681 - 3 Aug 2025
Viewed by 105
Abstract
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system [...] Read more.
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system consists of a main pipe, a header, and ten branch pipes. The main pipe is vertically installed at the center of the header in a straight-line configuration. The ten branch pipes are symmetrically and evenly spaced along the axial direction of the header, distributed on both sides of the main pipe. The outlet directions of the branch pipes are arranged in a 180° orientation opposite to the inlet direction of the main pipe, forming a symmetric multi-branch configuration. Firstly, this study investigated the flow characteristics within the multi-branch pipeline of the pneumatic system and elaborated on the mechanism of flow division in the pipeline. The key geometric factors affecting airflow were identified. Secondly, from a microscopic perspective, CFD simulations were employed to analyze the fundamental causes of pressure loss in the multi-branch pipeline system. Finally, from a macroscopic perspective, a dimensional analysis method was used to establish an empirical equation describing the relationship between the pressure loss (P) and several influencing factors, including the air density (ρ), air’s dynamic viscosity (μ), closed-end length of the header (Δl), branch pipe 1’s flow rate (Q), main pipe’s inner diameter (D), header’s inner diameter (γ), branch pipe’s inner diameter (d), and the spacing of the branch pipe (δ). The results of the bench tests indicate that when 0.0018 m3·s−1Q ≤ 0.0045 m3·s−1, 0.0272 m < d ≤ 0.036 m, 0.225 m < δ ≤ 0.26 m, 0.057 m ≤ γ ≤ 0.0814 m, and 0.0426 m ≤ D ≤ 0.0536 m, the prediction accuracy of the empirical equation can be controlled within 10%. Therefore, the equation provides a reference for the structural design and optimization of pneumatic seeders’ multi-branch pipelines. Full article
Show Figures

Figure 1

16 pages, 3521 KiB  
Article
HBM Package Interconnection Pseudo All-Channel Signal Integrity Simulation and Implementation Method of the Synchronous Current Load Research
by Wen-Xue Tang, Cong-Jian Mai, Li-Yan Zhou, Ying Sun, Xin-Ran Zhao, Shu-Li Liu, Gang Wang, Da-Wei Wang and Cheng-Qian Wang
Micromachines 2025, 16(8), 896; https://doi.org/10.3390/mi16080896 (registering DOI) - 31 Jul 2025
Viewed by 169
Abstract
This paper proposes a pseudo full-channel signal integrity (SI) simulation method tailored for high-bandwidth memory (HBM) interconnects. In this approach, real interconnect models are applied to selected portions of the channel, while the remaining sections are replaced with synchronized current loads that emulate [...] Read more.
This paper proposes a pseudo full-channel signal integrity (SI) simulation method tailored for high-bandwidth memory (HBM) interconnects. In this approach, real interconnect models are applied to selected portions of the channel, while the remaining sections are replaced with synchronized current loads that emulate the electrical behavior of actual signal transmission. This technique enables accurate modeling of the HBM interface under full-channel parallel data transfer conditions. In addition to the simulation methodology itself, this study focuses on three specific implementation schemes for the synchronized current loads and explores their practical applications. Comparative analysis demonstrates the necessity and effectiveness of using synchronized current loads as substitutes for real transmission loads, offering a viable and efficient solution for SI analysis in HBM interconnect systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

22 pages, 602 KiB  
Review
Mitochondrial Regulation of Spermatozoa Function: Metabolism, Oxidative Stress and Therapeutic Insights
by Zhiqian Xu, Qi Yan, Ke Zhang, Ying Lei, Chen Zhou, Tuanhui Ren, Ning Gao, Fengyun Wen and Xiaoxia Li
Animals 2025, 15(15), 2246; https://doi.org/10.3390/ani15152246 - 31 Jul 2025
Viewed by 315
Abstract
Mitochondria are central to energy production and redox regulation in spermatozoa, supporting key functions such as progressive motility, capacitation, and the acrosome reaction. These processes are essential for successful fertilization and embryo development. However, species-specific differences exist in the reliance on oxidative phosphorylation [...] Read more.
Mitochondria are central to energy production and redox regulation in spermatozoa, supporting key functions such as progressive motility, capacitation, and the acrosome reaction. These processes are essential for successful fertilization and embryo development. However, species-specific differences exist in the reliance on oxidative phosphorylation versus glycolysis. Mitochondria also generate reactive oxygen species, which at physiological levels aid in sperm function but can cause oxidative stress and damage when overproduced. Mitochondrial dysfunction and excessive ROS can impair membrane potential, induce apoptosis, and damage nuclear and mitochondrial DNA, ultimately compromising sperm quality. Sperm mitochondrial DNA is highly susceptible to mutations and deletions, contributing to reduced motility and fertility. Targeted antioxidant strategies have emerged as promising therapeutic interventions to mitigate oxidative damage. This article provides a comprehensive overview of mitochondrial regulation in spermatozoa, the consequences of redox imbalance, and the potential of mitochondria-targeted antioxidants to improve sperm function and male fertility outcomes. The paper aims to deepen our understanding of mitochondrial roles in sperm physiology and contribute to the advancement of strategies for addressing male infertility. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Graphical abstract

34 pages, 6455 KiB  
Article
IBCar: Potent Orally Bioavailable Methyl N-[5-(3′-Iodobenzoyl)-1H-Benzimidazol-2-yl]Carbamate for Breast Cancer Therapy
by Janina Baranowska-Kortylewicz and Ying Yan
Cancers 2025, 17(15), 2526; https://doi.org/10.3390/cancers17152526 - 30 Jul 2025
Viewed by 279
Abstract
Objectives: To investigate the efficacy and underlying mechanisms of IBCar’s biological activity in breast cancer models, both in cell culture and in mice, and to compare its effects on cancer versus normal cells. Methods: The cytotoxicity of IBCar was evaluated using [...] Read more.
Objectives: To investigate the efficacy and underlying mechanisms of IBCar’s biological activity in breast cancer models, both in cell culture and in mice, and to compare its effects on cancer versus normal cells. Methods: The cytotoxicity of IBCar was evaluated using the MTS assay to assess metabolic activity and the clonogenic assay to determine reproductive integrity. The impact of IBCar on microtubule integrity, mitochondrial function, and multiple signaling pathways was analyzed using Western blotting, microarray analysis, and live cell imaging. The therapeutic effectiveness of orally administered IBCar was assessed in a transgenic mouse model of Luminal B breast cancer and in mice implanted with subcutaneous triple-negative breast cancer xenografts. Results: IBCar demonstrated potent cytotoxicity across a diverse panel of breast cancer cell lines, including those with mutant or wild-type TP53, and cell lines with short and long doubling times. Comparative analysis revealed distinct responses between normal and cancer cells, including differences in IBCar’s effects on the mitochondrial membrane potential, endoplasmic reticulum stress and activation of cell death pathways. In breast cancer cells, IBCar was cytotoxic at nanomolar concentrations, caused irreversible microtubule depolymerization leading to sustained mitochondrial dysfunction, endoplasmic reticulum stress, and induced apoptosis. In normal cells, protective mechanisms included reversible microtubule depolymerization and activation of pro-survival signaling via the caspase-8 and riptosome pathways. The therapeutic potential of IBCar was confirmed in mouse models of Luminal B and triple negative BC, where it exhibited strong antitumor activity without detectable toxicity. Conclusions: These findings collectively support IBCar as a promising, effective, and safe therapeutic candidate for breast cancer treatment. Full article
Show Figures

Figure 1

14 pages, 2284 KiB  
Article
Rhizobacteria’s Effects on the Growth and Competitiveness of Solidago canadensis Under Nutrient Limitation
by Zhi-Yun Huang, Ying Li, Hu-Anhe Xiong, Misbah Naz, Meng-Ting Yan, Rui-Ke Zhang, Jun-Zhen Liu, Xi-Tong Ren, Guang-Qian Ren, Zhi-Cong Dai and Dao-Lin Du
Agriculture 2025, 15(15), 1646; https://doi.org/10.3390/agriculture15151646 - 30 Jul 2025
Viewed by 169
Abstract
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere [...] Read more.
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere of the invasive weed Solidago canadensis. We assessed their nitrogen utilization capacity and indoleacetic acid (IAA) production capabilities to evaluate their ecological functions. Our three-stage experimental design encompassed strain promotion, nutrient stress, and competition phases. Bacillus sp. ScRB44 demonstrated robust IAA production and significantly improved the nitrogen utilization efficiency, significantly enhancing S. canadensis growth, especially under nutrient-poor conditions, and promoting a shift in biomass allocation toward the roots, thereby conferring a competitive advantage over native species. Conversely, Pseudomonas sp. ScRB22 exhibited limited functional activity and a negligible impact on plant performance. These findings underscore that the ecological impact of rhizosphere bacteria on invasive weeds is closely linked to their specific growth-promoting functions. By enhancing stress adaptation and optimizing resource allocation, certain microorganisms may facilitate the establishment of invasive weeds in adverse environments. This study highlights the significance of microbial functional traits in invasion ecology and suggests novel approaches for microbiome-based invasive weed management, with potential applications in agricultural soil health improvement and ecological restoration. Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
Show Figures

Figure 1

14 pages, 3688 KiB  
Article
Oxygen-Vacancy Engineered SnO2 Dots on rGO with N-Doped Carbon Nanofibers Encapsulation for High-Performance Sodium-Ion Batteries
by Yue Yan, Bingxian Zhu, Zhengzheng Xia, Hui Wang, Weijuan Xu, Ying Xin, Qingshan Zhao and Mingbo Wu
Molecules 2025, 30(15), 3203; https://doi.org/10.3390/molecules30153203 - 30 Jul 2025
Viewed by 240
Abstract
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to [...] Read more.
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to fabricate oxygen-vacancy-rich SnO2 dots anchored on reduced graphene oxide (rGO), which are encapsulated within N-doped carbon nanofibers (denoted as ov-SnO2/rGO@N-CNFs) through electrospinning and subsequent carbonization. The introduction of rich oxygen vacancies establishes additional sodium intercalation sites and enhances Na+ diffusion kinetics, while the conductive N-doped carbon network effectively facilitates charge transport and mitigates SnO2 aggregation. Benefiting from the well-designed architecture, the hierarchical ov-SnO2/rGO@N-CNFs electrode achieves remarkable reversible specific capacities of 351 mAh g−1 after 100 cycles at 0.1 A g−1 and 257.3 mAh g−1 after 2000 cycles at 1.0 A g−1 and maintains 177 mAh g−1 even after 8000 cycles at 5.0 A g−1, demonstrating exceptional long-term cycling stability and rate capability. This work offers a versatile design strategy for developing high-performance anode materials through synergistic interface engineering for SIBs. Full article
Show Figures

Graphical abstract

14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 - 30 Jul 2025
Viewed by 207
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

18 pages, 3069 KiB  
Article
Transcriptomic Profiling of Buds Unveils Insights into Floral Initiation in Tea-Oil Tree (Camellia oleifera ‘changlin53’)
by Hongyan Guo, Zongshun Zhou, Jian Zhou, Chao Yan, Wenbin Zhong, Chang Li, Ying Jiang, Yaqi Yuan, Linqing Cao, Wenting Pan, Jinfeng Wang, Jia Wang, Tieding He, Yikai Hua, Yisi Liu, Lixian Cao and Chuansong Chen
Plants 2025, 14(15), 2348; https://doi.org/10.3390/plants14152348 - 30 Jul 2025
Viewed by 311
Abstract
Flowering is a key agronomic trait that directly influences the yield of the tea-oil tree (Camellia oleifera). Floral initiation, which precedes flower bud differentiation, represents a critical developmental stage affecting the flowering outcomes. However, the molecular mechanisms underlying floral initiation in [...] Read more.
Flowering is a key agronomic trait that directly influences the yield of the tea-oil tree (Camellia oleifera). Floral initiation, which precedes flower bud differentiation, represents a critical developmental stage affecting the flowering outcomes. However, the molecular mechanisms underlying floral initiation in C. oleifera remain poorly understood. In this study, buds from five key developmental stages of a 12-year-old C. oleifera cultivar ‘changlin53’ were collected as experimental samples. Scanning electron microscopy was employed to identify the stage of floral initiation. UPLC-MS/MS was used to analyze endogenous gibberellin (GA) concentrations, while transcriptomic analysis was performed to reveal the underlying transcriptional regulatory network. Six GA types were detected during floral initiation and petal development. GA4 was exclusively detected at the sprouting stage (BII), while GA3 was present in all samples but was significantly lower in BII and the flower bud primordium formation stage (BIII) than in the other samples. A total of 64 differentially expressed genes were concurrently enriched in flower development, reproductive shoot system development, and shoot system development. Weighted gene co-expression network analysis (WGCNA) identified eight specific modules significantly associated with different developmental stages. The magenta module, containing Unigene0084708 (CoFT) and Unigene0037067 (CoLEAFY), emerged as a key regulatory module driving floral initiation. Additionally, GA20OX1 and GA2OX8 were identified as candidate genes involved in GA-mediated regulation of floral initiation. Based on morphological and transcriptomic analyses, we conclude that floral initiation of C. oleifera is a continuous regulatory process governed by multiple genes, with the FT-LFY module playing a central role in the transition from apical meristem to floral meristem. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

14 pages, 1365 KiB  
Article
Molecular Genetic Basis of Reproductive Fitness in Tibetan Sheep on the Qinghai-Tibet Plateau
by Wangshan Zheng, Siyu Ge, Zehui Zhang, Ying Li, Yuxing Li, Yan Leng, Yiming Wang, Xiaohu Kang and Xinrong Wang
Genes 2025, 16(8), 909; https://doi.org/10.3390/genes16080909 - 29 Jul 2025
Viewed by 203
Abstract
Background: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood. [...] Read more.
Background: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood. Methods: We integrated transcriptomic and genomic data from Tibetan sheep and two lowland breeds (Small-tailed Han sheep and Hu sheep) to identify Tibetan sheep reproduction-associated genes (TSRGs). Results: We identified 165 TSRGs: four genes were differentially expressed (DEGs) versus Small-tailed Han sheep, 77 DEGs versus Hu sheep were found, and 73 genes were annotated in reproductive pathways. Functional analyses revealed enrichment for spermatogenesis, embryonic development, and transcriptional regulation. Notably, three top-ranked selection signals (VEPH1, HBB, and MEIKIN) showed differential expression. Murine Gene Informatics (MGI) confirmed that knockout orthologs exhibit significant phenotypes including male infertility, abnormal meiosis (male/female), oligozoospermia, and reduced neonatal weight. Conclusions: Tibetan sheep utilize an evolved suite of genes underpinning gametogenesis and embryogenesis under chronic hypoxia, ensuring high reproductive fitness—a vital component of their adaptation to plateaus. These genes provide valuable genetic markers for the selection, breeding, and conservation of Tibetan sheep as a critical genetic resource. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

27 pages, 5740 KiB  
Article
Localization of Multiple GNSS Interference Sources Based on Target Detection in C/N0 Distribution Maps
by Qidong Chen, Rui Liu, Qiuzhen Yan, Yue Xu, Yang Liu, Xiao Huang and Ying Zhang
Remote Sens. 2025, 17(15), 2627; https://doi.org/10.3390/rs17152627 - 29 Jul 2025
Viewed by 263
Abstract
The localization of multiple interference sources in Global Navigation Satellite Systems (GNSS) can be achieved using carrier-to-noise ratio (C/N0) information provided by GNSS receivers, such as those embedded in smartphones. However, in increasingly prevalent complex scenarios—such as the coexistence of multiple [...] Read more.
The localization of multiple interference sources in Global Navigation Satellite Systems (GNSS) can be achieved using carrier-to-noise ratio (C/N0) information provided by GNSS receivers, such as those embedded in smartphones. However, in increasingly prevalent complex scenarios—such as the coexistence of multiple directional interferences, increased diversity and density of GNSS interference, and the presence of multiple low-power interference sources—conventional localization methods often fail to provide reliable results, thereby limiting their applicability in real-world environments. This paper presents a multi-interference sources localization method using object detection in GNSS C/N0 distribution maps. The proposed method first exploits the similarity between C/N0 data reported by GNSS receivers and image grayscale values to construct C/N0 distribution maps, thereby transforming the problem of multi-source GNSS interference localization into an object detection and localization task based on image processing techniques. Subsequently, an Oriented Squeeze-and-Excitation-based Faster Region-based Convolutional Neural Network (OSF-RCNN) framework is proposed to process the C/N0 distribution maps. Building upon the Faster R-CNN framework, the proposed method integrates an Oriented RPN (Region Proposal Network) to regress the orientation angles of directional antennas, effectively addressing their rotational characteristics. Additionally, the Squeeze-and-Excitation (SE) mechanism and the Feature Pyramid Network (FPN) are integrated at key stages of the network to improve sensitivity to small targets, thereby enhancing detection and localization performance for low-power interference sources. The simulation results verify the effectiveness of the proposed method in accurately localizing multiple interference sources under the increasingly prevalent complex scenarios described above. Full article
(This article belongs to the Special Issue Advanced Multi-GNSS Positioning and Its Applications in Geoscience)
Show Figures

Figure 1

16 pages, 3402 KiB  
Article
Preparation and Performance Study of Graphene Oxide Doped Gallate Epoxy Coatings
by Junhua Liu, Ying Wu, Yu Yan, Fei Wang, Guangchao Zhang, Ling Zeng, Yin Ma and Yuchun Li
Materials 2025, 18(15), 3536; https://doi.org/10.3390/ma18153536 - 28 Jul 2025
Viewed by 276
Abstract
Coatings that are tolerant of poor surface preparation are often used for rapid, real-time maintenance of aging steel surfaces. In this study, a modified epoxy (EP) anti-rust coating was proposed, utilizing methyl gallate (MG) as a rust conversion agent, graphene oxide (GO) as [...] Read more.
Coatings that are tolerant of poor surface preparation are often used for rapid, real-time maintenance of aging steel surfaces. In this study, a modified epoxy (EP) anti-rust coating was proposed, utilizing methyl gallate (MG) as a rust conversion agent, graphene oxide (GO) as an active functional material, and epoxy resin as the film-forming material. The anti-rust mechanism was investigated using potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM), and the scanning vibration electrode technique (SVET). The results demonstrated that over a period of 21 days, the impedance of the coating increases while the corrosion current density decreases with prolonged soaking time. The coating exhibited a maximum impedance of 2259 kΩ, and a lower corrosion current density of 8.316 × 10−3 A/m2, which demonstrated a three-order magnitude reduction compared to the corrosion current density observed in mild steel without coating. LSCM demonstrated that MG can not only penetrate the tiny gap between the rust particles, but also effectively convert harmful rust into a complex. SVET showed a much more uniform current density distribution in the micro-zones of mild steel with the anti-rust coating compared to uncoated mild steel, indicating that the presence of GO not only enhanced the electrical conductivity of the coating, but also improved the structure of the coating, which contributed to the high performance of the modified epoxy anti-rust coating. This work highlights the potential application of anti-rust coating in the protection of metal structures in coastal engineering. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

19 pages, 8295 KiB  
Article
Melatonin as an Alleviator in Decabromodiphenyl Ether-Induced Aberrant Hippocampal Neurogenesis and Synaptogenesis: The Role of Wnt7a
by Jinghua Shen, Lu Gao, Jingjing Gao, Licong Wang, Dongying Yan, Ying Wang, Jia Meng, Hong Li, Dawei Chen and Jie Wu
Biomolecules 2025, 15(8), 1087; https://doi.org/10.3390/biom15081087 - 27 Jul 2025
Viewed by 412
Abstract
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is [...] Read more.
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is essential for both neurogenesis and synapse formation; moreover, Wnt signaling participates in PBDE neurotoxicity and also contributes to the neuroprotective effects of melatonin. Therefore, we investigated the impacts of perinatal decabromodiphenyl ether (BDE-209) exposure on hippocampal neurogenesis and synaptogenesis in juvenile rats through BrdU injection and Golgi staining, as well as the alleviation of melatonin pretreatment. Additionally, we identified the structural basis of Wnt7a and two compounds via molecular docking. The hippocampal neural progenitor pool (Sox2+BrdU+ and Sox2+GFAP+cells), immature neurons (DCX+) differentiated from neuroblasts, and the survival of mature neurons (NeuN+) in the dentate gyrus were inhibited. Moreover, in BDE-209-exposed offspring rats, it was observed that dendritic branching and spine density were reduced, alongside the long-lasting suppression of the Wnt7a-FZD5/β-catenin pathway and targeted genes (Prox1, Neurod1, Neurogin2, Dlg4, and Netrin1) expression. Melatonin alleviated BDE-209-disrupted memory, along with hippocampal neurogenesis and dendritogenesis, for which the restoration of Wnt7a-FZD5 signaling may be beneficial. This study suggested that melatonin could represent a potential intervention for the cognitive deficits induced by PBDEs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 2088 KiB  
Article
Assessment of Effects of Storage Time on Fermentation Profile, Chemical Composition, Bacterial Community Structure, Co-Occurrence Network, and Pathogenic Risk in Corn Stover Silage
by Zhumei Du, Ying Meng, Yifan Chen, Shaojuan Cui, Siran Wang and Xuebing Yan
Fermentation 2025, 11(8), 425; https://doi.org/10.3390/fermentation11080425 - 23 Jul 2025
Viewed by 427
Abstract
In order to achieve the efficient utilization of agricultural by-products and overcome the bottleneck of animal feed shortages in dry seasons, this study utilized corn stover (CS; Zea mays L.) as a material to systematically investigate the dynamic changes in the fermentation quality, [...] Read more.
In order to achieve the efficient utilization of agricultural by-products and overcome the bottleneck of animal feed shortages in dry seasons, this study utilized corn stover (CS; Zea mays L.) as a material to systematically investigate the dynamic changes in the fermentation quality, bacterial community structure, and pathogenic risk of silage under different fermentation times (0, 3, 7, 15, and 30 days). CS has high nutritive value, including crude protein and sugar, and can serve as a carbon source and a nitrogen source for silage fermentation. After ensiling, CS silage (CSTS) exhibited excellent fermentation quality, characterized by relatively high lactic acid content, low pH, and ammonia nitrogen content within an acceptable range. In addition, neither propionic acid nor butyric acid was detected in any of the silages. CS exhibited high α-diversity, with Serratia marcescens being the dominant bacterial species. After ensiling, the α-diversity significantly (p < 0.05) decreased, and Lactiplantibacillus plantarum was the dominant species during the fermentation process. With the extension of fermentation days, the relative abundance of Lactiplantibacillus plantarum significantly (p < 0.05) increased, reaching a peak and stabilizing between 15 and 30 days. Ultimately, lactic acid bacteria dominated and constructed a microbial symbiotic network system. In the bacterial community of CSTS, the abundance of “potential pathogens” was significantly (p < 0.01) lower than that of CS. These results provide data support for establishing a microbial regulation theory for silage fermentation, thereby improving the basic research system for the biological conversion of agricultural by-products and alleviating feed shortages in dry seasons. Full article
Show Figures

Figure 1

Back to TopTop