Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,722)

Search Parameters:
Authors = Xin Wang ORCID = 0000-0002-7464-3565

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4029 KiB  
Article
Characterizing CO2 Emission from Various PHEVs Under Charge-Depleting Conditions
by Nan Yang, Xuetong Lian, Zhenxiao Bai, Liangwu Rao, Junxin Jiang, Jiaqiang Li, Jiguang Wang and Xin Wang
Atmosphere 2025, 16(8), 946; https://doi.org/10.3390/atmos16080946 - 7 Aug 2025
Abstract
With the significant growth in the number of PHEVs, conducting in-depth research on their CO2 emission characteristics is essential. This study used the Horiba OBS-ONE Portable Emission Measurement System (PEMS) to measure the CO2 emissions of three Plug-in Hybrid Electric Vehicle [...] Read more.
With the significant growth in the number of PHEVs, conducting in-depth research on their CO2 emission characteristics is essential. This study used the Horiba OBS-ONE Portable Emission Measurement System (PEMS) to measure the CO2 emissions of three Plug-in Hybrid Electric Vehicle (PHEV) types: one Series Hybrid Electric Vehicle (S-HEV), one Parallel Hybrid Electric Vehicle (P-HEV), and one Series-Parallel Hybrid Electric Vehicle (SP-HEV), during real driving conditions. The findings show a correlation between acceleration and increased CO2 emissions for P-HEV, while acceleration has a relatively minor impact on S-HEV and SP-HEV emissions. Under urban driving conditions, the SP-HEV displays the lowest average CO2 emission rate. However, under suburban and highway conditions, the average CO2 emission rates follow the order S-HEV > SP-HEV > P-HEV. An analysis of CO2 emission factors across different road types and vehicle-specific power (VSP) ranges indicates that within low VSP intervals (VSP ≤ 0 for urban, VSP ≤ 5 for suburban, and VSP ≤ 15 for highway roads), the P-HEV exhibits the best CO2 emission control. As VSP increases, the P-HEV’s emission factors rise under all three road conditions, with its emission control capability weakening when VSP exceeds 5 in urban, 15 in suburban, and 20 on highway roads. For the SP-HEV, CO2 emission factors increase with VSP in urban and suburban areas but remain stable on highways. The S-HEV shows minimal changes in emission factors with varying VSP. This research provides valuable insights into the CO2 emission patterns of PHEVs, aiding vehicle optimization and policy development. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
Show Figures

Figure 1

16 pages, 3724 KiB  
Article
Performance Study on Preparation of Mine Backfill Materials Using Industrial Solid Waste in Combination with Construction Waste
by Yang Cai, Qiumei Liu, Fufei Wu, Shuangkuai Dong, Qiuyue Zhang, Jing Wang, Pengfei Luo and Xin Yang
Materials 2025, 18(15), 3716; https://doi.org/10.3390/ma18153716 - 7 Aug 2025
Abstract
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast [...] Read more.
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF), phosphorus slag (PS), fly ash–phosphorus slag–phosphogypsum composite (FA-PS-PG), and fly ash–phosphorus slag–β-phosphogypsum composite (FA-PS-βPG)—under different substitution rates (50%, 55%, 60%) as control parameters. A total of 19 mix proportions were investigated, evaluating their slump, dry density, compressive strength, uniaxial compressive stress–strain relationship, micromorphology, and phase composition. The results indicate that, compared to backfill materials prepared with pure cement, the incorporation of industrial solid wastes improves the fluidity of the backfill materials. At 56 days, the constitutive model parameter a increased to varying degrees, while parameter b decreased, indicating enhanced ductility. The compressive strength was consistently higher with PS at all substitution rates. The FA-PS-PG mixture with a 50% substitution rate achieved the highest 56-day compressive strength of 8.02 MPa. These findings can facilitate the application of construction waste and industrial solid waste in mine backfilling projects, delivering economic, environmental, and resource-related benefits. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 7100 KiB  
Article
Simulation of Strata Failure and Settlement in the Mining Process Using Numerical and Physical Methods
by Xin Wang, Wenshuai Li and Zhijie Zhang
Appl. Sci. 2025, 15(15), 8706; https://doi.org/10.3390/app15158706 - 6 Aug 2025
Abstract
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been [...] Read more.
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been reported. In this paper, the main factors relating to the mining-induced seismicity, including the mechanical properties, geometry of the space, excavation advance, and excavation rate, are investigated using both experimental and numerical methods. The sensitivity of these factors behaves differently with regard to the stress distribution and failure mode. Space geometry and excavation advances have the highest impact on the surface settlement and the failure, while the excavation rate in practical engineering projects has the least impact on the failure mode. The numerical study coincides well with the experimental observation. The result indicates that the mechanical properties given by the geological survey report can be effectively used to assess the risk of mining-induced seismicity, and the proper adjustment of the tunnel geometry can largely reduce the surface settlement and improve the safety of mining. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

11 pages, 60623 KiB  
Article
Super Resolution for Mangrove UAV Remote Sensing Images
by Qin Qin, Wenlong Dai and Xin Wang
Symmetry 2025, 17(8), 1250; https://doi.org/10.3390/sym17081250 - 6 Aug 2025
Abstract
Mangroves play a crucial role in ecosystems, and the accurate classification and real-time monitoring of mangrove species are essential for their protection and restoration. To improve the segmentation performance of mangrove UAV remote sensing images, this study performs species segmentation after the super-resolution [...] Read more.
Mangroves play a crucial role in ecosystems, and the accurate classification and real-time monitoring of mangrove species are essential for their protection and restoration. To improve the segmentation performance of mangrove UAV remote sensing images, this study performs species segmentation after the super-resolution (SR) reconstruction of images. Therefore, we propose SwinNET, an SR reconstruction network. We design a convolutional enhanced channel attention (CEA) module within a network to enhance feature reconstruction through channel attention. Additionally, the Neighborhood Attention Transformer (NAT) is introduced to help the model better focus on domain features, aiming to improve the reconstruction of leaf details. These two attention mechanisms are symmetrically integrated within the network to jointly capture complementary information from spatial and channel dimensions. The experimental results demonstrate that SwinNET not only achieves superior performance in SR tasks but also significantly enhances the segmentation accuracy of mangrove species. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

20 pages, 8071 KiB  
Article
Analysis of the Differences Among Camellia oleifera Grafting Combinations in Its Healing Process
by Zhilong He, Ying Zhang, Chengfeng Xun, Zhen Zhang, Yushen Ma, Xin Wei, Zhentao Wan and Rui Wang
Plants 2025, 14(15), 2432; https://doi.org/10.3390/plants14152432 - 6 Aug 2025
Abstract
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the [...] Read more.
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the scion, assessing growth traits and conducting physiological assays (enzymatic activities of SOD and POD and levels of ROS and IAA) at multiple timepoints (0–32 days post-grafting). The results demonstrated that Comb. 4 (Xianglin 27 rootstock) exhibited superior compatibility, characterized by systemic antioxidant activation (peaking at 4–8 DPG), rapid auxin accumulation (4 DPG), and efficient sugar allocation. Transcriptome sequencing and WGCNA analysis identified 3781 differentially expressed genes, with notable enrichment in stress response pathways (Hsp70, DnaJ) and auxin biosynthesis (YUCCA), while also revealing key hub genes (FKBP19) associated with graft-healing efficiency. These findings establish that successful grafting in C. oleifera depends on coordinated rapid redox regulation, auxin-mediated cell proliferation, and metabolic reprogramming, with Comb. 4 emerging as the optimal rootstock choice. The identified molecular markers not only advance our understanding of grafting mechanisms in woody plants but also provide valuable targets for future breeding programs aimed at improving grafting success rates in this important oil crop. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

15 pages, 1337 KiB  
Article
Application of Prefabricated Public Buildings in Rural Areas with Extreme Hot–Humid Climate: A Case Study of the Yongtai County Digital Industrial Park, Fuzhou, China
by Xin Wu, Jiaying Wang, Ruitao Zhang, Qianru Bi and Jinghan Pan
Buildings 2025, 15(15), 2767; https://doi.org/10.3390/buildings15152767 - 6 Aug 2025
Abstract
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only [...] Read more.
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only jeopardize the attainment of climate objectives, but also hinder equitable development between urban and rural regions. Using the Digital Industrial Park in Yongtai County, Fuzhou City, as a case study, this study focuses on prefabricated public buildings in regions with extreme hot–humid climate, and innovatively integrates BIM (Building Information Modeling)-driven carbon modeling with the Gaussian Two-Step Floating Catchment Area (G2SFCA) method for spatial accessibility assessment to investigate the carbon emissions and economic benefits of prefabricated buildings during the embodied stage, and analyzes the spatial accessibility of prefabricated building material suppliers in Fuzhou City and identifies associated bottlenecks, seeking pathways to promote sustainable rural revitalization. Compared with traditional cast-in-situ buildings, embodied carbon emissions of prefabricated during their materialization phase significantly reduced. This dual-perspective approach ensures that the proposed solutions possess both technical rigor and logistical feasibility. Promoting this model across rural areas sharing similar climatic conditions would advance the construction industry’s progress towards the dual carbon goals. Full article
Show Figures

Figure 1

20 pages, 4580 KiB  
Article
Increased Oxygen Treatment in the Fermentation Process Improves the Taste and Liquor Color Qualities of Black Tea
by Xinfeng Jiang, Xin Lei, Chen Li, Lixian Wang, Xiaoling Wang and Heyuan Jiang
Foods 2025, 14(15), 2736; https://doi.org/10.3390/foods14152736 - 5 Aug 2025
Abstract
Black tea is widely consumed worldwide, and its characteristic taste and color result from fermentation, where polyphenols are enzymatically oxidized to generate major pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). This study investigated the effects of increased oxygen treatment during fermentation [...] Read more.
Black tea is widely consumed worldwide, and its characteristic taste and color result from fermentation, where polyphenols are enzymatically oxidized to generate major pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). This study investigated the effects of increased oxygen treatment during fermentation on the flavor attributes and chemical properties of Congou black tea. Fresh tea leaves (variety “Fuyun 6”) were subjected to four oxygen treatments: 0 h (CK), 1 h (TY-1h), 2 h (TY-2h), and 3 h (TY-3h), with oxygen supplied at 8.0 L/min. Sensory evaluation revealed that oxygen-treated samples exhibited tighter and deeper-colored leaves, a redder liquor, fuller taste, and a sweeter fragrance compared with CK. Chromatic analysis showed significant increases in redness (a*) and luminance (L*), alongside reduced yellowness (b*), indicating enhanced liquor color. Chemical analyses demonstrated elevated levels of TFs, TRs, and TBs in oxygen treatments, with TRs showing the most pronounced increase. Non-targeted metabolomics identified 2318 non-volatile and 761 volatile metabolites, highlighting upregulated flavonoids, phenolic acids, and lipids, and downregulated catechins and tannins, which collectively contributed to improved taste and aroma. Optimal results were achieved with 2–3 h of oxygen treatment, balancing pigment formation and sensory quality. These findings can provide a scientific basis for optimizing oxygen conditions in black tea fermentation to improve product quality. Full article
(This article belongs to the Collection Advances in Tea Chemistry)
Show Figures

Figure 1

23 pages, 3106 KiB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Viewed by 25
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

16 pages, 2048 KiB  
Article
Quantitative Determination of Nitrogen Content in Cucumber Leaves Using Raman Spectroscopy and Multidimensional Feature Selection
by Zhaolong Hou, Feng Tan, Manshu Li, Jiaxin Gao, Chunjie Su, Feng Jiao, Yaxuan Wang and Xin Zheng
Agronomy 2025, 15(8), 1884; https://doi.org/10.3390/agronomy15081884 - 4 Aug 2025
Viewed by 201
Abstract
Cucumber, a high-yielding crop commonly grown in facility environments, is particularly susceptible to nitrogen (N) deficiency due to its rapid growth and high nutrient demand. This study used cucumber as its experimental subject and established a spectral dataset of leaves under four nutritional [...] Read more.
Cucumber, a high-yielding crop commonly grown in facility environments, is particularly susceptible to nitrogen (N) deficiency due to its rapid growth and high nutrient demand. This study used cucumber as its experimental subject and established a spectral dataset of leaves under four nutritional conditions, normal supply, nitrogen deficiency, phosphorus deficiency, and potassium deficiency, aiming to develop an efficient and robust method for quantifying N in cucumber leaves using Raman spectroscopy (RS). Spectral data were preprocessed using three baseline correction methods—BaselineWavelet (BW), Iteratively Improve the Moving Average (IIMA), and Iterative Polynomial Fitting (IPF)—and key spectral variables were selected using 4-Dimensional Feature Extraction (4DFE) and Competitive Adaptive Reweighted Sampling (CARS). These selected features were then used to develop a N content prediction model based on Partial Least Squares Regression (PLSR). The results indicated that baseline correction significantly enhanced model performance, with three methods outperforming unprocessed spectra. A further analysis showed that the combination of IPF, 4DFE, and CARS achieved optimal PLSR model performance, achieving determination coefficients (R2) of 0.947 and 0.847 for the calibration and prediction sets, respectively. The corresponding root mean square errors (RMSEC and RMSEP) were 0.250 and 0.368, while the residual predictive deviation (RPDC and RPDP) values reached 4.335 and 2.555. These findings confirm the feasibility of integrating RS with advanced data processing for rapid, non-destructive nitrogen assessment in cucumber leaves, offering a valuable tool for nutrient monitoring in precision agriculture. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

15 pages, 1752 KiB  
Article
Acetate-Assisted Preparation of High-Cu-Content Cu-SSZ-13 with a Low Si/Al Ratio: Distinguishing Cu Species and Origins
by Dongxu Han, Ying Xin, Junxiu Jia, Jin Wang and Zhaoliang Zhang
Catalysts 2025, 15(8), 741; https://doi.org/10.3390/catal15080741 - 4 Aug 2025
Viewed by 157
Abstract
The rational design of high-performance Cu-SSZ-13 catalysts with enhanced low-temperature activity represents a critical challenge for meeting stringent Euro VII emission standards in diesel aftertreatment systems. Elevating Cu loading can theoretically improve catalytic performance; however, one-time ion exchange using common CuSO4 solution [...] Read more.
The rational design of high-performance Cu-SSZ-13 catalysts with enhanced low-temperature activity represents a critical challenge for meeting stringent Euro VII emission standards in diesel aftertreatment systems. Elevating Cu loading can theoretically improve catalytic performance; however, one-time ion exchange using common CuSO4 solution makes it hard to accomplish high Cu-ion contents. Herein, we demonstrate that the conventional ion-exchange method, adopting Cu(CH3COO)2 as precursor in NH4-SSZ-13 zeolite with a low Si/Al ratio (≈6–7), can achieve higher Cu content while maintaining superior dispersion of active sites. Comprehensive characterizations reveal a dual incorporation mechanism: canonical Cu2+ ion exchange and unique adsorption of the [Cu(CH3COO)]+ complex. In the latter case, the surface-adsorbed [Cu(CH3COO)]+ ions form high-dispersion CuOx species, while the framework-confined ones convert to active Z[Cu2+(OH)]+ ions. The Cu(CH3COO)2-exchanged Cu-SSZ-13 catalyst exhibits superior low-temperature SCR activity and hydrothermal stability to its CuSO4-exchanged counterpart, making it particularly suitable for close-coupled SCR applications. Our findings provide fundamental insights into Cu speciation control in zeolites and present a scalable, industrially viable approach for manufacturing next-generation SCR catalysts capable of meeting future emission regulations. Full article
Show Figures

Figure 1

23 pages, 15881 KiB  
Article
Synergistic Multi-Mechanism Enhancement in Chemomechanical Abrasive Polishing of Polycrystalline Diamond via a New SiO2–Diamond Slurry in High-Concentration H2O2 Solution
by Xin Zheng, Ke Zheng, Jie Gao, Yan Wang, Pengtao An, Yongqiang Ma, Hongjun Hei, Shuaiwu Qu and Shengwang Yu
Materials 2025, 18(15), 3659; https://doi.org/10.3390/ma18153659 - 4 Aug 2025
Viewed by 186
Abstract
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of [...] Read more.
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of chemomechanical abrasive polishing (CMAP) with a slurry containing high-concentration H2O2 and varying mass percentages of SiO2 powder and diamond particles on surface morphology, surface roughness, material removal rate (MRR), and microstrain of PCD disks. The contributions of mechanical action, chemical action, and bubble cavitation to the CMAP process are analyzed. Scanning electron microscopy (SEM) observations indicate that large grains present in PCD are effectively eliminated after CMAP, leading to a notable reduction in surface roughness. The optimal results are obtained with 60 wt% SiO2 powder and 40 wt% diamond particles, achieving a maximum MRR of 1039.78 μm/(MPa·h) (15.5% improvement compared to the mechanical method) and a minimum surface roughness (Sa) of 3.59 μm. Additionally, the microstrain on the PCD disk shows a slight reduction following the CMAP process. The material removal mechanism is primarily attributed to mechanical action (70.8%), with bubble cavitation and chemical action (27.5%) and action of SiO2 (1.7%) playing secondary roles. The incorporation of SiO2 leads to the formation of a lubricating layer, significantly reducing surface damage and decreasing the surface roughness Sa to 1.39 µm. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

1 pages, 126 KiB  
Correction
Correction: Wang et al. Effects of Retinol and Retinyl Palmitate on UV-Induced Skin Ageing and Therapeutic Enhancement. Cosmetics 2025, 12, 68
by Yuan Wang, Xin Nie, Jiangming Zhong, Jing Wang, Lanyue Zhang and Peng Shu
Cosmetics 2025, 12(4), 162; https://doi.org/10.3390/cosmetics12040162 - 4 Aug 2025
Viewed by 91
Abstract
In the publication [...] Full article
(This article belongs to the Section Cosmetic Dermatology)
34 pages, 4933 KiB  
Review
Current Progress in and Future Visions of Key Technologies of UAV-Borne Multi-Modal Geophysical Exploration for Mineral Exploration: A Scoping Review
by Xin Wu, Guo-Qiang Xue, Yan-Bo Wang and Song Cui
Remote Sens. 2025, 17(15), 2689; https://doi.org/10.3390/rs17152689 - 3 Aug 2025
Viewed by 315
Abstract
For mineral exploration, an increasing number of geophysical instruments have adopted unmanned aerial vehicles (UAVs) as their carrier platforms. The effective fusion of multi-modal geophysical information will be conducive to further enhancing the reliability of exploration results. However, the integration degree of UAVs [...] Read more.
For mineral exploration, an increasing number of geophysical instruments have adopted unmanned aerial vehicles (UAVs) as their carrier platforms. The effective fusion of multi-modal geophysical information will be conducive to further enhancing the reliability of exploration results. However, the integration degree of UAVs and geophysical equipment is still low, and the advantages of UAVs as robots have not been fully exploited. In addition, the existing fusion methods are still difficult to use to establish the spatial distribution model of ore-bearing rock. Therefore, we reviewed the development status of UAVs and the geophysical instruments. We believe that only by integrating the system, designing the observation plan in accordance with the requirements of the fusion method, and treating the hardware part as an external extension of the algorithm, can high-matching data be provided for fusion. Subsequently, we analyzed the progress of the fusion methods, leading us to believe that the cross-dimensional and cross-abstract-level issues are major challenges in the algorithm aspect. Meanwhile, the fusion should be carried out simultaneously with the generation of the ore-bearing rock model, that is, to establish an integrated system of fusion and generation. It is hoped that this research can promote the development of UAV-borne multi-modal observation technology. Full article
Show Figures

Figure 1

22 pages, 5809 KiB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 - 3 Aug 2025
Viewed by 181
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

18 pages, 3020 KiB  
Article
JAK2/STAT3 Signaling in Myeloid Cells Contributes to Obesity-Induced Inflammation and Insulin Resistance
by Chunyan Zhang, Jieun Song, Wang Zhang, Rui Huang, Yi-Jia Li, Zhifang Zhang, Hong Xin, Qianqian Zhao, Wenzhao Li, Saul J. Priceman, Jiehui Deng, Yong Liu, David Ann, Victoria Seewaldt and Hua Yu
Cells 2025, 14(15), 1194; https://doi.org/10.3390/cells14151194 - 2 Aug 2025
Viewed by 394
Abstract
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to [...] Read more.
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to insulin resistance remain largely unknown. Although the Janus Kinase (Jak)/signal transducer and activator of transcription 3 (Stat3) signaling in myeloid cells are known to promote the M2 phenotype in tumors, we demonstrate here that the Jak2/Stat3 pathway amplifies M1-mediated adipose tissue inflammation and insulin resistance under metabolic challenges. Ablating Jak2 in the myeloid compartment reduces insulin resistance in obese mice, which is associated with a decrease in infiltration of adipose tissue macrophages (ATMs). We show that the adoptive transfer of Jak2-deficient myeloid cells improves insulin sensitivity in obese mice. Furthermore, the protection of obese mice with myeloid-specific Stat3 deficiency against insulin resistance is also associated with reduced tissue infiltration by macrophages. Jak2/Stat3 in the macrophage is required for the production of pro-inflammatory cytokines that promote M1 macrophage polarization in the adipose tissues of obese mice. Moreover, free fatty acids (FFAs) activate Stat3 in macrophages, leading to the induction of M1 cytokines. Silencing the myeloid cell Stat3 with an in vivo siRNA targeted delivery approach reduces metabolically activated pro-inflammatory ATMs, thereby alleviating obesity-induced insulin resistance. These results demonstrate Jak2/Stat3 in myeloid cells is required for obesity-induced insulin resistance and inflammation. Moreover, targeting Stat3 in myeloid cells may be a novel approach to ameliorate obesity-induced insulin resistance. Full article
Show Figures

Figure 1

Back to TopTop