Current Progress in and Future Visions of Key Technologies of UAV-Borne Multi-Modal Geophysical Exploration for Mineral Exploration: A Scoping Review
Abstract
1. Introduction
2. Method
3. UAVs and Geophysical Instruments
3.1. UAVs Used in Geophysical Observation
3.2. Advances in the Geophysical Instruments
3.2.1. Aeromagnetic Equipment
3.2.2. Gravimeter
3.2.3. Gamma Spectrometer
3.2.4. Electromagnetic Equipment
3.2.5. Seismic Detector
4. Fusion Method
4.1. Imaged-Based Fusion
4.2. Voxel-Based Fusion
5. Discussion and Prospect
5.1. UAV-Borne Observation
5.2. Fusion Based on AI
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence | BGO | Bismuth Germanium Oxygen |
CsI | Cesium Iodide | CV | Computer Vision |
GAN | Generative Adversarial Network | GIS | Geographic Information System |
GNSS | Global Navigation Satellite System | GPR | Ground-Penetrating Radar |
HPF | High Pass Filtering | IHS | Intensity Hue Saturation |
INS | Inertial Navigation System | LaBr3 | Lanthanum Bromide |
LiDAR | Light Detection and Ranging | MEMS | Micro Electromechanical System |
MMML | Multi-modal Machine Learning | NaI | Sodium Iodide |
NLP | Natural Language Processing | PCA | Principal Component Analysis |
SiPM | Silicon Photomultiplier | UAV | Unmanned Aerial Vehicle |
VL | Vision Language |
Appendix A. Search Strategy
- TS = fusion
- TS = UAV OR TS = Drone
- TS = Geophys * AND TI = (UAV OR Drone)
- TS = Gravi * AND TI = Gravim *
- TS = Gravi * AND TI = airb *
- TS = Gravi * AND TI = (UAV OR Drone)
- TS = (Gamma NEAR/1 Spectrom *)
- TS = (Gamma NEAR/1 Spectrom *) AND TI = airb *
- TS = (Gamma NEAR/1 Spectrom *) AND TI = (UAV OR Drone)
- TS = Electrom * AND TS = Geophy *
- TS = Electrom * AND TS = Geophy * AND TI = airb *
- TS = Electrom * AND TS = Geophy * AND TI = (UAV OR Drone)
- TS = Seis * AND TS = Detect *
- TS = Seis * AND TI = (UAV OR Drone)
- TS = magnetic AND TI = airb *
- TS = magnetic AND TI = (UAV OR Drone)
- TS = Geophys * AND TS = fuson
- TS = (Metallog * NEAR/1 Progn *) AND TS = fusion
- TS = Geolog * AND TS = fusion
- TS = Geophy * AND TS = fusion
- TS = Geoch * AND TS = fusion
- TS = Remote AND TS = fusion
- TS = GIS AND fusion
- TS = (multi NEAR/2 Modal) AND TS = fusion
- TS = (multi NEAR/2 Modal) AND TS = Geoph *
- TS = (multi NEAR/2 Modal) AND TI = Learning
- TS = fusion AND TS = AI
- TS = fusion AND TI = Leanring
- TS = fusion AND TI = dimen *
- TS = fusion AND TS = Voxel
- limit 1–30 to PY = 2020–2025
- limit 1–30 to PY = 2016–2019
- limit 1–30 to PY = 2010–2015
- limit 1–30 to PY = 2006–2009
- limit 1–30 to PY = 1900–2005
Appendix B. Results of Individual Sources of Evidence
Author | Year | Article Type | Source | Country | Brief Description |
Abedi [140] | 2012 | Research Article | Computers & Geosciences | Iran | Algorithm |
Accomando [54] | 2021 | Research Article | Sensors | Italy | Instrument |
Accomando [71] | 2023 | Research Article | EAGE Annual Conference & Exhibition | Italy | Instrument |
Agterberg [135] | 2002 | Research Article | Natural Resources Research | Canada | Algorithm |
Akhmedzhanov [89] | 2024 | Research Article | Technical Physics | Russia | Instrument |
Andryushkov [82] | 2022 | Research Article | Applied Optics | Russia | Instrument |
Antoine [5] | 2020 | Review Article | Surveys in Geophysics | France | Review |
AviDrone [43] | 2018 | Official Document | Official website | Canada | Instrument |
Baltrušaitis [22] | 2018 | Review Article | IEEE Transactions on Pattern Analysis and Machine Intelligence | UK | Algorithm |
Barnard [64] | 2008 | Research Article | Bristol Inter-national UAV Systems Conference | USA | Algorithm |
Becken [41] | 2020 | Research Article | Geophysics | Germany | Instrument |
Ben-Kish [85] | 2010 | Research Article | Physical Review Letters | USA | Instrument |
Berzhitskii [102] | 2010 | Research Article | IAG Symposium on Terrestrial Gravimetry | Russia | Instrument |
Bian [68] | 2021 | Research Article | Journal of Applied Geophysics | China | Algorithm |
Boedecker [101] | 2006 | Research Article | Observation of the Earth System from SPACE | Germany | Instrument |
Booysen [58] | 2020 | Research Article | Scientific Reports | Germany | Algorithm |
Brown [138] | 2003 | Research Article | Natural Resources Research | Australia | Algorithm |
Cai [103] | 2013 | Research Article | Science China Earth Sciences | China | Instrument |
Carranza [133] | 2003 | Research Article | Ore Geology Reviews | Netherlands | Algorithm |
Carranza [134] | 2001 | Research Article | Exploration and Mining Geology | Netherlands | Algorithm |
Chandra [13] | 2018 | Research Article | Comptes Rendus. Physique | France | Instrument |
Chen [142] | 2015 | Research Article | Ore Geology Reviews | China | Algorithm |
Cheng [139] | 1999 | Research Article | Natural Resources Research | Canada | Algorithm |
Choi [132] | 2000 | Research Article | Geosciences Journal | Korea | Algorithm |
CRIRSCO [1] | 2024 | Research Article | Official website | USA | Algorithm |
Cunningham [46] | 2018 | Research Article | Pure and Applied Geophysics | Canada | Instrument |
Curran [131] | 2001 | Research Article | Remote Sensing of Environment | UK | Instrument |
Daily [130] | 1979 | Research Article | Photogrammetric Engineering and Remote Sensing | USA | Algorithm |
De Smet [47] | 2021 | Research Article | Journal of Applied Geophysics | USA | Instrument |
De Smet [75] | 2023 | Research Article | Remote Sensing | USA | Instrument |
Deurloo [107] | 2012 | Research Article | Springer | Portugal | Instrument |
Dezert [150] | 2021 | Research Article | Bulletin of Engineering Geology and the Environment | France | Algorithm |
DJI [38] | 2023 | Official Document | Official website | China | Instrument |
Doherty [91] | 2013 | Research Article | Physics Reports | Australia | Instrument |
Dong [151] | 2022 | Research Article | Journal of Applied Geophysics | China | Algorithm |
DroneSOM [110] | 2024 | Media Report | Official website | Danmark | Instrument |
Eldosouky [146] | 2024 | Research Article | Scientific Reports | Egypt | Algorithm |
Elliott [97] | 2023 | Research Article | Nature | USA | Instrument |
Erfanian-Norouzzadeh [155] | 2025 | Research Article | Natural Resources Research | Iran | Algorithm |
Feima [44] | 2020 | Official Document | Official website | China | Instrument |
Frachetti [2] | 2024 | Research Article | Nature | USA | Algorithm |
Friedel [32] | 2016 | Research Article | Hydrogeology Journal | USA | Algorithm |
Gola [156] | 2021 | Research Article | Journal of Geophysical Research: Solid Earth | Italy | Algorithm |
Golovan [19] | 2023 | Research Article | Gyroscopy and Navigation | Russia | Algorithm |
García-Fernández [14] | 2024 | Research Article | IEEE Journal of Selected topics in applied earth observations and remote sensing | UK | Algorithm |
Florio [49] | 2024 | Research Article | Sensors | Italy | Algorithm |
Grandjean [148] | 2007 | Research Article | Bulletin de la Société Géologique de France | France | Algorithm |
Guo [152] | 2017 | Research Article | Journal of Applied Geophysics | China | Algorithm |
Haber [28] | 2013 | Review Article | Surveys in Geophysics | Canada | Algorithm |
Hall [25] | 1997 | Review Article | Proceedings of the IEEE | USA | Algorithm |
Hashimoto [66] | 2014 | Research Article | Exploration Geophysics | Japan | Algorithm |
Hatch [35] | 2016 | Media Report | Preview | Australia | Review |
He [61] | 2022 | Research Article | Hydrometallurgy | USA | Algorithm |
Hibbs [125] | 2012 | Research Article | SEG Technical Program Expanded Abstracts | USA | Instrument |
Ho [161] | 2020 | Research Article | arXiv.org | USA | Algorithm |
Hoss [105] | 2020 | Research Article | Proceedings-ettc | Germany | Instrument |
Huang [6] | 2025 | Media Report | Nature | China | Instrument |
Jackisch [158] | 2019 | Research Article | Remote Sensing | Germany | Algorithm |
Jiang [52] | 2020 | Research Article | IEEE Access | China | Algorithm |
Jiménez-Martínez [84] | 2012 | Research Article | Journal of the Optical Society of America B | USA | Instrument |
Kashani [145] | 2016 | Research Article | Earth Science Informatics | Iran | Algorithm |
Kiema [129] | 2002 | Research Article | International Journal of Remote Sensing | Kenya | Algorithm |
Klingele [95] | 1995 | Research Article | European Association of Geoscientists & Engineers | Swiss | Instrument |
Koike [137] | 2002 | Research Article | Natural Resources Research | Japan | Algorithm |
Koshev [93] | 2021 | Research Article | Human Brain Mapping | Russia | Instrument |
Kotowski [4] | 2022 | Research Article | Geosciences | Germany | Instrument |
Koyama [65] | 2013 | Research Article | Earth Planet and Space | Japan | Algorithm |
Kulüke [72] | 2022 | Research Article | RAS Techniques and Instruments | Germany | Instrument |
Kunze [118] | 2022 | Research Article | Remote Sensing | Germany | Instrument |
Lee [113] | 2019 | Research Article | Journal of Environmental Radioactivity | Korea | Instrument |
Li [51] | 2018 | Research Article | Chinese Control Conference | China | Algorithm |
Li [87] | 2022 | Research Article | Transducer and Microsystem Technologies | China | Instrument |
Li [149] | 2019 | Research Article | Journal of Applied Geophysics | China | Instrument |
Liang [162] | 2024 | Review Article | ACM Computing Surveys | USA | Algorithm |
Liao [3] | 2024 | Research Article | Scientific Reports | China | Instrument |
Lin [108] | 2018 | Research Article | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | China | Instrument |
Liu [67] | 2023 | Review Article | Geomatics and Information Science of Wuhan University | China | Instrument |
Liu [79] | 2023 | Research Article | Chinese Journal of Scientific Instrument | China | Instrument |
Lopes [12] | 2025 | Research Article | AAPG Bulletin | Brazil | Algorithm |
Louis-Philippe [23] | 2022 | Review Article | Association for Computational Linguistics | USA | Algorithm |
Luo [15] | 2024 | Research Article | IEEE Transactions on geoscience and remote sensing | China | Algorithm |
Luo [106] | 2022 | Research Article | Journal of Applied Geophysics | China | Instrument |
Malehmir [39] | 2017 | Research Article | The Leading Edge | Sweden | Instrument |
Mangel [31] | 2022 | Review Article | The Leading Edge | USA | Instrument |
Marris [20] | 2013 | Media Report | Nature | USA | Instrument |
Martelet [74] | 2011 | Research Article | Minerals | France | Algorithm |
Metal Tech News [92] | 2024 | Media Report | Metal Tech News | USA | Instrument |
Mercogliano [70] | 2025 | Research Article | International Conference on Computational Science and its Applications | Italy | Instrument |
Mogi [40] | 1998 | Research Article | Exploration Geophysics | Japan | Instrument |
Morsdorf [10] | 2017 | Research Article | The Leading Edge | Zurich | Algorithm |
Mu [69] | 2020 | Research Article | Remote Sensing | China | Algorithm |
Nasri [153] | 2020 | Research Article | Journal of Asian Earth Sciences | Iran | Algorithm |
Nesbit [8] | 2018 | Research Article | Geosphere | Canada | Algorithm |
Nettleton [94] | 1960 | Research Article | Geophysics | USA | Instrument |
Niedzielski [21] | 2018 | Review Article | Pure and Applied Geophysics | Poland | Instrument |
Niethammer [7] | 2012 | Research Article | Engineering Geology | Germany | Instrument |
Nordebo [144] | 2011 | Research Article | International Journal of Geophysics | Sweden | Algorithm |
Parshin [116] | 2021 | Research Article | Applied Sciences | Russia | Instrument |
Partner [63] | 2006 | Review Article | Preview of Australian Society of Exploration Geophysicists | Australia | Review |
Pati [88] | 2023 | Research Article | Optica Quantum 2.0 Conference and Exhibition | USA | Instrument |
Phelps [62] | 2022 | Research Article | Journal of Applied Geophysics | USA | Instrument |
Porwal [136] | 2001 | Research Article | Exploration and Mining Geology | India | Algorithm |
Prasad [112] | 2024 | Review Article | IEEE Instrumentation & Measurement Magazine | UK | Instrument |
Qi [123] | 2020 | Research Article | IEEE Geoscience and Remote Sensing Letters | China | Instrument |
Qiao [53] | 2020 | Research Article | Chinese Journal of Geophysics | China | Instrument |
Ramdani [9] | 2024 | Research Article | The Leading Edge | USA | Instrument |
Ramesh [160] | 2022 | Research Article | arXiv.org | Germany | Algorithm |
Reichstein [24] | 2019 | Review Article | Nature | Germany | Algorithm |
Rodriguez-Galiano [141] | 2014 | Research Article | International Journal of Geographical Information Science | Spain | Algorithm |
Rudd [77] | 2022 | Research Article | The Leading Edge | Canada | Instrument |
Šálek [115] | 2018 | Research Article | Journal of Environmental Radioactivity | Czech | Instrument |
Sanada [18] | 2015 | Research Article | Journal of Environmental Radioactivity | Japan | Instrument |
Sawicz [143] | 2014 | Research Article | Hydrology and Earth System Sciences | USA | Algorithm |
Scully [86] | 1992 | Research Article | Physical Review Letters | Gemany | Instrument |
Sinaice [59] | 2022 | Research Article | Minerals | Japan | Algorithm |
Steinberg [27] | 2004 | Research Article | Proceedings of National Symposium on Sensor Data Fusion (JHUAPL) | USA | Algorithm |
Seltzer [81] | 2008 | Research Article | PhD Thesis. Princeton: Princeton University | USA | Instrument |
Stewart [126] | 2016 | Research Article | SEG Technical Program Expanded Abstracts | USA | Instrument |
Stöcker [56] | 2017 | Review Article | Remote Sensing | Netherlands | Instrument |
Stoll [73] | 2013 | Research Article | International Archives of the Photogrammetry | Germany | Instrument |
Stolz [76] | 2021 | Research Article | Superconductor Science and Technology | Germany | Instrument |
Stolz [80] | 2024 | Research Article | TM-Technisches Messen | Germany | Instrument |
Stray [96] | 2022 | Research Article | Nature | UK | Instrument |
Studinger [99] | 2008 | Research Article | Geophysics | USA | Instrument |
Sudarshan [127] | 2016 | Research Article | IEEE International Conference on Automation Science and Engineering | USA | Instrument |
Sun [121] | 2020 | Research Article | Journal of the Korean Physical Society | China | Instrument |
Tahir [157] | 2023 | Review Article | IEEE Access | Pakistan | Instrument |
Tang [111] | 2019 | Research Article | Microsystems & Nanoengineering | China | Instrument |
Tricco [33] | 2018 | Research Article | Annals of Internal Medicine | Canada | Algorithm |
Van der Veeke [117] | 2021 | Research Article | Journal of Environmental Radioactivity | Netherlands | Instrument |
Vaswani [159] | 2017 | Research Article | NIPS | Germany | Algorithm |
Versteeg [50] | 2007 | Research Article | Idaho National Laboratory Idaho Falls | USA | Instrument |
Villalpando [29] | 2020 | Research Article | Journal of Earth Science | Mexico | Algorithm |
Vyazmin [109] | 2022 | Research Article | Gravity, Positioning and Reference Frames | Russia | Instrument |
Wald [26] | 1999 | Research Article | IEEE Transactions on Geoscience and Remote Sensing | France | Instrument |
Walter [16] | 2020 | Research Article | Geophysical Prospecting | Canada | Instrument |
Walter [48] | 2019 | Research Article | IEEE Systems and Technologies for Remote Sensing Applications Through Unmanned Aerial Systems | Canada | Algorithm |
Wang [11] | 2024 | Research Article | Scientific Reports | China | Instrument |
Wang [78] | 2021 | Research Article | Measurement Science and Technology | China | Algorithm |
Wang [83] | 2022 | Research Article | Optics Express | China | Instrument |
Wei [100] | 1998 | Research Article | Journal of Geodesy | Canada | Instrument |
Woodbridge [114] | 2023 | Research Article | Frontiers in Robotics and AI | UK | Instrument |
Wu [17] | 2019 | Research Article | Journal of Environmental and Engineering Geophysics | China | Instrument |
Wu [122] | 2024 | Research Article | Geophysics | China | Instrument |
Xcontrol [42] | 2021 | Official Document | Official website | China | Instrument |
Xing [124] | 2024 | Research Article | Remote Sensing | China | Instrument |
Xue [30] | 2025 | Research Article | Geology | China | Algorithm |
Xiong [98] | 2024 | Research Article | Strategic Study of Chinese Academy of Engineering | China | Instrument |
Yang [119] | 2020 | Research Article | PhD Thesis | China | Instrument |
Yanushevsky [34] | 2011 | Official Document | CRC Press | USA | Instrument |
Yashin [128] | 2023 | Research Article | International Journal of Control, Automation and Systems | Russia | Instrument |
Ye [37] | 2019 | Research Article | Fire Control and Command Control | China | Instrument |
Yu [90] | 2025 | Research Article | National Science Review | China | Instrument |
Zhang [60] | 2020 | Research Article | Remote Sensing | China | Algorithm |
Zhang [120] | 2012 | Research Article | Journal of Radioanalytical and Nuclear Chemistry | Canada | Instrument |
Zhao [104] | 2015 | Research Article | Sensors | China | Instrument |
Zhao [57] | 2016 | Research Article | IEEE Geoscience and Remote Sensing Letters | China | Algorithm |
Zheng [154] | 2024 | Research Article | Computers & Geosciences | China | Algorithm |
Zheng [36] | 2024 | Review Article | Journal of Ordnance Equipment Engineering | China | Review |
Zheng [45] | 2021 | Review Article | Drones | China | Review |
Zhou [55] | 2014 | Research Article | Chinese Journal of Aeronautics | China | Algorithm |
Zhou [147] | 2018 | Research Article | Petroleum Geoscience | China | Algorithm |
References
- CRIRSCO. International Reporting Template. 2024. Available online: https://crirsco.com/the-international-reporting-template/ (accessed on 1 March 2025).
- Frachetti, M.D.; Berner, J.; Liu, X.Y.; Henry, E.R.; Maksudov, F.; Ju, T. Large-scale medieval urbanism traced by UAV–lidar in highland Central Asia. Nature 2024, 634, 1118–1124. [Google Scholar] [CrossRef]
- Liao, X.Y.; Guo, X.R.; Rozi, A.; Yu, H.Z.; Haji, A. End to end polysemantic cooperative mixed task trainer for UAV target detection. Sci. Rep. 2024, 14, 29775. [Google Scholar] [CrossRef] [PubMed]
- Kotowski, P.O.; Becken, M.; Thiede, A.; Schmidt, V.; Schmalzl, J.; Ueding, S.; Klingen, S. Evaluation of a semi-airborne electromagnetic survey based on a multicopter aircraft system. Geosciences 2022, 12, 26. [Google Scholar] [CrossRef]
- Antoine, R.; Lopez, T.; Tanguy, M.; Lissak, C.; Gailler, L.; Labazuy, P.; Fauchard, C. Geoscientists in the Sky: Unmanned Aerial Vehicles Responding to Geohazards. Surv. Geophys. 2020, 41, 1285–1321. [Google Scholar] [CrossRef]
- Huang, X. The small-drone revolution is coming—Scientists need to ensure it will be safe. Nature 2025, 637, 29–30. [Google Scholar] [CrossRef]
- Niethammer, U.; James, M.; Rothmund, S.; Travelletti, J.; Joswig, M. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng. Geol. 2012, 128, 2–11. [Google Scholar] [CrossRef]
- Nesbit, P.R.; Durkin, P.R.; Hugenholtz, C.H.; Hubbard, S.M.; Kucharczyk, M. 3-D stratigraphic mapping using a digital outcrop model derived from UAV images and structure-from-motion photogrammetry. Geosphere 2018, 14, 2469–2486. [Google Scholar] [CrossRef]
- Ramdani, A.I.; Golikov, P.; Alsoqair, K.; Serpiva, V.; Alfataierge, E. On-demand high-resolution areal scouting via unmanned aerial vehicles enables sustainable near-surface geoscience data acquisition. Lead. Edge 2024, 43, 494–505. [Google Scholar] [CrossRef]
- Morsdorf, F.; Eck, C.; Zgraggen, C.; Imbach, B.; Schneider, F.D.; Kükenbrink, D. UAV-based LiDAR acquisition for the derivation of high-resolution forest and ground information Available. Lead. Edge 2017, 36, 566–570. [Google Scholar] [CrossRef]
- Wang, L.Y.; Chen, H.X.; You, Z. Combining geometrical and intensity information to recognize vehicles from super-high density UAV-LiDAR point clouds. Sci. Rep. 2024, 14, 25097. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.A.G.; Medeiros, W.E.; Dantas, R.R.S.; Oliveira, J.G., Jr.; Santana, F.L.; Bezerra, F.H.R. Scaling laws of karst dissolution features: Evidence from three-dimensional unmanned aerial vehicle imaging and ground-penetrating radar analyses. AAPG Bull. 2025, 109, 35–56. [Google Scholar] [CrossRef]
- Chandra, M.; Tanzi, T.J. Drone-borne GPR design: Propagation issues. Comptes Rendus Phys. 2018, 19, 72–84. [Google Scholar] [CrossRef]
- García-Fernández, M.; Alvarez-Narciandi, G.; Heras, F.L.; Alvarez-López, Y. Comparison of Scanning Strategies in UAV-Mounted Multichannel GPR-SAR Systems Using Antenna Arrays. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3517–3586. [Google Scholar] [CrossRef]
- Luo, W.; Cheng, D.; Cui, X.; Hao, T. Enhanced CRS-Based Wavefield Separation and WNE-Based Velocity Estimation for UAV-Borne GPR Data Processing. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5111215. [Google Scholar] [CrossRef]
- Walter, C.; Braun, A.; Fotopoulos, G. High-resolution unmanned aerial vehicle aeromagnetic surveys for mineral exploration targets. Geophys. Prospect. 2020, 68, 334–349. [Google Scholar] [CrossRef]
- Wu, X.; Fang, G.Y.; Xue, G.Q.; Liu, L.H.; Liu, L.S.; Li, J.T. The development and applications of the helicopter-borne transient electromagnetic system CAS-HTEM. J. Environ. Eng. Geophys. 2019, 24, 653–663. [Google Scholar] [CrossRef]
- Sanada, Y.; Torii, T. Aerial radiation monitoring around the Fukushima Dai-ichi nuclear power plant using an unmanned helicopter. J. Environ. Radioact. 2015, 139, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Golovan, A.A.; Vyazmin, V.S. Methodology of airborne gravimetry surveying and strapdown gravimeter data processing. Gyroscopy Navig. 2023, 14, 36–47. [Google Scholar] [CrossRef]
- Marris, E. Drones in science: Fly, and bring me data. Nature 2013, 498, 156–158. [Google Scholar] [CrossRef]
- Niedzielski, T. Applications of unmanned aerial vehicles in geosciences: Introduction. Pure Appl. Geophys. 2018, 175, 3141–3144. [Google Scholar] [CrossRef]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal machine learning: A survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 423–443. [Google Scholar] [CrossRef] [PubMed]
- Louis-Philippe, M.; Liang, P.P.; Zadeh, A. Tutorial on Multimodal Machine Learning. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, DC, USA, 10–15 July 2022; pp. 33–38, Tutorial Abstracts, Association for Computational Linguistics. [Google Scholar]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Hall, D.L.; Llinas, J. An introduction to multisensor data fusion. Proc. IEEE 1997, 85, 6–23. [Google Scholar] [CrossRef]
- Wald, L. Some terms of reference in data fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1190–1193. [Google Scholar] [CrossRef]
- Steinberg, A.N.; Bowman, C.L. Rethinking the JDL Data Fusion Levels. In Proceedings of the National Symposium on Sensor Data Fusion (JHAPL) Conference, Laurel, MD, USA, 7 June 2004; p. 18. [Google Scholar]
- Haber, E.; Holtzman Gazit, M. Model fusion and joint inversion. Surv. Geophys. 2013, 34, 675–695. [Google Scholar] [CrossRef]
- Villalpando, F.; Tuxpan, J.; Ramos-Leal, J.A.; Carranco-Lozada, S. New framework based on fusion information from multiple landslide data sources and 3D visualization. J. Earth Sci. 2020, 31, 159–168. [Google Scholar] [CrossRef]
- Xue, G.Q.; Zhang, J.E.; Chen, W.Y.; Wu, X.; Wang, J.; Di, Q.Y.; Xu, Y.; Zhao, Y.G.; Li, X.H.; Zhao, Y.L.; et al. Translithospheric carbonatite magmatic system of the world’s largest REE deposit, Bayan Obo, China. Geology 2025, 53, 119–124. [Google Scholar] [CrossRef]
- Mangel, A.R.; Dawson, C.B.; Rey, D.M.; Briggs, M.A. Drone applications in hydrogeophysics: Recent examples and a vision for the future. Lead. Edge 2022, 41, 540–547. [Google Scholar] [CrossRef]
- Friedel, M.J. Estimation and scaling of hydrostratigraphic units: Application of unsupervised machine learning and multivariate statistical techniques to hydrogeophysical data. Hydrogeol. J. 2016, 24, 2103. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Yanushevsky, R. Guidance of Unmanned Aerial Vehicles; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Hatch, M. Environmental geophysics: Using drones to create base maps. Preview 2016, 2016, 31–32. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Zhou, K. A review on the take-off method of UAVs based on their different power sources. J. Ordnance Equip. Eng. 2024, 45, 148–158. [Google Scholar]
- Ye, S.C.; Yao, X.X. Research on unmanned aerial vehicle self-takeoff mode. Fire Control Command Control 2019, 44, 6–11. [Google Scholar]
- DJI FlyCart 30. 2023. Available online: https://www.dji.com/cn/flycart-30 (accessed on 1 March 2025).
- Malehmir, A.; Dynesius, L.; Paulusson, K.; Paulusson, A.; Johansson, H.; Bastani, M.; Wedmark, M.; Marsden, P. The potential of rotary-wing UAV-based magnetic surveys for mineral exploration: A case study from central Sweden. Lead. Edge 2017, 36, 552–557. [Google Scholar] [CrossRef]
- Mogi, T.; Tanaka, Y.; Kusunoki, K.; Morikawa, T.; Jomori, N. Development of grounded electrical source airborne transient EM (GREATEM). Explor. Geophys. 1998, 29, 61–64. [Google Scholar] [CrossRef]
- Becken, M.; Nittinger, C.G.; Smirnova, M.; Steuer, A.; Martin, T.; Petersen, H.; Meyer, U.; Mörbe, W.; Yogeshwar, P.; Tezkan, B. DESMEX: A novel system development for semi-airborne electromagnetic exploration. Geophysics 2020, 85, E253–E267. [Google Scholar] [CrossRef]
- Xcontrol MK450. 2021. Available online: https://www.bilibili.com/video/BV1B84y1t7YU/ (accessed on 1 March 2025).
- AviDrone. High-Performance Unmanned Aircraft Designed and Manufactured in North America. 2018. Available online: https://avidrone.com/ (accessed on 1 March 2025).
- Feima V10. 2020. Available online: http://www.feimarobotics.com/zhcn/productDetailV10 (accessed on 1 March 2025).
- Zheng, Y.X.; Li, S.Y.; Xing, K.; Zhang, X. Unmanned aerial vehicles for magnetic surveys: A review on platform selection and interference suppression. Drones 2021, 5, 93. [Google Scholar] [CrossRef]
- Cunningham, M.; Samson, C.; Wood, A.; Cook, I. Aeromagnetic surveying with a rotary-wing unmanned aircraft system: A case study from a zinc deposit in Nash Creek, New Brunswick, Canada. Pure Appl. Geophys. 2018, 175, 3145–3158. [Google Scholar] [CrossRef]
- De Smet, T.S.; Nikulin, A.; Romanzo, N.; Graber, N.; Dietrich, C.; Puliaiev, A. Successful application of drone-based aeromagnetic surveys to locate legacy oil and gas wells in Cattaraugus county, New York. J. Appl. Geophys. 2021, 186, 104250. [Google Scholar] [CrossRef]
- Walter, C.; Braun, A.; Fotopoulos, G. Spectral Analysis of Magnetometer Swing in High-Resolution UAV-borne Aeromagnetic Surveys. In Proceedings of the 2019 IEEE Systems and Technologies for Remote Sensing Applications Through Unmanned Aerial Systems (STRATUS), Rochester, NY, USA, 25–27 February 2019. [Google Scholar]
- Florio, G.; Accomando, F. Drone-Borne Magnetic Gradiometry in Archaeological Applications. Sensors 2024, 24, 4270. [Google Scholar] [CrossRef]
- Versteeg, R.; McKay, M.; Anderson, M.; Johnson, R.; Selfridge, B.; Bennett, J. Feasibility Study for an Autonomous UAV-Magnetometer System. Final. Rep. SERDP SEED 2007, 1509, 2206. [Google Scholar]
- Li, H.; Ge, J.; Dong, H.; Qiu, X.; Luo, W.; Liu, H.; Yuan, Z.; Zhu, J.; Zhang, H. Aeromagnetic compensation of rotor UAV based on least squares. In Proceedings of the 2018 37th Chinese Control Conference, Wuhan, China, 25–27 July 2018; pp. 10248–10253. [Google Scholar]
- Jiang, D.; Zeng, Z.; Zhou, S.; Guan, Y.; Lin, T. Integration of an aeromagnetic measurement system based on an unmanned aerial vehicle platform and its application in the exploration of the Ma’anshan magnetite deposit. IEEE Access 2020, 8, 189576–189586. [Google Scholar] [CrossRef]
- Qiao, Z.; Ma, G.; Zhou, W.; Yu, P.; Zhou, S.; Wang, T.; Tang, S.; Dai, W.; Meng, Z.; Zhang, Z. Research on the comprehensive compensation of aeromagnetic system error of multi-rotor UAV. Chin. J. Geophys. 2020, 63, 4604–4612. [Google Scholar]
- Accomando, F.; Vitale, A.; Bonfante, A.; Buonanno, M.; Florio, G. Performance of Two Different Flight Configurations for Drone-Borne Magnetic Data. Sensors 2021, 21, 5736. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Lin, C.; Chen, H. A method for aircraft magnetic interference compensation based on small signal model and LMS algorithm. Chin. J. Aeronaut. 2014, 27, 1578–1585. [Google Scholar] [CrossRef]
- Stöcker, C.; Bennett, R.; Nex, F.; Gerke, M.; Zevenbergen, J. Review of the current state of UAV regulations. Remote Sens. 2017, 9, 459. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Zhao, X.S.; Zhang, L.F.; Yang, K.M.; Sun, H. Mineral Absorption Feature Extraktion From High-Density Vegetation Area Using Reference Spectral Background Removal. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1994–1998. [Google Scholar] [CrossRef]
- Booysen, R.; Jackisch, R.; Lorenz, S.; Zimmermann, R.; Kirsch, M.; Nex, P.A.M.; Gloaguen, R. Detection of REEs with lightweight UAV-based hyperspectral imaging. Sci. Rep. 2020, 10, 17450. [Google Scholar] [CrossRef]
- Sinaice, B.B.; Owada, N.; Ikeda, H.; Toriya, H.; Bagai, Z.; Shemang, E.; Adachi, T.; Kawamura, Y. Spectral Angle Mapping and AI Methods Applied in Automatic Identification of Placer Deposit Magnetite Using Multispectral Camera Mounted on UAV. Minerals 2022, 12, 268. [Google Scholar] [CrossRef]
- Zhang, C.; Yi, M.; Ye, F.; Xu, Q.J.; Li, X.C.; Gan, Q.Q. Application and Evaluation of Deep Neural Networks for Airborne Hyperspectral Remote Sensing Mineral Mapping: A Case Study of the Baiyanghe Uranium Deposit in Northwestern Xinjiang, China. Remote Sens. 2022, 14, 5122. [Google Scholar] [CrossRef]
- He, J.P.; DuPlessis, L.; Barton, I. Heap leach pad mapping with drone-based hyperspectral remote sensing at the Safford Copper Mine, Arizona. Hydrometallurgy 2022, 211, 105872. [Google Scholar] [CrossRef]
- Phelps, G.; Bracken, R.; Spritzer, J.; White, D. Achieving sub-nanoTesla precision in multirotor UAV aeromagnetic surveys. J. Appl. Geophys. 2022, 206, 104779. [Google Scholar] [CrossRef]
- Richard Partner. GeoRanger Aeromagnetic UAV—From development to commercial survey, Fugro Airborne Surveys. Preview 2006, 125, 28–29. [Google Scholar]
- Barnard, J. The use of Unmanned Aircraft in Oil, Gas and Mineral Exploration and Production activities. In Proceedings of the 23rd Bristol International UAV Systems Conference, Bristol, UK, 7 April 2008. [Google Scholar]
- Koyama, T.; Kaneko, T.; Ohminato, T.; Yanagisawa, T.; Watanabe, A.; Takeo, M. An aeromagnetic survey of Shinmoe-dake volcano, Kirishima, Japan, after the 2011 eruption using an unmanned autonomous helicopter. Earth Planet Space 2013, 65, 657–666. [Google Scholar] [CrossRef]
- Hashimoto, T.; Koyama, T.; Kaneko, T.; Ohminato, T.; Yanagisawa, T.; Yoshimoto, M.; Suzuki, E. Aeromagnetic survey using an unmanned autonomous helicopter over Tarumae Volcano, northern Japan. Explor. Geophys. 2014, 45, 37–42. [Google Scholar] [CrossRef]
- Liu, S.; Hu, X.; Guo, N.; Cai, H.; Zhang, H.; Li, Y. Overview on UAV Aeromagnetic Survey Technology. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 823–840. [Google Scholar]
- Bian, J.; Wang, X.; Gao, S. Experimental aeromagnetic survey using a rotary-wing aircraft system: A case study in Heizhugou, Sichuan, China. J. Appl. Geophys. 2021, 184, 104245. [Google Scholar] [CrossRef]
- Mu, Y.; Zhang, X.; Xie, W.; Zheng, Y. Automatic Detection of Near-Surface Targets for Unmanned Aerial Vehicle (UAV) Magnetic Survey. Remote Sens. 2020, 12, 452. [Google Scholar] [CrossRef]
- Mercogliano, F.; Barone, A.; Esposito, G.; Accomando, F.; Vitale, A.; Gennarelli, G.; Castaldo, R.; Tizzani, P.; Catapano, I. ITINERIS Geophysical Technologies @CNR-IREA: Drone-Based Tests at Altopiano di Verteglia, Avellino (Southern Italy). In Proceedings of the International Conference on Computational Science and its Applications, Istanbul, Turkey, 30 June–3 July 2025; pp. 373–383. [Google Scholar]
- Accomando, F.; Fedele, A.; Natale, G.D.; Somma, R.; Troise, C.; Florio, G. Vertical gradient measurements using MFAM in a UAV-borne magnetic survey. In Proceedings of the 84th EAGE Annual Conference & Exhibition, Vienna, Austria, 5–8 June 2023; pp. 1–5. [Google Scholar]
- Kulüke, C.; Virgil, C.; Stoll, J.; Hördt, A. A new system to measure the gradient vector of the magnetic field on unmanned aerial vehicles—Data processing and field experiment. RAS Tech. Instrum. 2022, 1, 65–80. [Google Scholar] [CrossRef]
- Stoll, J.B. Unmanned Aircraft Systems for Rapid Near Surface Geophysical Measurements. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-1/W2, 391–394. [Google Scholar] [CrossRef]
- Martelet, G.; Gloaguen, E.; Døssing, A.; da Silva, E.L.S.; Linde, J.; Rasmussen, T.M. Airborne/UAV Multisensor Surveys Enhance the Geological Mapping and 3D Model of a Pseudo-Skarn Deposit in Ploumanac’h, French Brittany. Minerals 2021, 11, 1259. [Google Scholar] [CrossRef]
- De Smet, T.S.; Nikulin, A.; Balrup, N.; Graber, N. Successful Integration of UAV Aeromagnetic Mapping with Terrestrial Methane Emissions Surveys in Orphaned Well Remediation. Remote Sens. 2023, 15, 5004. [Google Scholar] [CrossRef]
- Stolz, R.; Schmelz, M.; Zakosarenko, V.; Foley, C.; Tanabe, K.; Xie, X.; Fagaly, R.L. Superconducting sensors and methods in geophysical applications. Supercond. Sci. Technol. 2021, 34, 033001. [Google Scholar] [CrossRef]
- Rudd, J.; Chubak, G.; Larnier, H.; Stolz, R.; Schiffler, M.; Zakosarenko, V.; Schneider, M.; Schulz, M.; Meyer, M. Commercial operation of a SQUID-based airborne magnetic gradiometer. Lead. Edge 2022, 41, 486–492. [Google Scholar] [CrossRef]
- Wang, M.; Lin, J.; Yue, L.; Wang, Y.; Zhao, J. Compensation for mobile carrier magnetic interference in a SQUID-based full-tensor magnetic gradiometer using the flower pollination algorithm. Meas. Sci. Technol. 2021, 32, 085010. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Guo, Z.; Qiao, Y.; Qin, J. Development and application of a low temperature superconducting full tensor magnetic gradient detection system. Chin. J. Sci. Instrum. 2023, 44, 165–174. [Google Scholar]
- Stolz, R.; Schiffler, M.; Becken, M.; Schneider, M.; Chubak, G. The hunt for mineral resources with quantum magnetometers. TM-Tech. Mess. 2024, 91, 41–50. [Google Scholar] [CrossRef]
- Seltzer, S.J. Developments in Alkali-Metal Atomic Magnetometry. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2008. [Google Scholar]
- Andryushkov, V.; Radnatarov, D.; Kobtsev, S. Vector magnetometer based on the effect of coherent population trapping. Appl. Opt. 2022, 61, 3604–3608. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, G.; Tang, J.; Zhou, W.; Han, B.; Zhou, B.; Shi, T. Optimized gas pressure of an Rb vapor cell in a single-beam SERF magnetometer. Opt. Express 2022, 30, 336–348. [Google Scholar] [CrossRef]
- Jiménez-Martínez, R.; Griffith, W.C.; Knappe, S.; Kitching, J.; Prouty, M. High-bandwidth optical magnetometer. J. Opt. Soc. Am. B 2012, 29, 3398–3403. [Google Scholar] [CrossRef]
- Ben-Kish, A.; Romalis, M.V. Dead-zone-free atomic magnetometry with simultaneous excitation of orientation and alignment resonances. Phys. Rev. Lett. 2010, 105, 193601. [Google Scholar] [CrossRef] [PubMed]
- Scully, M.O.; Fleischhauer, M. High-sensitivity magnetometer based on index-enhanced media. Phys. Rev. Lett. 1992, 69, 1360–1363. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Lu, X.; Deng, Y.; Li, X.; Wang, F. Miniature CPT atomic magnetometer. Transducer Microsyst. Technol. 2022, 41, 93–96. [Google Scholar]
- Pati, G.; Tripathi, R.; Pulido, M. Implementation of a Vector Magnetometer using Synchronous Coherent Population Trapping and Feedback Compensated Field Coil. In Proceedings of the Optica Quantum 2.0 Conference and Exhibition, Denver, CO, USA, 18–22 June 2023. [Google Scholar]
- Akhmedzhanov, R.A.; Gushchin, L.A.; Zelensky, I.V.; Kupaev, A.V.; Nizov, V.A.; Nizov, N.A.; Sobgayda, D.A. Quantum Magnetometer Based on Cross-Relaxation Resonances in Ensembles of NV-Centers in Diamond. Tech. Phys. 2024, 69, 121–128. [Google Scholar] [CrossRef]
- Yu, Z.; Zhu, Y.; Zhang, W.; Jing, K.; Wang, S.; Chen, C.; Xie, Y.; Rong, X.; Du, J. Experimental demonstration of a diamond quantum vector magnetometer for deep-sea applications. Natl. Sci. Rev. 2025, 12, nwae478. [Google Scholar] [CrossRef]
- Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L.C.L. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 2013, 528, 1–45. [Google Scholar] [CrossRef]
- Quantum Leap for Mineral Exploration. Metal Tech News. 2024. Available online: https://www.metaltechnews.com/story/2024/03/06/mining-tech/quantum-leap-for-mineral-exploration/1655.html (accessed on 1 March 2025).
- Koshev, N.; Butorina, A.; Skidchenko, E.; Kuzmichev, A.; Ossadtchi, A.; Ostras, M.; Fedorov, M.; Vetoshko, P. Evolution of MEG: A first MEG-feasible fluxgate magnetometer. Hum. Brain Mapp. 2021, 42, 4844–4856. [Google Scholar] [CrossRef]
- Nettleton, L.L.; LaCoste, L.; Harrison, J.C. Tests of an airborne gravity meter. Geophysics 1960, 25, 181–202. [Google Scholar] [CrossRef]
- Klingele, E.; Halliday, M.; Cocard, M. Airborne Gravimetric Survey of Switzerland; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 1995; cp-313-00072. [Google Scholar]
- Stray, B.; Lamb, A.; Kaushik, A.; Vovrosh, J.; Rodgers, A.; Winch, J.; Hayati, F.; Boddice, D.; Stabrawa, A.; Niggebaum, A. Quantum sensing for gravity cartography. Nature 2022, 602, 590–594. [Google Scholar] [CrossRef]
- Elliott, E.R.; Aveline, D.C.; Bigelow, N.P.; Boegel, P.; Botsi, S.; Charron, E.; d’Incao, J.P.; Engels, P.; Estrampes, T.; Gaaloul, N. Quantum gas mixtures and dual-species atom interferometry in space. Nature 2023, 623, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.Q.; Mao, J.W.; Liu, M.; Zhou, X.H.; Xu, X.Y.; Qin, X.W.; Ge, L.Q.; Wang, L.F.; Chen, B.; Li, T.L. Development Strategy of Airborne Geophysical Exploration Technology. Strateg. Study Chin. Acad. Eng. 2024, 26, 104–116. [Google Scholar]
- Studinger, M.; Bell, R.; Frearson, N. Comparison of AIRGrav and GT-1A airborne gravimeters for research applications. Geophysics 2008, 73, I51–I61. [Google Scholar] [CrossRef]
- Wei, M.; Schwarz, K. Flight test results from a strapdown airborne gravity system. J. Geod. 1998, 72, 323–332. [Google Scholar] [CrossRef]
- Boedecker, G.; Stürze, A. SAGS4—Strapdown airborne gravimetry system analysis. In Observation of the Earth System from Space; Springer: Berlin/Heidelberg, Germany, 2006; pp. 463–478. [Google Scholar]
- Berzhitskii, V.N.; Ermakov, M.A.; Ilyin, V.N.; Smoller, Y.L.; Yurist, S.S.; Bolotin, Y.V.; Golovan, A.A.; Parusnikov, N.A.; Gavrov, E.V.; Rekunov, D.A.; et al. Airborne strapdown gravimeter GT-X, IAG Symposium on Terrestrial Gravimetry “Static and Mobile Measurements”, St. Petersburg, 2010, Elektropribor. Available online: https://elibrary.ru/item.asp?id=22816661&pff=1 (accessed on 10 June 2025).
- Cai, S.K.; Wu, M.P.; Zhang, K.D.; Cao, J.L.; Tuo, Z.H.; Huang, Y.M. The first airborne scalar gravimetry system based on SINS/DGPS in China. Sci. China Earth Sci. 2013, 56, 2198–2208. [Google Scholar] [CrossRef]
- Zhao, L.; Forsberg, R.; Wu, M.P.; Olesen, A.V.; Zhang, K.D.; Cao, J.L. A flight test of the strapdown airborne gravimeter SGA-WZ in Greenland. Sensors 2015, 15, 13258–13269. [Google Scholar] [CrossRef]
- Hoss, M.; Dreyer, A.; von Hinueber, E.; Urli, R.; Lapeyrade, F. 1.3 Innovative Inertial Measurement Data Acquisition and Processing for Aircraft Surveying up to Airborne Gravimetry. In Proceedings of the ETTC, Virtual, 23–25 June 2020; pp. 38–47. [Google Scholar]
- Luo, K.X.; Cao, J.L.; Wang, C.; Cai, S.K.; Yu, R.H.; Wu, M.P.; Yang, B.N.; Xiang, W. First unmanned aerial vehicle airborne gravimetry based on the CH-4 UAV in China. J. Appl. Geophys. 2022, 206, 104835. [Google Scholar] [CrossRef]
- Deurloo, R.; Bastos, L.; Bos, M. On the use of UAVs for strapdown airborne gravimetry. In Geodesy for Planet Earth; Springer: Berlin/Heidelberg, Germany, 2012; pp. 255–261. [Google Scholar]
- Lin, C.A.; Chiang, K.; Kuo, C. Integration of INS and GNSS for gravimetric application with UAS. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 263–268. [Google Scholar] [CrossRef]
- Vyazmin, V.S.; Golovan, A.A. Strapdown Airborne Gravimetry Based on Aircrafts and UAVs: Postprocessing Algorithms and New Results. In Gravity, Positioning and Reference Frames; Springer: Berlin/Heidelberg, Germany, 2022; p. 45. [Google Scholar]
- DroneSOM First Drone-Based Gravity Campaign Using a Arcsky X55 Drone. 2024. Available online: https://dronesom.com/first-drone-based-gravity-campaign-using-a-arcsky-x55-drone/ (accessed on 1 March 2025).
- Tang, S.H.; Liu, H.F.; Yan, S.T.; Xu, X.C.; Wu, W.J.; Fan, J.; Liu, J.Q.; Hu, C.Y.; Tu, L. A high-sensitivity MEMS gravimeter with a large dynamic range. Microsyst. Nanoeng. 2019, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Toland, K.; Aftalion, M.; Anastasiou, K.; Passey, E.; Rakoczi, H.; Utting, P.R.; Walker, R.; Bramsiepe, S.G.; Belwanshi, V. MEMS Gravimeters for Geophysics. IEEE Instrum. Meas. Mag. 2024, 27, 46–52. [Google Scholar] [CrossRef]
- Lee, C.; Kim, H.R. Optimizing UAV-based radiation sensor systems for aerial surveys. J. Environ. Radioact. 2019, 204, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Woodbridge, E.; Connor, D.T.; Verbelen, Y.; Hine, D.; Richardson, T.; Scott, T.B. Airborne gamma-ray mapping using fixed-wing vertical take-off and landing (VTOL) uncrewed aerial vehicles. Front. Robot. AI 2023, 10, 1137763. [Google Scholar] [CrossRef]
- Šálek, O.; Matolín, M.; Gryc, L. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry. J. Environ. Radioact. 2018, 182, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Parshin, A.; Morozov, V.; Snegirev, N.; Valkova, E.; Shikalenko, F. Advantages of gamma-radiometric and spectrometric low-altitude geophysical surveys by unmanned aerial systems with small scintillation detectors. Appl. Sci. 2021, 11, 2247. [Google Scholar] [CrossRef]
- Van der Veeke, S.; Limburg, J.; Koomans, R.; Söderström, M.; de Waal, S.; van der Graaf, E. Footprint and height corrections for UAV-borne gamma-ray spectrometry studies. J. Environ. Radioact. 2021, 231, 106545. [Google Scholar] [CrossRef]
- Kunze, C.; Preugschat, B.; Arndt, R.; Kandzia, F.; Wiens, B.; Altfelder, S. Development of a UAV-based gamma spectrometry system for natural radionuclides and field tests at central Asian Uranium legacy sites. Remote Sens. 2022, 14, 2147. [Google Scholar] [CrossRef]
- Yang, S.N. Development of High Resolution Airborne Gamma Spectrometer Based on Array Detector. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2020. [Google Scholar]
- Zhang, W.; Mekarski, P.; Dion, M.; Yi, J.; Ungar, K. A digital Compton suppression spectroscopy without gamma-ray coincidence-summing loss using list-mode multispectral data acquisition. J. Radioanal. Nucl. Chem. 2012, 292, 1265–1272. [Google Scholar] [CrossRef]
- Sun, S.Q.; Ge, L.Q.; Li, Y.D.; Hu, C. Study on the γ+ X, γ+ β, γ+ α Coincidence Summing Effects of the Intrinsic Background Instrument Spectrum of a LaBr 3 (Ce) Scintillation Counter. J. Korean Phys. Soc. 2020, 77, 1091–1099. [Google Scholar] [CrossRef]
- Wu, X.; Rao, L.T.; Luan, X.D.; Shi, J.J.; Wang, Y.B. Design and development of a semiairborne transient electromagnetic system. Geophysics 2024, 89, E255–E266. [Google Scholar] [CrossRef]
- Qi, Z.P.; Li, X.; Li, H.; Liu, W.T. First results from drone-based transient electromagnetic survey to map and detect unexploded ordnance. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2055–2059. [Google Scholar] [CrossRef]
- Xing, K.; Li, S.Y.; Qu, Z.J.; Gao, M.M.; Gao, Y.; Zhang, X. UAV Time-Domain Electromagnetic System and a Workflow for Subsurface Targets Detection. Remote Sens. 2024, 16, 330. [Google Scholar] [CrossRef]
- Hibbs, A.; Petrov, T.; Pendleton, J.; Milberger, S.; Eiskamp, G.; Wilson, G.A. New electromagnetic sensors for magnetotelluric and induced polarization geophysical surveys. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2012; pp. 1–5. [Google Scholar]
- Stewart, R.; Li, C.; Sudarshan, S.; Becker, A.; Huang, L. An unmanned aerial vehicle with vibration sensing ability (seismic drone). In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2016; pp. 225–229. [Google Scholar]
- Sudarshan, S.K.; Huang, L.; Li, C.; Stewart, R.; Becker, A.T. Seismic surveying with drone-mounted geophones. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 21–25 August 2016; pp. 1354–1359. [Google Scholar]
- Yashin, G.; Serpiva, V.; Timoshenko, A.; Mikhailovskiy, N.; Egorov, A.; Golikov, P. ASAD: Autonomous Seismic Acquisition Device. Int. J. Control Autom. Syst. 2023, 21, 2464–2475. [Google Scholar] [CrossRef]
- Kiema, J. Texture analysis and data fusion in the extraction of topographic objects from satellite imagery. Int. J. Remote Sens. 2002, 23, 767–776. [Google Scholar] [CrossRef]
- Daily, M.; Farr, T.; Elachi, C.; Schaber, G. Geologic interpretation from composited radar and Landsat imagery. Photogramm. Eng. Remote Sens. 1979, 45, 1109–1116. [Google Scholar]
- Curran, P.J.; Dungan, J.L.; Peterson, D.L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sens. Environ. 2001, 76, 349–359. [Google Scholar] [CrossRef]
- Choi, S.; Moon, W.M.; Choi, S.G. Fuzzy logic fusion of W-Mo exploration data from Seobyeog-ri, Korea. Geosci. J. 2000, 4, 43–52. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Hale, M. Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geol. Rev. 2003, 22, 117–132. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Hale, M. Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines. Explor. Min. Geol. 2001, 10, 165–175. [Google Scholar] [CrossRef]
- Agterberg, F.P.; Cheng, Q. Conditional independence test for weights-of-evidence modeling. Nat. Resour. Res. 2002, 11, 249–255. [Google Scholar] [CrossRef]
- Porwal, A.; Carranza, E.J.M.; Hale, M. Extended weights-of-evidence modelling for predictive mapping of base metal deposit potential in Aravalli province, western India. Explor. Min. Geol. 2001, 10, 273–287. [Google Scholar] [CrossRef]
- Koike, K.; Matsuda, S.; Suzuki, T.; Ohmi, M. Neural network-based estimation of principal metal contents in the Hokuroku district, northern Japan, for exploring Kuroko-type deposits. Nat. Resour. Res. 2002, 11, 135–156. [Google Scholar] [CrossRef]
- Brown, W.; Groves, D.; Gedeon, T. Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Nat. Resour. Res. 2003, 12, 183–200. [Google Scholar] [CrossRef]
- Cheng, Q.M.; Agterberg, F.P. Fuzzy weights of evidence method and its application in mineral potential mapping. Nat. Resour. Res. 1999, 8, 27–35. [Google Scholar] [CrossRef]
- Abedi, M.; Norouzi, G.-H.; Bahroudi, A. Support vector machine for multi-classification of mineral prospectivity areas. Comput. Geosci. 2012, 46, 272–283. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Chica-Rivas, M. Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. Int. J. Geogr. Inf. Sci. 2014, 28, 1336–1354. [Google Scholar] [CrossRef]
- Chen, Y. Mineral potential mapping with a restricted Boltzmann machine. Ore Geol. Rev. 2015, 71, 749–760. [Google Scholar] [CrossRef]
- Sawicz, K.; Kelleher, C.; Wagener, T.; Troch, P.; Sivapalan, M.; Carrillo, G. Characterizing hydrologic change through catchment classification. Hydrol. Earth Syst. Sci. 2014, 18, 273–285. [Google Scholar] [CrossRef]
- Nordebo, S.; Gustafsson, M.; Sjöden, T.; Soldovieri, F. Data fusion for electromagnetic and electrical resistive tomography based on maximum likelihood. Int. J. Geophys. 2011, 2011, 617089. [Google Scholar] [CrossRef]
- Kashani, S.B.M.; Abedi, M.; Norouzi, G.-H. Fuzzy logic mineral potential mapping for copper exploration using multi-disciplinary geo-datasets, a case study in seridune deposit, Iran. Earth Sci. Inform. 2016, 9, 167–181. [Google Scholar] [CrossRef]
- Eldosouky, A.M.; Eleraki, M.; Mansour, A.; Saada, S.A.; Zamzam, S. Geological controls of mineralization occurrences in the Egyptian Eastern Desert using advanced integration of remote sensing and magnetic data. Sci. Rep. 2024, 14, 16700. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Y.; Yu, H.Y.; Gu, X.D. Fuzzy fusion of geological and geophysical data for mapping hydrocarbon potential based on GIS. Pet. Geosci. 2018, 24, 131–141. [Google Scholar]
- Grandjean, G.; Malet, J.-P.; Bitri, A.; Méric, O. Geophysical data fusion by fuzzy logic for imaging the mechanical behaviour of mudslides. Bull. Soc. Géologique Fr. 2007, 178, 127–136. [Google Scholar] [CrossRef]
- Li, X.N.; Shen, J.; Tian, G.; Zhong, Y. Data fusion for resolution improvement by combining seismic data with logging data. J. Appl. Geophys. 2019, 166, 122–128. [Google Scholar] [CrossRef]
- Dezert, T.; Palma Lopes, S.; Fargier, Y.; Saussaye, L.; Côte, P. Data fusion of in situ geophysical and geotechnical information for levee characterization. Bull. Eng. Geol. Environ. 2021, 80, 5181–5197. [Google Scholar] [CrossRef]
- Dong, Q.Y.; Cheng, J.L.; Li, F.; Xue, J.J.; Dong, Y.; Wen, L.F. Fine detection of water-bearing collapse column based on information fusion of seismic exploration and TEM. J. Appl. Geophys. 2022, 206, 104806. [Google Scholar] [CrossRef]
- Guo, L.H.; Yan, J.Y. 3-D wavelet-based fusion approach for comprehensively analyzing multiple physical-property voxel models inverted from potential-field data. J. Appl. Geophys. 2017, 139, 47–53. [Google Scholar] [CrossRef]
- Nasri, S.; Kalate, A.N.; Kahoo, A.R.; Monfared, M.S. New insights into the structural model of the Makran subduction zone by fusion of 3D inverted geophysical models. J. Asian Earth Sci. 2020, 188, 104075. [Google Scholar] [CrossRef]
- Zheng, Y.; Deng, H.; Wu, J.J.; Xie, S.F.; Li, X.Y.; Chen, Y.D.; Li, N.; Xiao, K.Y.; Pfeifer, N.; Mao, X.C. Deep multimodal fusion for 3D mineral prospectivity modeling: Integration of geological models and simulation data via canonical-correlated joint fusion networks. Comput. Geosci. 2024, 188, 105618. [Google Scholar] [CrossRef]
- Erfanian-Norouzzadeh, M.; Fathianpour, N. A Novel Approach for Enhancing Geologically Aligned Fusion of Multiple Geophysical Inverse Models in the Porphyry-Cu Deposit of Zaftak, Kerman, Iran. Nat. Resour. Res. 2025, 34, 731–758. [Google Scholar] [CrossRef]
- Gola, G.; Barone, A.; Castaldo, R.; Chiodini, G.; D’Auria, L.; García-Hernández, R.; Pepe, S.; Solaro, G.; Tizzani, P. A Novel Multidisciplinary Approach for the Thermo-Rheological Study of Volcanic Areas: The Case Study of Long Valley Caldera. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020331. [Google Scholar] [CrossRef]
- Tahir, M.A.; Mir, I.; Islam, T.U. A review of UAV platforms for autonomous applications: Comprehensive analysis and future directions. IEEE Access 2023, 11, 52540–52554. [Google Scholar] [CrossRef]
- Jackisch, R.; Madriz, Y.; Zimmerman, R.; Pirttijärvi, M.; Saartenoja, A.; Heincke, B.H.; Salmirinne, H.; Kujasalo, J.-P.; Andreani, L.; Gloaguen, R. Drone-Borne Hyperspectral and Magnetic Data Integration: Otanmäki Fe-Ti-V Deposit in Finland. Remote Sens. 2019, 11, 2084. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the NIPS’17, Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Ramesh, A.; Dhariwal, P.; Nichol, A.; Chu, C.; Chen, M. Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022, arXiv:2204.06125. [Google Scholar] [CrossRef]
- Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. arXiv 2020, arXiv:2006.11239. [Google Scholar] [CrossRef]
- Liang, P.P.; Zadeh, A.; Morency, L.-P. Foundations & trends in multimodal machine learning: Principles, challenges, and open questions. ACM Comput. Surv. 2024, 56, 1–42. [Google Scholar] [CrossRef]
Multirotor UAVs | Tandem Rotor UAVs | Rotary Wing and Fixed-Wing Compound UAVs |
---|---|---|
Power: Motor | Power: Turboshaft Engine | Power: Motor |
Maximum Payload: 30 kg | Maximum Payload: 310 kg | Maximum Payload: 6 kg |
Maximum Range: 28 km | Maximum Range: 800 km | Maximum Range: 300 km |
Maximum Speed: 20 m/s | Maximum Speed: 50 m/s | Maximum Speed: >20 m/s |
Wind Resistance: 12 m/s | Wind Resistance: 17 m/s | Wind Resistance: 12 m/s |
Maximum Ceiling: 6000 m | Maximum Ceiling: 6500 m | Maximum Ceiling: 7500 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Xue, G.-Q.; Wang, Y.-B.; Cui, S. Current Progress in and Future Visions of Key Technologies of UAV-Borne Multi-Modal Geophysical Exploration for Mineral Exploration: A Scoping Review. Remote Sens. 2025, 17, 2689. https://doi.org/10.3390/rs17152689
Wu X, Xue G-Q, Wang Y-B, Cui S. Current Progress in and Future Visions of Key Technologies of UAV-Borne Multi-Modal Geophysical Exploration for Mineral Exploration: A Scoping Review. Remote Sensing. 2025; 17(15):2689. https://doi.org/10.3390/rs17152689
Chicago/Turabian StyleWu, Xin, Guo-Qiang Xue, Yan-Bo Wang, and Song Cui. 2025. "Current Progress in and Future Visions of Key Technologies of UAV-Borne Multi-Modal Geophysical Exploration for Mineral Exploration: A Scoping Review" Remote Sensing 17, no. 15: 2689. https://doi.org/10.3390/rs17152689
APA StyleWu, X., Xue, G.-Q., Wang, Y.-B., & Cui, S. (2025). Current Progress in and Future Visions of Key Technologies of UAV-Borne Multi-Modal Geophysical Exploration for Mineral Exploration: A Scoping Review. Remote Sensing, 17(15), 2689. https://doi.org/10.3390/rs17152689