Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Authors = Xiaoxu Liu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 531 KiB  
Article
Adaptive Motion Planning Leveraging Speed-Differentiated Prediction for Mobile Robots in Dynamic Environments
by Tengfei Liu, Zihe Wang, Jiazheng Hu, Shuling Zeng, Xiaoxu Liu and Tan Zhang
Appl. Sci. 2025, 15(13), 7551; https://doi.org/10.3390/app15137551 - 4 Jul 2025
Viewed by 305
Abstract
This paper presents a novel motion planning framework for mobile robots operating in dynamic and uncertain environments, with an emphasis on accurate trajectory prediction and safe, efficient obstacle avoidance. The proposed approach integrates search-based planning with deep learning techniques to improve both robustness [...] Read more.
This paper presents a novel motion planning framework for mobile robots operating in dynamic and uncertain environments, with an emphasis on accurate trajectory prediction and safe, efficient obstacle avoidance. The proposed approach integrates search-based planning with deep learning techniques to improve both robustness and interpretability. A multi-sensor perception module is designed to classify obstacles as either static or dynamic, thereby enhancing environmental awareness and planning reliability. To address the challenge of motion prediction, we introduce the K-GRU Kalman method, which first applies K-means clustering to distinguish between high-speed and low-speed dynamic obstacles, then models their trajectories using a combination of Kalman filtering and gated recurrent units (GRUs). Compared to state-of-the-art RNN and LSTM-based predictors, the proposed method achieves superior accuracy and generalization. Extensive experiments in both simulated and real-world scenarios of varying complexity demonstrate the effectiveness of the framework. The results show an average planning success rate exceeding 60%, along with notable improvements in path safety and smoothness, validating the contribution of each module within the system. Full article
Show Figures

Figure 1

16 pages, 4249 KiB  
Article
Metagenomic Investigation of Pathogenic RNA Viruses Causing Diarrhea in Sika Deer Fawns
by Weiyang Wang, Qilin Wang, Runlai Cao, Yacong Li, Ziyu Liu, Zhuqing Xue, Xiaoxu Wang and Zhijie Liu
Viruses 2025, 17(6), 803; https://doi.org/10.3390/v17060803 - 31 May 2025
Viewed by 617
Abstract
Diarrhea is a common disease in sika deer. The causes of diarrhea in sika deer are complex and involve a variety of pathogens. Additionally, new virulent pathogens are continuously emerging, which poses a serious threat to deer’s health and particularly affects fawns’ survival [...] Read more.
Diarrhea is a common disease in sika deer. The causes of diarrhea in sika deer are complex and involve a variety of pathogens. Additionally, new virulent pathogens are continuously emerging, which poses a serious threat to deer’s health and particularly affects fawns’ survival rate. In the present study, feces samples were collected from fawns with diarrhea in Jilin Province, in the northeast of China. The viral communities were investigated using the metagenomic method. Viral metagenome data revealed that the viruses in the fecal samples were mainly from 21 families in 14 orders. The major viruses in high abundance were astrovirus, rotavirus, coronavirus, and bovine viral diarrhea virus. In addition, a large number of phages, which mainly belonged to the family Siphoviridae, were identified. Then, the known causative virus species were investigated via RT-qPCR. The results showed that the infection rates of bovine coronavirus, bovine rotavirus, and bovine viral diarrhea virus were 59.44%, 58.89%, and 21.67%, respectively, and mixed infections were commonly seen in the samples. A bovine rotavirus strain was successfully isolated from the positive samples. Whole-genome sequencing revealed that the genotype of the strain was G6-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3, indicating the recombination of rotavirus. This study revealed the profiles and characteristics of viruses that cause sika deer diarrhea, which will be helpful for understanding diarrhea diseases in sika deer. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 2285 KiB  
Article
Fine Mapping and Screening of Candidate Gene for Yellow-to-Green Mutation in Snap Bean (Phaseolus vulgaris L.) Leaf Color
by Chang Liu, Dajun Liu, Guojun Feng, Taifeng Zhang, Xiangkai Qin, Zhuang Sun, Zhishan Yan and Xiaoxu Yang
Int. J. Mol. Sci. 2025, 26(11), 5293; https://doi.org/10.3390/ijms26115293 - 30 May 2025
Viewed by 330
Abstract
The yellow-to-green mutation in plant leaf color can be easily identified and used as a marker trait for seed purity identification, improved variety breeding, hybrid purity identification, and hybrid production. In this study, the leaves of yellow-to-green mutant ytg-1 of snap bean were [...] Read more.
The yellow-to-green mutation in plant leaf color can be easily identified and used as a marker trait for seed purity identification, improved variety breeding, hybrid purity identification, and hybrid production. In this study, the leaves of yellow-to-green mutant ytg-1 of snap bean were selected as the experimental material, and the physiological mechanism underlying the leaf color change was studied. The mechanism was observed to belong to the lack of recovery type in the total chlorophyll stage. The decrease in chlorophyll content was due to the inhibition of the synthesis of Proto IX to Mg Proto IX. Genetic analysis revealed that a single recessive gene, pvytg-1, controlled the mutation trait. The gene was located in the 80-kb region of chromosome 10. Overall, six genes were observed within this interval, and based on gene functional annotation, Phvul.010G041700 was identified as the candidate gene. Sequencing and identification of Phvul.010G041700 revealed a single base insertion in ytg-1 compared with the wild-type, resulting in premature termination of the gene. The results of this study will facilitate the breeding and genetic improvement of snap bean in the future. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 1902 KiB  
Article
Fuzzy Echo State Network-Based Fault Diagnosis of Remote-Controlled Robotic Arms
by Shurong Peng, Zexiang Guo, Xiaoxu Liu, Tan Zhang and Yunhao Yang
Appl. Sci. 2025, 15(11), 5829; https://doi.org/10.3390/app15115829 - 22 May 2025
Viewed by 410
Abstract
This paper presents a novel fault diagnosis technique for remote-controlled robotic arm systems, utilizing deep fuzzy echo state networks (DFESNs) and applies the covariance matrix adaptation evolution strategy (CMA-ES) to optimize the hyperparameters of the DFESN model. The developed DFESN model, optimized via [...] Read more.
This paper presents a novel fault diagnosis technique for remote-controlled robotic arm systems, utilizing deep fuzzy echo state networks (DFESNs) and applies the covariance matrix adaptation evolution strategy (CMA-ES) to optimize the hyperparameters of the DFESN model. The developed DFESN model, optimized via CMA-ES, efficiently performs online fault classification through small datasets and training. The method is evaluated through experiments on a leader–follower robotic arm system, demonstrating high accuracy and efficiency. The faults under consideration include leader sensor fault, communication fault, actuator fault, and follower sensor fault. Only follower sensor data are utilized for fault diagnosis. The DFESN model achieves a mean accuracy of 99.5% with the shortest training and online diagnosis times compared to other methods, making it suitable for real-time fault diagnosis applications. Full article
(This article belongs to the Special Issue Intelligent Control of Robotic System)
Show Figures

Figure 1

25 pages, 3106 KiB  
Article
Analysis and Prediction of Spatial and Temporal Land Use Changes in the Urban Agglomeration on the Northern Slopes of the Tianshan Mountains
by Xiaoxu He, Zhaojin Yan, Yicong Shi, Zhe Wei, Zhijie Liu and Rong He
Land 2025, 14(5), 1123; https://doi.org/10.3390/land14051123 - 21 May 2025
Viewed by 455
Abstract
This study investigates the spatiotemporal changes in land use within the urban agglomeration on the northern slopes of the Tianshan Mountains (TNUA), aiming to identify the driving factors and provide a scientific basis for regional ecological protection, rational land use planning, and sustainable [...] Read more.
This study investigates the spatiotemporal changes in land use within the urban agglomeration on the northern slopes of the Tianshan Mountains (TNUA), aiming to identify the driving factors and provide a scientific basis for regional ecological protection, rational land use planning, and sustainable resource utilization. Using land use data, we analyzed transitions, dynamics, intensity, and gravity shifts in land use, examined driving mechanisms using geographic detectors, and simulated future land use patterns with the Patch-generating Land Use Simulation (PLUS) model. The results indicate that between 2010 and 2020, forest, water body, and unused land areas decreased, while cropland, grassland, and construction land expanded. The rate of land use change accelerated significantly, increasing from 0.0955% during 2010–2015 to 0.3192% during 2015–2020. The comprehensive land use dynamic degree index rose from 157.8371 to 161.1008, with Shayibake District exhibiting the most rapid growth. Precipitation, temperature, economic development, and elevation were the dominant driving factors throughout the study period. Population density had the strongest influence on the expansion of water body, while slope was the most significant factor for cropland expansion. Nighttime light was the primary driver of construction land growth. Projections for 2025, 2030, and 2035 suggest a continued decline in unused land and forest areas, alongside increases in cropland, grassland, water body, and construction land. Full article
Show Figures

Figure 1

22 pages, 6051 KiB  
Article
Identification, Expression Profiling, Microbial Binding, and Agglutination Analyses of Two Cathepsin B Genes in Black Rockfish (Sebastes schlegelii)
by Xinghua Zhuang, Xingchun Li, Wenpeng Li, Xuan Xu, Fengjun Lin, Yiying Liu, Chonghui Chen, Xiaoxu Zhang, Pei Zhang, Chao Li and Qiang Fu
Mar. Drugs 2025, 23(5), 213; https://doi.org/10.3390/md23050213 - 18 May 2025
Viewed by 538
Abstract
As a lysosomal cysteine protease of the papain subfamily, cathepsin B (CTSB) is characterized by its innate immune functions and hydrolytic activity. However, the functions of CTSB in the immune responses of teleosts remain to be clarified. In this study, two CTSB genes [...] Read more.
As a lysosomal cysteine protease of the papain subfamily, cathepsin B (CTSB) is characterized by its innate immune functions and hydrolytic activity. However, the functions of CTSB in the immune responses of teleosts remain to be clarified. In this study, two CTSB genes in S. schlegelii, SsCTSBa and SsCTSBb, were identified. Both SsCTSBa and SsCTSBb are composed of a 993 bp ORF encoding 330 amino acids. It was found in a phylogeny analysis that both genes form monophyletic clades with their orthologous counterparts of Honeycomb rockfish (Sebastes umbrosus). A synteny analysis indicated that the CTSB homologues were comparatively conserved during vertebrate evolution. Additionally, quantitative real-time PCR revealed the ubiquitous mRNA expression of SsCTSBa and SsCTSBb in all of the examined tissues, and substantially differential expression patterns could be observed following Aeromonas salmonicida infection. A subcellular localization analysis demonstrated that the distribution of SsCTSBa and SsCTSBb was mainly in the cytoplasm. Moreover, rSsCTSBa and rSsCTSBb showed strong binding to Poly(I:C) and exhibited diverse agglutination effects on different bacteria. Overall, these findings suggest that the CTSB genes in black rockfish might show essential functions in the host defense of teleosts against bacterial infections, providing valuable insights for further investigations into the immune mechanism of teleost CTSB. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Figure 1

19 pages, 2613 KiB  
Article
Efficient Pollutant Removal and Low-Carbon Emission Mechanisms in Constructed Wetlands Synergistically Driven by Low COD/N Ratio and Coastal Location
by Wenzheng Wu, Maihaiti Mairemu, Xiaoxu Zheng, Yanghui Xiong, Shengjun Xu, Cancan Jiang, Xupo Zhang, Jinglin Wang, Xiaoxuan Liu and Xuliang Zhuang
Sustainability 2025, 17(9), 4168; https://doi.org/10.3390/su17094168 - 5 May 2025
Viewed by 477
Abstract
Quantifying the variation in wetland greenhouse gas fluxes across large spatial scales and accurately assessing source–sink effects is crucial. However, there remains a limited understanding of the combined impacts of influent COD/N ratios and geographical distribution conditions on pollutant removal and GHG emissions. [...] Read more.
Quantifying the variation in wetland greenhouse gas fluxes across large spatial scales and accurately assessing source–sink effects is crucial. However, there remains a limited understanding of the combined impacts of influent COD/N ratios and geographical distribution conditions on pollutant removal and GHG emissions. In this study, five typical constructed wetlands from across the country were selected to evaluate GHG emissions, pollutant removal efficiencies, and the main influencing factors for each wetland. The results showed that temperature, ammonia nitrogen concentration, COD, COD/N ratio, and geographical location were the main regulators of GHG emissions, with complex interactions among the factors. Overall, GHG emissions were higher in the coastal region than in the inland region, highlighting the importance of geographic distribution conditions on wetland operation. In addition, wetlands with a COD/N of 3 showed the best overall performance in terms of pollutant removal and GHG emission reduction. Moreover, COD/N had an important effect on the emission fluxes of all three greenhouse gases, which was an important influencing factor on the emission fluxes of greenhouse gases from constructed wetlands. Wetlands with lower COD/N ratios, especially coastal wetlands, showed stronger performance in pollutant removal and GHG emission reduction. This study emphasizes the need to fully consider the potential influence of influent COD/N ratio on GHG emissions when designing constructed wetlands for municipal wastewater treatment, providing valuable insights for future wetland design and GHG abatement strategies. Full article
Show Figures

Figure 1

23 pages, 7439 KiB  
Article
Nardostachys jatamansi Extract and Nardosinone Exert Neuroprotective Effects by Suppressing Glucose Metabolic Reprogramming and Modulating T Cell Infiltration
by Congyan Duan, Weifang Lin, Mingjie Zhang, Bianxia Xue, Wangjie Sun, Yang Jin, Xiaoxu Zhang, Hong Guo, Qing Yuan, Mingyu Yu, Qi Liu, Naixuan Wang, Hong Wang, Honghua Wu and Shaoxia Wang
Cells 2025, 14(9), 644; https://doi.org/10.3390/cells14090644 - 28 Apr 2025
Viewed by 944
Abstract
Background: Nardostachys jatamansi DC. (Gansong), a widely utilized herb in traditional Chinese medicine, has been historically employed in the management of various neuropsychiatric disorders. Nardosinone (Nar), a sesquiterpenoid compound, has been identified as one of the principal bioactive constituents of N. jatamansi. [...] Read more.
Background: Nardostachys jatamansi DC. (Gansong), a widely utilized herb in traditional Chinese medicine, has been historically employed in the management of various neuropsychiatric disorders. Nardosinone (Nar), a sesquiterpenoid compound, has been identified as one of the principal bioactive constituents of N. jatamansi. This study investigated the effects of ethyl acetate extract (NJ-1A) from N. jatamansi and its active constituent nardosinone on neuroinflammatory mediator release, glucose metabolic reprogramming, and T cell migration using both in vitro and in vivo experimental models. Methods: Lipopolysaccharide(LPS)-induced BV-2 microglial cells and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced male C57BL/6N mouse chronic model of Parkinson’s disease were applied. Results: Both NJ-1A and Nar could significantly suppress LPS-induced production of M1 pro-inflammatory factors or markers in microglia and could inhibit the glycolytic process and promote oxidative phosphorylation via the AKT/mTOR signaling pathway. Furthermore, they exhibited the capacity to attenuate chemokine release from activated microglia, consequently reducing T cell migration. In vivo experiments revealed that NJ-1A and Nar effectively inhibited microglial activation, diminished T cell infiltration, and mitigated the loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra of MPTP-induced mice. Conclusions: NJ-1A and nardosinone exert neuroprotective effects through the modulation of microglial polarization states, regulation of metabolic reprogramming, and suppression of T cell infiltration. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

20 pages, 5993 KiB  
Article
Investigation of the Plant-Growth-Promoting Potential of Plant Endophytic Keystone Taxa in Desertification Environments
by Tianle Kong, Baoqin Li, Xiaoxu Sun, Weimin Sun, Huaqing Liu, Ying Huang, Yize Wang and Pin Gao
Processes 2025, 13(4), 1199; https://doi.org/10.3390/pr13041199 - 16 Apr 2025
Cited by 1 | Viewed by 461
Abstract
The Qinghai–Tibetan Plateau (QTP) is under serious desertification stress, which has been receiving increasing attention. Although the restoration of surface vegetation is crucial, the growth of plants is often hindered by unfavorable nutrient-deficient conditions. The plant-associated endophytic microbiome is considered the secondary genome [...] Read more.
The Qinghai–Tibetan Plateau (QTP) is under serious desertification stress, which has been receiving increasing attention. Although the restoration of surface vegetation is crucial, the growth of plants is often hindered by unfavorable nutrient-deficient conditions. The plant-associated endophytic microbiome is considered the secondary genome of the host and plays a significant role in host survival under environmental stresses. However, the community compositions and functions of plant-endophytic microorganisms in the QTP desertification environments remain unclear. Therefore, this study investigated the endophytic microbiome of the pioneer plant Gueldenstaedtia verna on the QTP and its contribution to host growth under stressful conditions. The results showed that nutrient-deficient stresses strongly influenced the microbial community structures in the rhizosphere. The impacts of these stresses, however, decreased from the rhizosphere community to the plant endophytes, resulting in consistent plant endophytic microbial communities across different sites. Members of Halomonas were recognized as keystone taxa in the endophytic microbiome of G. verna. Correlation analysis, metagenome-assembled genomes (MAGs), and comparative genome analyses have shown that the keystone taxa of the plant endophytic microbiome may promote plant growth through pathways such as nitrogen fixation, IAA, and antioxidant production, which are important for improving plant nutrient acquisition and tolerance. This finding may provide a crucial theoretical foundation for future phytoremediation efforts in desertification environments on the Qinghai-Tibet Plateau. Full article
(This article belongs to the Special Issue Advances in Remediation of Contaminated Sites: 3rd Edition)
Show Figures

Graphical abstract

25 pages, 8753 KiB  
Article
Research on RV Reducer Shaft Bearing Force and Structural Optimization
by Xiaoxu Pang, Dingkang Zhu, Xinlong Wang, Minghao Yang, Qiaoshuo Li, Duo Liu and Hai Wu
Lubricants 2025, 13(4), 182; https://doi.org/10.3390/lubricants13040182 - 15 Apr 2025
Viewed by 624
Abstract
This paper addresses the unclear bearing force of an RV reducer shaft by establishing a transmission model and analyzing the force situation of each component. Three force models for the crank support bearing, swivel arm bearing, and main bearing are developed. The force [...] Read more.
This paper addresses the unclear bearing force of an RV reducer shaft by establishing a transmission model and analyzing the force situation of each component. Three force models for the crank support bearing, swivel arm bearing, and main bearing are developed. The force variations under different working conditions and the impact of structural parameters on shaft bearing forces are analyzed. Structural optimization is performed using Kriging-NSGA-II to minimize bearing forces. The results show similar load patterns for the bearings, with the force magnitude being ranked in the following order: rotating arm > crank support > main bearing. After optimization, the bearing forces are reduced by 8.26% for the crank support shaft, 10.35% for the rotating arm shaft, and 5.15% for the main shaft. Full article
(This article belongs to the Special Issue Advances in Lubricated Bearings, 2nd Edition)
Show Figures

Figure 1

13 pages, 2345 KiB  
Article
Effect of Al2O3 Particle Addition on Fluidized Bed Thermochemical Heat Storage Performance of Limestone: From Instability Mitigation to Efficiency Enhancement
by Hongmei Yin, Yang Liu, Liguo Yang, Yingjie Li, Xiaoyi Zhu, Lei Zhang, Yu Ruan, Ming Ma and Xiaoxu Fan
Energies 2025, 18(7), 1791; https://doi.org/10.3390/en18071791 - 2 Apr 2025
Viewed by 320
Abstract
This study elucidates the mechanism of fluidization instability during limestone carbonation under a 100% CO2 atmosphere and determines the influence of Al2O3 fluidization aids (dosage and particle size) on exothermic performance. The experiments demonstrate that rapid CO2 absorption [...] Read more.
This study elucidates the mechanism of fluidization instability during limestone carbonation under a 100% CO2 atmosphere and determines the influence of Al2O3 fluidization aids (dosage and particle size) on exothermic performance. The experiments demonstrate that rapid CO2 absorption in the emulsion phase, coupled with insufficient gas replenishment from the bubble phase, disrupts the balance between drag force and buoyancy, leading to localized defluidization. This instability impedes gas exchange between the bubble and emulsion phases, resulting in bubble coalescence and channeling across the bed. The fluidization instability reduces the maximum exothermic temperature and causes significant temperature heterogeneity in the bed. With repeated thermal cycles (20 cycles), the CO2 absorption capacity of limestone diminishes (the effective conversion rate drops to 0.25), and the instability disappears. The addition of 5wt.% Al2O3 (particle size: 0.05–0.075 mm) stabilizes the fluidization state during carbonation, significantly homogenizing the bed temperature distribution, with maximum and average temperature differentials reduced by 63% and 89%, respectively, compared to pure limestone systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

23 pages, 1126 KiB  
Article
The Risk Mitigation Effect of Social Responsibility: Evidence from International Construction Projects
by Xiaoxu Dang, Liyuan Liu, Xiaopeng Deng, Na Zhang and Mengyuan Cheng
Sustainability 2025, 17(7), 3149; https://doi.org/10.3390/su17073149 - 2 Apr 2025
Cited by 1 | Viewed by 711
Abstract
The purpose of this study is to explore the relationship between social responsibility and risk in international construction projects using corporate reputation and customer satisfaction as mediating variables. This study collected 141 valid data using the questionnaire method and used partial least squares [...] Read more.
The purpose of this study is to explore the relationship between social responsibility and risk in international construction projects using corporate reputation and customer satisfaction as mediating variables. This study collected 141 valid data using the questionnaire method and used partial least squares structural equation modeling (PLS-SEM) and fuzzy set qualitative comparative analysis (fsQCA) to analyze the data. The PLS-SEM results showed that, in international construction projects, social responsibility has no direct impact on risk but has a positive impact on corporate reputation and customer satisfaction. Customer satisfaction mediated the relationship between social responsibility and risk in international construction projects, but corporate reputation did not mediate this relationship. This study also found that corporate reputation and customer satisfaction have a serial mediating role in this relationship. In addition, the fsQCA results further confirmed that improving customer satisfaction is a necessary condition for mitigating risks in international construction projects. In terms of the different dimensions of social responsibility, the protection of shareholders’ rights is a core condition for mitigating risks in international construction projects. This study provides useful insights for international construction project managers to develop risk mitigation plans from the perspective of social responsibility. Full article
Show Figures

Figure 1

24 pages, 5617 KiB  
Article
Effects of Coatings on Antioxidant Enzyme Activities, Histopathology, and Transcriptome Profiles of Kidney Tissue in Larimichthys crocea
by Xuan Xu, Huayu Song, Lu Zhang, Chonghui Chen, Xiaoxu Zhang, Yiying Liu, Chao Li and Qiang Fu
Genes 2025, 16(4), 392; https://doi.org/10.3390/genes16040392 - 29 Mar 2025
Viewed by 564
Abstract
Background: As an innovative approach to deep-sea aquaculture, fish farm vessels offer a dual benefit by alleviating the pressure on offshore fishing resources while providing an additional high-quality protein source. However, the potential impacts of vessel coatings on farmed fish remain poorly understood. [...] Read more.
Background: As an innovative approach to deep-sea aquaculture, fish farm vessels offer a dual benefit by alleviating the pressure on offshore fishing resources while providing an additional high-quality protein source. However, the potential impacts of vessel coatings on farmed fish remain poorly understood. Methods: In this study, to investigate the effects of vessel coatings on the large yellow croaker (Larimichthys crocea), we established four experimental groups with coating concentrations at 1-fold, 10-fold, 20-fold, and 80-fold levels. Antioxidant enzyme activities in kidney tissues were measured across all groups, while histological and transcriptome analyses were specifically conducted for the 1-fold and 80-fold concentration groups. Results: Firstly, significant alterations in antioxidant enzyme activity were observed in the 80-fold concentration group. Moreover, histological analysis demonstrated more severe pathological changes in kidney tissue at the higher concentration, including interstitial hemorrhage and tubular epithelial cell fatty degeneration. In addition, we identified 11,902 differentially expressed genes (DEGs) by high-throughput sequencing. KEGG pathway enrichment analysis revealed that the DEGs were predominantly involved in critical biological processes, including endoplasmic reticulum protein processing, oxidative phosphorylation, cytokine–cytokine receptor interactions, cell cycle regulation, DNA replication, and PPAR signaling pathways. Finally, the validation of nine selected DEGs through quantitative real-time PCR (qRT-PCR) showed significant correlation with RNA-Seq data, confirming the reliability of our transcriptome analysis. Conclusions: This study provides preliminary insights into the antioxidant stress response mechanisms of L. crocea to coating exposure and establishes a theoretical foundation for optimizing healthy fish farming practices in aquaculture vessels. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

12 pages, 2815 KiB  
Article
High-Throughput Sequencing of Nontuberculous Mycobacterial Flora and Mycobacterium abscessus in Cattle
by Siqi Chen, Mengda Liu, Yan Li, Jiarui Zhang, Yanfang Li, Yan Liang, Xiaoxu Fan and Yonggang Qu
Vet. Sci. 2025, 12(3), 275; https://doi.org/10.3390/vetsci12030275 - 14 Mar 2025
Viewed by 700
Abstract
Nontuberculous mycobacteria (NTM) are environmental organisms that can cause opportunistic infections in humans and animals. Mycobacterium abscessus (Mab) is a rapidly growing Mycobacterium known for its resistance to multiple antibiotics and ability to cause respiratory, skin, and mucosal infections. Understanding the distribution and [...] Read more.
Nontuberculous mycobacteria (NTM) are environmental organisms that can cause opportunistic infections in humans and animals. Mycobacterium abscessus (Mab) is a rapidly growing Mycobacterium known for its resistance to multiple antibiotics and ability to cause respiratory, skin, and mucosal infections. Understanding the distribution and prevalence of NTM, particularly Mab, in cattle farms and slaughterhouses is crucial for developing effective prevention and control measures. We collected environmental swabs from various surfaces (e.g., feed troughs, sinks, walls, floors, feces, and padding) in cattle farms and slaughterhouses across multiple provinces. High-throughput sequencing technology was utilized to analyze the 16S rDNA V3–V4 region of bacterial DNA extracted from the samples, and qPCR methods were employed to detect and quantify Mycobacterium abscessus in the collected samples. Bioinformatics analysis was performed to identify and classify the NTM species present in the samples. This study compared the abundance and diversity of NTM in different environments and assessed the potential zoonotic risk. A total of 1648 environmental swabs were collected from cattle farms and slaughterhouses in 12 provinces of China in 2023, of which 12 samples tested positive for Mab qPCR detection, yielding a detection rate of 0.73% (12/1648). Among them, the detection rate of environmental samples from cattle farms and slaughterhouses was 0.42% (3/720) and 0.87% (9/928), respectively. This study provides valuable information on the epidemiology of NTM in cattle farms and slaughterhouses, contributing to developing effective strategies for preventing and controlling NTM infections. It also enhances our understanding of the zoonotic potential of Mycobacterium abscessus and other NTM species. Full article
(This article belongs to the Special Issue Spotlight on Cattle Infectious Diseases)
Show Figures

Figure 1

14 pages, 1983 KiB  
Article
Effects of Different Levels of Flea Infestation on Gut Microbiota of Brandt’s Voles (Lasiopodomys brandtii) in China
by Zhenxu Wang, Lu Wang, Chenran Guo, Zihao Wang, Xinchang Lun, Haoqiang Ji, Meng Shang, Xiaoxu Wang and Qiyong Liu
Animals 2025, 15(5), 669; https://doi.org/10.3390/ani15050669 - 25 Feb 2025
Viewed by 704
Abstract
Brandt’s vole is a common small rodent, and its gut microbiota is critical to host health and immune function. The parasitic fleas commonly found in Brandt’s voles cause an immune response, but their impact on the gut microbiota remains unclear. According to the [...] Read more.
Brandt’s vole is a common small rodent, and its gut microbiota is critical to host health and immune function. The parasitic fleas commonly found in Brandt’s voles cause an immune response, but their impact on the gut microbiota remains unclear. According to the level of flea infestation, Brandt’s voles were divided into the control group, low-infestation group, and high-infestation group. The changes in the microbial community composition, abundance, and diversity of the gut microbiota were evaluated using 16S rRNA sequencing. Flea infestation significantly affected body weight, food intake, and gut microbiota structure. The low-infestation group exhibited the most pronounced changes in weight and food intake, while the high-infestation group showed the least. In the 4th week, 16S rRNA sequencing revealed an increase in alpha diversity and alterations in microbial composition. Beta-diversity analysis indicated significant differences in the intestinal microbiota between the experimental groups and the control group. By the 8th week, these differences had diminished, suggesting that the microbiota had stabilized or recovered over time. Overall, parasitic flea infestation significantly alters the diversity, structure, and characteristic microbial enrichment of the gut microbiota in Brandt’s voles, potentially impacting host metabolism, immunity, and growth. While this study lasted 8 weeks, the long-term health effects of flea infestation may persist. Future research should elucidate the interaction mechanisms between parasites and hosts, define the time frames and mechanisms of these long-term impacts, and provide theoretical support for animal health management and disease control. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

Back to TopTop