Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (4,757)

Search Parameters:
Authors = Wei Zhou

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 19171 KiB  
Article
Spatiotemporal Evolution of Precipitation Concentration in the Yangtze River Basin (1960–2019): Associations with Extreme Heavy Precipitation and Validation Using GPM IMERG
by Tao Jin, Yuliang Zhou, Ping Zhou, Ziling Zheng, Rongxing Zhou, Yanqi Wei, Yuliang Zhang and Juliang Jin
Remote Sens. 2025, 17(15), 2732; https://doi.org/10.3390/rs17152732 - 7 Aug 2025
Abstract
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain [...] Read more.
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain poorly understood in complex basins like the Yangtze River Basin. This study analyzes these aspects using ground station data from 1960 to 2019 and conducts a comparison using the Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (GPM IMERG) satellite product. We calculated three indices—Daily Precipitation Concentration Index (PCID), Monthly Precipitation Concentration Index (PCIM), and Seasonal Precipitation Concentration Index (SPCI)—to quantify rainfall unevenness, selected for their ability to capture multi-scale variability and associations with extremes. Key methods include Mann–Kendall trend tests for detecting changes, Hurst exponents for persistence, Pettitt detection for abrupt shifts, random forest modeling to assess atmospheric teleconnections, and hot spot analysis for spatial clustering. Results show a significant basin-wide decrease in PCID, driven by increased frequency of small-to-moderate rainfall events, with strong spatial synchrony to extreme heavy precipitation indices. PCIM is most strongly associated with El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). GPM IMERG captures PCIM patterns well but underestimates PCID trends and magnitudes, highlighting limitations in daily-scale resolution. These findings provide a benchmark for satellite product improvement and support adaptive strategies for extreme precipitation risks in changing climates. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrometeorology and Natural Hazards)
Show Figures

Figure 1

21 pages, 1113 KiB  
Article
Research on High-Frequency Modification Method of Industrial-Frequency Smelting Transformer Based on Parallel Connection of Multiple Windings
by Huiqin Zhou, Xiaobin Yu, Wei Xu and Weibo Li
Energies 2025, 18(15), 4196; https://doi.org/10.3390/en18154196 - 7 Aug 2025
Abstract
Under the background of “dual-carbon” strategy and global energy transition, the metallurgical industry, which accounts for 15–20% of industrial energy consumption, urgently needs to reduce the energy consumption and emission of DC power supply of electric furnaces. Aiming at the existing 400–800 V/≥3000 [...] Read more.
Under the background of “dual-carbon” strategy and global energy transition, the metallurgical industry, which accounts for 15–20% of industrial energy consumption, urgently needs to reduce the energy consumption and emission of DC power supply of electric furnaces. Aiming at the existing 400–800 V/≥3000 A industrial-frequency transformer-rectifier system with low efficiency, large volume, heat dissipation difficulties and other bottlenecks, this thesis proposes and realizes a high-frequency integrated DC power supply scheme for high-power electric furnaces: high-frequency transformer core and rectifier circuit are deeply integrated, which breaks through and reduces the volume of the system by more than 40%, and significantly reduces the iron consumption; multiple cores and three windings in parallel are used for the system. The topology of multiple cores and three windings in parallel enables several independent secondary stages to share the large current of 3000 A level uniformly, eliminating the local overheating and current imbalance; the combination of high-frequency rectification and phase-shift control strategy enhances the input power factor to more than 0.95 and cuts down the grid-side harmonics remarkably. The authors have completed the design of 100 kW prototype, magneto-electric joint simulation, thermal structure coupling analysis, control algorithm development and field comparison test, and the results show that the program compared with the traditional industrial-frequency system efficiency increased by 12–15%, the system temperature rise reduced by 20 K, electrode voltage increased by 10–15%, the input power of furnace increased by 12%, and the harmonic index meets the requirements of the traditional industrial-frequency system. The results show that the efficiency of this scheme is 12–15% higher than the traditional IF system, the temperature rise in the system is 20 K lower, the voltage at the electrode end is 10–15% higher, the input power of the furnace is increased by 12%, and the harmonic indexes meet the requirements of GB/T 14549, which verifies the value of the scheme for realizing high efficiency, miniaturization, and reliable DC power supply in metallurgy. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

20 pages, 3576 KiB  
Article
Urban Wetland Sediments in Yangzhou: Physicochemical Properties, Microbial Communities, and Functional Associations
by Dongmei He, Liwen Li, Runyang Zhou, Sumei Qiu, Wei Xing and Yingdan Yuan
Microorganisms 2025, 13(8), 1843; https://doi.org/10.3390/microorganisms13081843 - 7 Aug 2025
Abstract
Urban wetlands play a crucial role in maintaining ecological balance, carbon sequestration, and water purification. Sediments are key carriers for wetlands to store elements such as carbon, nitrogen, and phosphorus in the aquatic environment. This study analyzed different sediment layers of seven wetlands [...] Read more.
Urban wetlands play a crucial role in maintaining ecological balance, carbon sequestration, and water purification. Sediments are key carriers for wetlands to store elements such as carbon, nitrogen, and phosphorus in the aquatic environment. This study analyzed different sediment layers of seven wetlands in Yangzhou, aiming to explore the relationship between physicochemical factors and microbial communities in wetland sediments, as well as to predict the functions of microbial communities. Functional prediction of microbial communities was conducted based on amplicon sequencing analysis, and the neutral community model was used to determine the formation and evolution process of microbial communities. The results showed that in three wetlands, namely Zhuyu Bay (ZYW), Luyang Lake (LYH), and Runyang Wetland (RYSD), the contents of carbon components (total carbon, total soluble carbon, microbial biomass carbon) in the 0–20 cm sediment layer were higher, while the carbon component contents in Baoying Lake (BYH) showed the opposite trend. Among them, the contents of total nitrogen, alkali-hydrolyzable nitrogen, total phosphorus, available phosphorus, total potassium, and available potassium in the 0–20 cm sediment layer of Runyang Wetland (RYSD) were significantly the highest. This indicates that in Runyang Wetland (RYSD), the 0–20 cm layer has more abundant carbon components and mineral nutrients compared to the 20–40 cm layer. Among the seven wetlands, it was found that the content of total potassium was all greater than 10 g/kg, which was much higher than the contents of total phosphorus and total nitrogen. Analysis of microbial communities revealed that the dominant archaeal phyla were Thaumarchaeota and Euryarchaeota, and the dominant bacterial phyla were Proteobacteria and Acidobacteria. The distribution of functional genes was mainly concentrated in Zhuyu Bay (ZYW) and Luyang Lake (LYH). Zhuyu Bay Wetland (ZYW) had potential advantages in light utilization function, and Luyang Lake (LYH) had potential advantages in carbon and nitrogen cycle functions. The assembly process of the archaeal community was mainly affected by stochastic processes, while the bacterial community was mainly affected by deterministic processes. However, water content, total phosphorus, and available potassium all had strong correlations with both archaeal and bacterial communities. The research results preliminarily reveal the connections between the physicochemical properties of sediments, microbial communities, and their potential functions in Yangzhou urban wetlands, providing an important scientific basis for the protection and management of wetland ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 6835 KiB  
Article
Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing
by Chujing Wang, Yuefeng Wang, Chaogui Lei, Sitong Wei, Xingying Huang, Zhenghui Zhu and Shuqiong Zhou
Hydrology 2025, 12(8), 208; https://doi.org/10.3390/hydrology12080208 - 7 Aug 2025
Abstract
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent [...] Read more.
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent circulation patterns remain poorly understood. Using daily temperature data from 29 meteorological stations in Chongqing (1960–2019), this study employs linear trend analysis, correlation analysis, and random forest (RF) models to analyze spatiotemporal variations in the intensity and frequency of extreme temperature. We selected 21 climate indicators from three categories—atmospheric circulation, sea surface temperature (SST), and sea-level pressure (SLP)—to identify the primary drivers of extreme temperatures and quantify their respective contributions. The key findings are as follows: (1) All extreme intensity indices exhibited an increasing trend, with the TXx (annual maximum daily maximum temperature) showing the higher trend (0.03 °C/year). The northeastern region experienced the most pronounced increases. (2) Frequency indices also displayed an upward trend. This was particularly evident for the TD35 (number of days with maximum temperature ≥35 °C), which increased at an average rate of 0.16 days/year, most notably in the northeast. (3) The Western Pacific Subtropical High Ridge Position Index (GX) and Asia Polar Vortex Area Index (APV) were the dominant climate factors driving intensity indices, with cumulative contributions of 26.0% to 33.4%, while the Western Pacific Warm Pool Strength Index (WPWPS), Asia Polar Vortex Area Index (APV), North Atlantic Subtropical High Intensity Index (NASH), and Indian Ocean Warm Pool Strength Index (IOWP) were the dominant climate factors influencing frequency indices, with cumulative contributions of 46.4 to 49.5%. The explanatory power of these indices varies spatially across stations, and the RF model effectively identifies key circulation factors at each station. In the future, more attention should be paid to urban planning adaptations, particularly green infrastructure and land use optimization, along with targeted heat mitigation strategies, such as early warning systems and public health interventions, to strengthen urban resilience against escalating extreme temperatures. Full article
Show Figures

Figure 1

30 pages, 10586 KiB  
Article
Autonomous UAV-Based System for Scalable Tactile Paving Inspection
by Tong Wang, Hao Wu, Abner Asignacion, Zhengran Zhou, Wei Wang and Satoshi Suzuki
Drones 2025, 9(8), 554; https://doi.org/10.3390/drones9080554 - 7 Aug 2025
Abstract
Tactile pavings (Tenji Blocks) are prone to wear, obstruction, and improper installation, posing significant safety risks for visually impaired pedestrians. This system incorporates a lightweight YOLOv8 (You Only Look Once version 8) model for real-time detection using a fisheye camera to maximize field-of-view [...] Read more.
Tactile pavings (Tenji Blocks) are prone to wear, obstruction, and improper installation, posing significant safety risks for visually impaired pedestrians. This system incorporates a lightweight YOLOv8 (You Only Look Once version 8) model for real-time detection using a fisheye camera to maximize field-of-view coverage, which is highly advantageous for low-altitude UAV navigation in complex urban settings. To enable lightweight deployment, a novel Lightweight Shared Detail Enhanced Oriented Bounding Box (LSDE-OBB) head module is proposed. The design rationale of LSDE-OBB leverages the consistent structural patterns of tactile pavements, enabling parameter sharing within the detection head as an effective optimization strategy without significant accuracy compromise. The feature extraction module is further optimized using StarBlock to reduce computational complexity and model size. Integrated Contextual Anchor Attention (CAA) captures long-range spatial dependencies and refines critical feature representations, achieving an optimal speed–precision balance. The framework demonstrates a 25.13% parameter reduction (2.308 M vs. 3.083 M), 46.29% lower GFLOPs, and achieves 11.97% mAP50:95 on tactile paving datasets, enabling real-time edge deployment. Validated through public/custom datasets and actual UAV flights, the system realizes robust tactile paving detection and stable navigation in complex urban environments via hierarchical control algorithms for dynamic trajectory planning and obstacle avoidance, providing an efficient and scalable platform for automated infrastructure inspection. Full article
Show Figures

Figure 1

19 pages, 9524 KiB  
Article
Shrub Extraction in Arid Regions Based on Feature Enhancement and Transformer Network from High-Resolution Remote Sensing Images
by Hao Liu, Wenjie Zhang, Yong Cheng, Jiaxin He, Haoyun Shao, Sen Bai, Wei Wang, Di Zhou, Fa Zhu, Nuriddin Samatov, Bakhtiyor Pulatov and Aziz Inamov
Forests 2025, 16(8), 1288; https://doi.org/10.3390/f16081288 - 7 Aug 2025
Abstract
The shrubland ecosystems in arid areas are highly sensitive to global climate change and human activities. Accurate extraction of shrubs using computer vision techniques plays an essential role in monitoring ecological balance and desertification. However, shrub extraction from high-resolution GF-2 satellite images remains [...] Read more.
The shrubland ecosystems in arid areas are highly sensitive to global climate change and human activities. Accurate extraction of shrubs using computer vision techniques plays an essential role in monitoring ecological balance and desertification. However, shrub extraction from high-resolution GF-2 satellite images remains challenging due to their dense distribution and small size, along with complex background. Therefore, this study introduces a Feature Enhancement and Transformer Network (FETNet) by integrating the Feature Enhancement Module (FEM) and Transformer module (EdgeViT). Correspondently, they can strengthen both global and local features and enable accurate segmentation of small shrubs in complex backgrounds. The ablation experiments demonstrated that incorporation of FEM and EdgeViT can improve the overall segmentation accuracy, with 1.19% improvement of the Mean Intersection Over Union (MIOU). Comparison experiments show that FETNet outperforms the two leading models of FCN8s and SegNet, with the MIOU improvements of 7.2% and 0.96%, respectively. The spatial details of the extracted results indicated that FETNet is able to accurately extract dense, small shrubs while effectively suppressing interference from roads and building shadows in spatial details. The proposed FETNet enables precise shrub extraction in arid areas and can support ecological assessment and land management. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

16 pages, 1481 KiB  
Article
Effects of Underwater Noise Exposure on Early Development in Zebrafish
by Tong Zhou, Yuchi Duan, Ya Li, Wei Yang and Qiliang Chen
Animals 2025, 15(15), 2310; https://doi.org/10.3390/ani15152310 - 7 Aug 2025
Abstract
Anthropogenic noise pollution is a significant global environmental issue that adversely affects the behavior, physiology, and auditory functions of aquatic species. However, studies on the effects of underwater noise on early developmental stages of fish remain scarce, particularly regarding the differential impacts of [...] Read more.
Anthropogenic noise pollution is a significant global environmental issue that adversely affects the behavior, physiology, and auditory functions of aquatic species. However, studies on the effects of underwater noise on early developmental stages of fish remain scarce, particularly regarding the differential impacts of daytime versus nighttime noise exposure. In this study, zebrafish (Danio rerio) embryos were exposed to control group (no additional noise), daytime noise (100–1000 Hz, 130 dB, from 08:00 to 20:00) or nighttime noise (100–1000 Hz, 130 dB, from 20:00 to 08:00) for 5 days, and their embryonic development and oxidative stress levels were analyzed. Compared to the control group, the results indicated that exposure to both daytime and nighttime noise led to delays in embryo hatching time and a significant decrease in larval heart rate. Notably, exposure to nighttime noise significantly increased the larval deformity rate. Noise exposure, particularly at night, elevated the activities of catalase (CAT) and glutathione peroxidase (GPX), as well as the concentration of malondialdehyde (MDA), accompanied by upregulation of antioxidant-related gene expression levels. Nighttime noise exposure significantly increased the abnormality rate of otolith development in larvae and markedly downregulated the expression levels of otop1 related to otolith development regulation, while daytime noise exposure only induced a slight increase in the otolith abnormality rate. After noise exposure, the number of lateral neuromasts in larvae decreased slightly, yet genes (slc17a8 and capgb) related to hair cell development were significantly upregulated. Overall, this study demonstrates that both daytime and nighttime noise can induce oxidative stress and impair embryonic development of zebrafish, with nighttime noise causing more severe damage. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

21 pages, 4181 KiB  
Article
Research on Optimal Scheduling of the Combined Cooling, Heating, and Power Microgrid Based on Improved Gold Rush Optimization Algorithm
by Wei Liu, Zhenhai Dou, Yi Yan, Tong Zhou and Jiajia Chen
Electronics 2025, 14(15), 3135; https://doi.org/10.3390/electronics14153135 - 6 Aug 2025
Abstract
To address the shortcomings of poor convergence and the ease of falling into local optima when using the traditional gold rush optimization (GRO) algorithm to solve the complex scheduling problem of a combined cooling, heating, and power (CCHP) microgrid system, an optimal scheduling [...] Read more.
To address the shortcomings of poor convergence and the ease of falling into local optima when using the traditional gold rush optimization (GRO) algorithm to solve the complex scheduling problem of a combined cooling, heating, and power (CCHP) microgrid system, an optimal scheduling model for a microgrid based on the improved gold rush optimization (IGRO) algorithm is proposed. First, the Halton sequence is introduced to initialize the population, ensuring a uniform and diverse distribution of prospectors, which enhances the algorithm’s global exploration capability. Then, a dynamically adaptive weighting factor is applied during the gold mining phase, enabling the algorithm to adjust its strategy across different search stages by balancing global exploration and local exploitation, thereby improving the convergence efficiency of the algorithm. In addition, a weighted global optimal solution update strategy is employed during the cooperation phase, enhancing the algorithm’s global search capability while reducing the risk of falling into local optima by adjusting the balance of influence between the global best solution and local agents. Finally, a t-distribution mutation strategy is introduced to improve the algorithm’s local search capability and convergence speed. The IGRO algorithm is then applied to solve the microgrid scheduling problem, with the objective function incorporating power purchase and sale cost, fuel cost, maintenance cost, and environmental cost. The example results show that, compared with the GRO algorithm, the IGRO algorithm reduces the average total operating cost of the microgrid by 3.29%, and it achieves varying degrees of cost reduction compared to four other algorithms, thereby enhancing the system’s economic benefits. Full article
Show Figures

Figure 1

12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

29 pages, 3400 KiB  
Article
Value-Added Service Pricing Strategies Considering Customer Stickiness: A Freemium Perspective
by Xuwang Liu, Biying Zhou, Wei Qi, Zhiwu Li and Junwei Wang
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 201; https://doi.org/10.3390/jtaer20030201 - 6 Aug 2025
Abstract
Freemium, a popular business model in the digital economy, offers a basic product for free while charging for advanced features or value-added services. This pricing strategy enables platforms to attract a broad user base and then monetize through premium offerings. Customer characteristics and [...] Read more.
Freemium, a popular business model in the digital economy, offers a basic product for free while charging for advanced features or value-added services. This pricing strategy enables platforms to attract a broad user base and then monetize through premium offerings. Customer characteristics and service price are important factors affecting customer choice behavior in such a model. Based on consumption stickiness, we consider a monopoly that provides value-added services by incorporating a multinomial logit model into a two-stage dynamic pricing model. First, we analyze the optimal pricing of value-added services under a normal sales scenario. We then consider optimal pricing during the marketing period under two strategies—level improvement for value-added services and quality reduction for a basic product—and analyze the applicability of each. The results show that increasing the value-added service level has a positive effect on the optimal price of value-added services, whereas reducing the basic product quality has no effect on the optimal price. Furthermore, the numerical simulation shows that when the depth of consumer stickiness is low, the optimal marketing strategy reduces the quality of the basic product, the price of value-added services should be higher than that in the normal sales period but lower than the price under the level-improvement strategy for value-added services; otherwise, improving the level of the value-added services becomes the optimal approach. This study provides a theoretical basis and decision support for product quality design and service pricing that applies to freemium platforms. Full article
(This article belongs to the Topic Digital Marketing Dynamics: From Browsing to Buying)
Show Figures

Figure 1

15 pages, 4075 KiB  
Article
Biological Characteristics and Domestication of a Wild Hericium coralloides
by Ji-Ling Song, Ya Xin, Zu-Fa Zhou, Xue-Ping Kang, Yang Zhang, Wei-Dong Yuan and Bin Yu
Horticulturae 2025, 11(8), 917; https://doi.org/10.3390/horticulturae11080917 - 5 Aug 2025
Viewed by 39
Abstract
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected [...] Read more.
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected from the Changbaishan Nature Reserve (Jiling, China). Optimal conditions for mycelial growth included mannose as the preferred carbon source, peptone as the nitrogen source, 30 °C incubation temperature, pH 5.5, and magnesium sulfate as the essential inorganic salt. The fruiting bodies had a protein content of 2.43% g/100 g (fresh sample meter). Total amino acids comprised 53.3% of the total amino acid profile, while essential amino acids accounted for 114.11% relative to non-essential amino acids, indicating high nutritional value. Under optimized domestication conditions—70% hardwood chips, 20% cottonseed hulls, 8% bran, 1% malic acid, and 1% gypsum—bags reached full colonization in 28 days, with a 15-day maturation phase and initial fruiting occurring after 12–14 days. The interval between flushes was 10–12 days. The average yield reached 318.65 ± 31.74 g per bag, with a biological conversion rate of 63.73%. These findings demonstrate that Hericium coralloides possesses significant potential for edible and commercial applications. This study provides a robust theoretical foundation and resource reference for its artificial cultivation, supporting its broader industrial and economic utilization. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

16 pages, 2073 KiB  
Article
Physiological Mechanisms of the Enhanced UV-B Radiation Triggering Plant-Specific Peroxidase-Mediated Antioxidant Defences
by Yijia Gao, Ling Wei, Chenyu Jiang, Shaopu Shi, Jiabing Jiao, Hassam Tahir, Minjie Qian and Kaibing Zhou
Antioxidants 2025, 14(8), 957; https://doi.org/10.3390/antiox14080957 - 4 Aug 2025
Viewed by 141
Abstract
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and [...] Read more.
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and quantitative fluorescence PCR validation, this study preliminarily elucidated the physiological mechanisms of plant-specific peroxidase (POD) in responding to enhanced UV-B radiation stress. Enhanced UV-B treatment significantly inhibited biological tissue growth, particularly during the rapid growth stage. At this stage, the treatment exhibited higher malondialdehyde (MDA) content, indicating increased oxidative stress due to the accumulation of reactive oxygen species (ROS). Despite the inhibition in growth, the treatment showed improvements in the accumulation of organic nutrients as well as the contents of abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). Additionally, an increase in POD activity and lignin content was observed in the treatment, especially during the middle period of the rapid growth period. Transcriptome analysis revealed that two POD multigene family members, LOC123198833 and LOC123225298, were significantly upregulated under enhanced UV-B radiation, which was further validated through qPCR. In general, enhanced UV-B radiation triggered a defence response in biological tissue by upregulating POD genes, which can effectively help to scavenge excess ROS. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

23 pages, 7821 KiB  
Article
The Multiple Stages of Regional Triassic Crustal Reworking in Eastern Tianshan, NW China: Evidence from the Xigebi Area
by Ming Wei, Haiquan Li, Wenxiao Zhou, Mahemuti Muredili, Ernest Chi Fru and Thomas Sheldrick
Minerals 2025, 15(8), 829; https://doi.org/10.3390/min15080829 - 4 Aug 2025
Viewed by 203
Abstract
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their [...] Read more.
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their associated hornblende-rich dioritic enclaves to decipher the tectonic and magmatic evolution of the Xigebi area, eastern Tianshan. Zircon geochronology indicates a Triassic and Permian crystallization age of ca. 224.2 ± 1.7 Ma and ca. 268.3 ± 3.0 Ma for the host monzogranites and the dioritic enclaves, respectively. Major, trace and rare earth element distribution, together with Hf isotope systematics displaying noticeable positive εHf(t) anomalies for both rock types, point to partial melting of meta-mafic rocks in an intraplate extensional setting. The diorite was formed by the melting of lower crustal meta-igneous rocks mixed with mantle melts, and the monzogranite, predominantly from deep crustal meta-basalts contaminated by shallow metasedimentary rocks, with some degree of mixing with deeply sourced mantle magma. While both the host monzogranites and their dioritic enclaves are the products of upwelling magma, the younger Triassic monzogranites captured and preserved fragments of the dioritic Permian lower continental crust during crystallization. These multiple stages of magmatic underplating and crustal reworking associated with vertical stratification of the juvenile paleo-continental crust suggest the monzogranites and diorites indicate a change from a post-collisional setting to a regional intraplate regime on the southern margin of the CAOB. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

12 pages, 1094 KiB  
Review
DJ-1 Serves as a Central Regulator of Diabetes Complications
by Feng Zhou, Jia-Bin Zhou, Tian-Peng Wei, Dan Wu and Ru-Xing Wang
Curr. Issues Mol. Biol. 2025, 47(8), 613; https://doi.org/10.3390/cimb47080613 - 4 Aug 2025
Viewed by 89
Abstract
Diabetes mellitus poses a significant global health challenge, primarily due to its chronic metabolic dysregulation, leading to widespread tissue and organ damage. This systemic impact results in a range of complications that markedly reduce patients’ quality of life. Therefore it is critical to [...] Read more.
Diabetes mellitus poses a significant global health challenge, primarily due to its chronic metabolic dysregulation, leading to widespread tissue and organ damage. This systemic impact results in a range of complications that markedly reduce patients’ quality of life. Therefore it is critical to understand the mechanisms underlying these complications. DJ-1 (also known as PARK7) is a highly conserved multifunctional protein involved in antioxidative defense, metabolic equilibrium, and cellular survival. Recent studies have highlighted that DJ-1 is critically involved in the pathogenesis and progression of diabetic complications, including macrovascular issues like cardiovascular disease and microvascular conditions such as diabetic nephropathy, retinopathy, and neuropathy, suggesting that it may serve as a promising therapeutic target. Importantly, drugs targeting DJ-1 have shown therapeutic effects. This review provides a comprehensive overview of the current under-standing of DJ-1’s role in diabetes-related complications, emphasizing recent research advances. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

19 pages, 3213 KiB  
Article
Comparison and Study on Flavor and Quality Characteristics of Different Grades of Tianshanhong (TSH)
by Shu-Ting Xiao, Xian-Zhou Huang, Jian-Feng Huang, Qing-Yang Wu, Yang Wu, Ting-Ting Deng, Xian-Xian Xu, Hao-Xiang Liu, Xiao-Hui Chen, Shi-Zhong Zheng and Zi-Wei Zhou
Beverages 2025, 11(4), 111; https://doi.org/10.3390/beverages11040111 - 4 Aug 2025
Viewed by 268
Abstract
Tianshanhong (TSH), black tea products originating from the Ningde Tianshan Mountain, has gained significant recognition in the market. However, the chemical characteristics contributing to the flavor of TSH have not yet been reported. To systematically investigate the non-volatile and volatile compounds in TSH, [...] Read more.
Tianshanhong (TSH), black tea products originating from the Ningde Tianshan Mountain, has gained significant recognition in the market. However, the chemical characteristics contributing to the flavor of TSH have not yet been reported. To systematically investigate the non-volatile and volatile compounds in TSH, four grades of TSH were evaluated using national standard sensory methods, revealing that overall quality improved with higher grades. Based on the detection of ultra-performance liquid chromatography–mass spectrometry (UPLC-MS), the content of ester-type catechins was relatively high and decreased with lower grades. A total of 19 amino acids (AAs) were clustered, among them, three amino acids, L-Theanine (L-Thea), Arg, and GABA, showed highly significant correlations with the refreshing taste of TSH. Notably, the content of Arg had the highest correlation with TSH grade, with a coefficient of 0.976 (p < 0.01). According to gas chromatography mass spectrometry (GC-MS) analysis, a total of 861 kinds of volatile compounds were detected, with 282 identified and aroma-active compounds across grades selected using the PLS model. Methyl salicylate and geraniol were particularly notable, showing strong correlations with TSH grades at 0.975 and 0.987 (p < 0.01), respectively. Our findings show that non-volatile and volatile compounds can rationally grade TSH and help understand its flavor quality. Full article
(This article belongs to the Section Tea, Coffee, Water, and Other Non-Alcoholic Beverages)
Show Figures

Figure 1

Back to TopTop