Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Authors = Taras L. Panikorovskii ORCID = 0000-0002-2323-1413

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7128 KiB  
Article
Mineral Mimetic Material Sr-Exchanged Sitinakite of Different Crystallinity: Phase Transformations during Heat Treatment and the Strength of SR Fixation in a Ceramic Matrix
by Igor A. Perovskiy, Dmitry A. Shushkov, Alexey V. Ponaryadov, Galina O. Kalashnikova, Ayya V. Bazai, Vladimir N. Bocharov and Taras L. Panikorovskii
Materials 2024, 17(9), 1991; https://doi.org/10.3390/ma17091991 - 25 Apr 2024
Cited by 1 | Viewed by 1407
Abstract
A simple method for the direct transformation of Sr-exchanged titanosilicate with the sitinakite structure (IONSIV) into ceramic material through cold pressing and subsequent sintering at 1100 °C for 4 h is presented. The temperature transformation of Sr-exchanged sitinakite showed the stages of recrystallization [...] Read more.
A simple method for the direct transformation of Sr-exchanged titanosilicate with the sitinakite structure (IONSIV) into ceramic material through cold pressing and subsequent sintering at 1100 °C for 4 h is presented. The temperature transformation of Sr-exchanged sitinakite showed the stages of recrystallization of the material with the formation of Sr-Ti phases matsubaraite (Sr4Ti5[Si2O7]2O8), jeppeite (SrTi6O13), tausonite (SrTiO3), and rutile. Leaching experiments showed the efficiency of fixation of Sr cations in a ceramic matrix; extraction into water does not exceed 0.01% and desorption in 1 M HNO3 solution is only 0.19% within three days. The leaching rates of immobilized Sr demonstrate the structural integrity of the formed phases in the ceramic (2.8 × 10−5–1.0 × 10−5 g/(m2·day). The decrease in the crystallinity of the initial Na-sitinakite, which is achieved by reducing the synthesis temperature from 250 to 210 °C, does not affect the sorption capacity and the fixation of cations in the ceramic matrix. The obtained results confirm the prospect of using inexpensive precursors, titanium ore enrichment waste, for the synthesis of sorption materials. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

28 pages, 18340 KiB  
Article
The AM-4 Family of Layered Titanosilicates: Single-Crystal-to-Single-Crystal Transformation, Synthesis and Ionic Conductivity
by Galina O. Kalashnikova, Sergey V. Krivovichev, Victor N. Yakovenchuk, Ekaterina A. Selivanova, Margarita S. Avdontceva, Gregory Yu. Ivanyuk, Yakov A. Pakhomovsky, Darya V. Gryaznova, Natalya A. Kabanova, Yelizaveta A. Morkhova, Olga Yu. Sinel’shchikova, Vladimir N. Bocharov, Anatoly I. Nikolaev, Olga F. Goychuk, Sergei N. Volkov and Taras L. Panikorovskii
Materials 2024, 17(1), 111; https://doi.org/10.3390/ma17010111 - 25 Dec 2023
Cited by 2 | Viewed by 1942
Abstract
Flexible crystal(水晶) structures, which exhibit(展览) single-crystal(水晶)-to-single-crystal(水晶) (SCSC) transformations(转型), are attracting attention(注意) in many applied aspects: magnetic(磁) switches, catalysis, ferroelectrics and sorption. Acid treatment(治疗) for titanosilicate material(材料) AM-4 and natural(自然) compounds with the same structures led to SCSC transformation(转型) by loss(损失) Na+, [...] Read more.
Flexible crystal(水晶) structures, which exhibit(展览) single-crystal(水晶)-to-single-crystal(水晶) (SCSC) transformations(转型), are attracting attention(注意) in many applied aspects: magnetic(磁) switches, catalysis, ferroelectrics and sorption. Acid treatment(治疗) for titanosilicate material(材料) AM-4 and natural(自然) compounds with the same structures led to SCSC transformation(转型) by loss(损失) Na+, Li+ and Zn2+ cations with large structural(结构) changes (20% of the unit(单位)-cell(细胞) volume(体积)). The conservation(保育) of crystallinity through complex(复杂) transformation(转型) is possible due(由于) to the formation(形成) of a strong hydrogen bonding(债券) system(系统). The mechanism(机制) of transformation(转型) has been characterized using single-crystal(水晶) X-ray(射线) diffraction analysis(分析), powder(粉) diffraction, Rietvield refinement, Raman spectroscopy and electron microscopy. The low migration(迁移) energy(能源) of cations in the considered materials(材料) is confirmed using bond(债券)-valence and density(密度) functional(功能) theory(理论) calculations, and the ion conductivity of the AM-4 family’s materials(材料) has been experimentally verified. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

19 pages, 11006 KiB  
Article
Serpentine Overburden Products—Nature-Inspired Materials for Metal Detoxification in Industrially Polluted Soil
by Marina V. Slukovskaya, Anna G. Petrova, Liubov A. Ivanova, Tatiana K. Ivanova, Irina A. Mosendz, Andrey I. Novikov, Anna A. Shirokaya, Mariia V. Kovorotniaia, Taras L. Panikorovskii and Irina P. Kremenetskaya
Toxics 2023, 11(12), 957; https://doi.org/10.3390/toxics11120957 - 23 Nov 2023
Cited by 2 | Viewed by 1801
Abstract
The possibility of plants growing on serpentine soils and the ability of serpentine minerals to accumulate significant amounts of metals was the basis for developing a method for using serpentine-containing materials to restore vegetation in areas with a high level of metal pollution. [...] Read more.
The possibility of plants growing on serpentine soils and the ability of serpentine minerals to accumulate significant amounts of metals was the basis for developing a method for using serpentine-containing materials to restore vegetation in areas with a high level of metal pollution. Serpentine-containing products obtained from phlogopite mining overburden (Kovdor, Murmansk region, Russia) with and without thermal activation were used in a field experiment on the remediation of industrially polluted peat soil. According to the geochemical mobility of the components, one of four fractions was allocated depending on the acidic (HCl) concentration of the solution used for the material treatment: readily mobile (0.001 mol/L), mobile (0.01 mol/L), potentially mobile (0.1 mol/L), and acid-soluble (1.0 mol/L). This study showed that the addition of serpentinites to peat soil changed the fraction composition. The most significant changes were noted for serpentinite components such as Ca and Mg: their concentrations increased 2–3 times even in the smallest portion of serpentine material. On the contrary, the contents of metals in the readily mobile fraction decreased 3–18, 3–23, 5–26, and 2–42 times for Cu, Ni, Fe, and Al, respectively. The main factor causing the decrease in metal mobility was the pH rise due to the release of Ca and Mg compounds into the soil solution. This study showed that the addition of serpentine-containing material at 25 vol.% to peat soil was sufficient to create a geochemical barrier with a stable-functioning vegetation cover. All serpentine-containing materials are recommended for the remediation of large industrially polluted areas. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

14 pages, 5705 KiB  
Article
First Occurrence of Titanian Hydroxylclinohumite in Marble-Hosting Gem Spinel Deposits, Luc Yen, Vietnam
by Vladimir G. Krivovichev, Katherine A. Kuksa, Pavel B. Sokolov, Taras L. Panikorovskii, Vladimir N. Bocharov and Geir Atle Gussiås
Minerals 2023, 13(7), 901; https://doi.org/10.3390/min13070901 - 2 Jul 2023
Cited by 1 | Viewed by 1912
Abstract
In this paper, we report the very first occurrence of titanian hydroxylclinohumite in the marble-hosted gem spinel deposits of the Luc Yen district, northern Vietnam. Hydroxylclinohumite is anhedral and associated with forsterite, tremolite, pargasite, diopside, spinel, dolomite and calcite. Hydroxylclinohumite from the Luc [...] Read more.
In this paper, we report the very first occurrence of titanian hydroxylclinohumite in the marble-hosted gem spinel deposits of the Luc Yen district, northern Vietnam. Hydroxylclinohumite is anhedral and associated with forsterite, tremolite, pargasite, diopside, spinel, dolomite and calcite. Hydroxylclinohumite from the Luc Yen deposit was characterized via electron microprobe analysis, single-crystal X-ray diffraction study, and Raman spectrometry. The average composition is (Mg0.69Ti0.29Fe0.02)Σ1.00Mg7.91(SiO4)4.08[(OH)1.10F0.53O0.37]Σ2.00. (ideally (Mg0.7Ti0.3)Σ1Mg8.0(SiO4)4[(OH)1.2F0.5O0.3]2). The compositions of the analyzed hydroxylclinohumites have a narrow range of Mg/(Mg+Fe+Ti) values (0.96–0.97) and a defined hydroxylclinohumite solid-solution series. Compared with other occurrences, the Luc Yen hydroxylclinohumite has an average titanium content, which attains 0.31 atoms per formula unit (3.93 wt.% TiO2) and a low iron content of 0.04 atoms per formula unit (0.42 wt.% FeO). The formation of hydroxylclinohumite is favored by the proportion of Mg, and Si in the precursor rocks and the increased activity of H2O in the fluid phase. Full article
Show Figures

Figure 1

10 pages, 2396 KiB  
Article
The Crystal Structure of Manganotychite, Na6Mn2(CO3)4(SO4), and Structural Relations in the Northupite Group
by Sergey V. Krivovichev, Taras L. Panikorovskii, Ayya V. Bazai and Mikhail Yu. Sidorov
Crystals 2023, 13(5), 800; https://doi.org/10.3390/cryst13050800 - 10 May 2023
Cited by 3 | Viewed by 2009
Abstract
The crystal structure of manganotychite has been refined using the holotype specimen from the Alluaiv Mountain, Lovozero massif, Kola peninsula, Russia. The mineral is cubic, Fd3¯, a = 14.0015(3) Å, V = 2744.88(18) Å3, Z = 8, R [...] Read more.
The crystal structure of manganotychite has been refined using the holotype specimen from the Alluaiv Mountain, Lovozero massif, Kola peninsula, Russia. The mineral is cubic, Fd3¯, a = 14.0015(3) Å, V = 2744.88(18) Å3, Z = 8, R1 = 0.020 for 388 independently observed reflections. Manganotychite is isotypic to tychite and ferrotychite. Its crystal structure is based upon a three-dimensional infinite framework formed by condensation of MnO6 octahedra and CO3 groups by sharing common O atoms. The sulfate groups and Na+ cations reside in the cavities of the octahedral-triangular metal-carbonate framework. In terms of symmetry and basic construction of the octahedral-triangular framework, the crystal structure of manganotychite is identical to that of northupite, Na3Mg(CO3)2Cl. The transition northupite → tychite can be described as a result of the multiatomic 2Cl → (SO4)2− substitution, where both chlorine and sulfate ions are the extra-framework constituents. However, the positions occupied by sulfate groups and chlorine ions correspond to different octahedral cavities within the skeletons of Na atoms. The crystal structure of northupite can be considered as an interpenetration of two frameworks: anionic [Mg(CO3)2]2− octahedral-triangular framework and cationic [ClNa3]2− framework with the antipyrochlore topology. Both manganotychite and northupite structure types can be described as a modification of the crystal structure of diamond (or the dia net) via the following steps: (i) replacement of a vertex of the dia net by an M4 tetrahedron (no symmetry reduction); (ii) attachment of (CO3) triangles to the triangular faces of the M4 tetrahedra (accompanied by the Fd3¯m → Fd3¯ symmetry reduction); (iii) filling voids of the resulting framework by Na+ cations (no symmetry reduction); and (iv) filling voids of the Na skeleton by either sulfate groups (in tychite-type structures) or chlorine atoms (in northupite). As a result, the information-based structural complexity of manganotychite and northupite exceeds that of the dia net. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

13 pages, 5910 KiB  
Article
Merohedral Mechanism Twining Growth of Natural Cation-Ordered Tetragonal Grossular
by Taras L. Panikorovskii, Irina O. Galuskina, Vladimir N. Bocharov, Vladimir V. Shilovskikh and Evgeny V. Galuskin
Crystals 2022, 12(11), 1638; https://doi.org/10.3390/cryst12111638 - 14 Nov 2022
Cited by 1 | Viewed by 2063
Abstract
Garnet supergroup minerals are in the interest of different applications in geology, mineralogy, and petrology and as optical material for material science. The growth twins of natural tetragonal grossular from the Wiluy River, Yakutia, Russia, were investigated using single-crystal X-ray diffraction, optical studies, [...] Read more.
Garnet supergroup minerals are in the interest of different applications in geology, mineralogy, and petrology and as optical material for material science. The growth twins of natural tetragonal grossular from the Wiluy River, Yakutia, Russia, were investigated using single-crystal X-ray diffraction, optical studies, Raman spectroscopy, microprobe, and scanning electron microscopy. The studied grossular is pseudo-cubic (a = 11.9390 (4), c = 11.9469 (6) Å) and birefringent (0.01). Its structure was refined in the Ia3¯d, I41/acd, I41/a, and I4¯2d space groups. The I41/a space group was chosen as the most possible one due to the absence of violating reflections and ordering of Mg2+ and Fe3+ in two independent octahedral sites, which cause the symmetry breaking according to the group–subgroup relation Ia3¯dI41/a. Octahedral crystals of (H4O4)4−-substituted grossular are merohedrally twinned by twofold axis along [110]. The mechanism of twining growth led to the generation of stacking faults on the (110) plane and results in the formation of crystals with a long prismatic habit. Full article
(This article belongs to the Special Issue Complex Ore Extraction and Utilization)
Show Figures

Figure 1

12 pages, 1754 KiB  
Article
The Crystal Structure of Sergeysmirnovite, MgZn2(PO4)2·4H2O, and Complexity of the Hopeite Group and Related Structures
by Sergey V. Krivovichev, Taras L. Panikorovskii and Victor N. Yakovenchuk
Crystals 2022, 12(8), 1120; https://doi.org/10.3390/cryst12081120 - 10 Aug 2022
Cited by 2 | Viewed by 1988
Abstract
The crystal structure of sergeysmirnovite, MgZn2(PO4)2·4H2O (orthorhombic, Pnma, a = 10.6286(4), b = 18.3700(6), c = 5.02060(15) Å, V = 980.26(6) Å3, Z = 4), a new member of the hopeite group [...] Read more.
The crystal structure of sergeysmirnovite, MgZn2(PO4)2·4H2O (orthorhombic, Pnma, a = 10.6286(4), b = 18.3700(6), c = 5.02060(15) Å, V = 980.26(6) Å3, Z = 4), a new member of the hopeite group of minerals, was determined and refined to R1 = 0.030 using crystals from the Këster mineral deposit in Sakha-Yakutia, Russia. Similar to other members of the hopeite group, the crystal structure of sergeysmirnovite is based upon [Zn(PO4)] layers interlinked via interstitial [MO2(H2O)4]2– octahedra, where M = Mg2+. The layers are parallel to the (010) plane. Within the layer, the ZnO4 tetrahedra share common corners to form chains running along [001]. Sergeysmirnovite is a dimorph of reaphookhillite, a mineral from the Reaphook Hill zinc deposit in South Australia. The relations between sergeysmirnovite and reaphookhillite are the same as those between hopeite and parahopeite. Topological and structural complexity analysis using information theory shows that the hopeite (sergeysmirnovite) structure type is more complex, both structurally and topologically, than the parahopeite (reaphookhillite) structure type. Such complexity relations contradict the general observation that more complex polymorphs possess higher physical density and higher stability, since parahopeite is denser than hopeite. It could be hypothesized that hopeite is metastable under ambient conditions and separated from parahopeite by a structural and topological reconstruction that requires an essential energy barrier that is difficult to overcome. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

13 pages, 1998 KiB  
Article
A Synthetic Analog of the Mineral Ivanyukite: Sorption Behavior to Lead Cations
by Gleb O. Samburov, Galina O. Kalashnikova, Taras L. Panikorovskii, Vladimir N. Bocharov, Aleksandr Kasikov, Ekaterina Selivanova, Ayya V. Bazai, Daria Bernadskaya, Viktor N. Yakovenchuk and Sergey V. Krivovichev
Crystals 2022, 12(3), 311; https://doi.org/10.3390/cryst12030311 - 23 Feb 2022
Cited by 10 | Viewed by 2596
Abstract
The production of electrolytic nickel includes the stage of leaching of captured firing nickel matte dust. The solutions formed during this process contain considerable amounts of Pb, which is difficult to extraction due to its low concentration upon the high-salt background. The sorption [...] Read more.
The production of electrolytic nickel includes the stage of leaching of captured firing nickel matte dust. The solutions formed during this process contain considerable amounts of Pb, which is difficult to extraction due to its low concentration upon the high-salt background. The sorption of lead from model solutions with various compositions by synthetic and natural titanosilicate sorbents (synthetic ivanyukite-Na-T (SIV), ivanyukite-Na-T, and AM-4) have been investigated. The maximal sorption capacity of Pb is up to 400 mg/g and was demonstrated by synthetic ivanyukite In solutions with the high content of Cl (20 g/L), extraction was observed only with a high amount of Na (150 g/L). Molecular mechanisms and kinetics of lead incorporation into ivanyukite were studied by the combination of single-crystal and powder X-ray diffraction, microprobe analysis, and Raman spectroscopy. Incorporation of lead into natural ivanyukite-Na-T with the R3m symmetry by the substitution 2Na+ + 2O2− ↔ Pb2+ + □ + 2OH leds to its transformation into the cubic P−43m Pb-exchanged form with the empirical formulae Pb1.26[Ti4O2.52(OH)1.48(SiO4)3]·3.32(H2O). Full article
(This article belongs to the Special Issue Mineralogical Crystallography (2nd Edition))
Show Figures

Figure 1

20 pages, 25170 KiB  
Article
Ion-Exchange-Induced Transformation and Mechanism of Cooperative Crystal Chemical Adaptation in Sitinakite: Theoretical and Experimental Study
by Taras L. Panikorovskii, Galina O. Kalashnikova, Anatoly I. Nikolaev, Igor A. Perovskiy, Ayya V. Bazai, Victor N. Yakovenchuk, Vladimir N. Bocharov, Natalya A. Kabanova and Sergey V. Krivovichev
Minerals 2022, 12(2), 248; https://doi.org/10.3390/min12020248 - 15 Feb 2022
Cited by 9 | Viewed by 3263
Abstract
The microporous titanosilicate sitinakite, KNa2Ti4(SiO4)2O5(OH)·4H2O, was first discovered in the Khibiny alkaline massif. This material is also known as IONSIV IE-911 and is considered as one of the most effective sorbents [...] Read more.
The microporous titanosilicate sitinakite, KNa2Ti4(SiO4)2O5(OH)·4H2O, was first discovered in the Khibiny alkaline massif. This material is also known as IONSIV IE-911 and is considered as one of the most effective sorbents for Cs+ and Sr2+ from water solutions. We investigate a mechanism of cooperative crystal chemical adaptation caused by the incorporation of La3+ ions into sitinakite structure by the combination of theoretical (geometrical–topological analysis, Voronoi migration map calculation, structural complexity calculation) and empirical methods (PXRD, SCXRD, Raman spectroscopy, scanning electron microscopy). The natural crystals of sitinakite (a = 7.8159(2), c = 12.0167(3) Å) were kept in a 1M solution of La(NO3)3 for 24 h. The ordering of La3+ cations in the channels of the ion-exchanged form La3+Ti4(SiO4)2O5(OH)·4H2O (a = 11.0339(10), b = 11.0598(8), c = 11.8430(7) Å), results in the symmetry breaking according to the group–subgroup relation P42/mcmCmmm. Full article
(This article belongs to the Special Issue Minerals as Advanced Materials)
Show Figures

Figure 1

19 pages, 5118 KiB  
Article
Zr-Rich Eudialyte from the Lovozero Peralkaline Massif, Kola Peninsula, Russia
by Taras L. Panikorovskii, Julia A. Mikhailova, Yakov A. Pakhomovsky, Ayya V. Bazai, Sergey M. Aksenov, Andrey O. Kalashnikov and Sergey V. Krivovichev
Minerals 2021, 11(9), 982; https://doi.org/10.3390/min11090982 - 9 Sep 2021
Cited by 4 | Viewed by 4137
Abstract
The Lovozero peralkaline massif (Kola Peninsula, Russia) has several deposits of Zr, Nb, Ta and rare earth elements (REE) associated with eudialyte-group minerals (EGM). Eudialyte from the Alluaiv Mt. often forms zonal grains with central parts enriched in Zr (more than 3 apfu) [...] Read more.
The Lovozero peralkaline massif (Kola Peninsula, Russia) has several deposits of Zr, Nb, Ta and rare earth elements (REE) associated with eudialyte-group minerals (EGM). Eudialyte from the Alluaiv Mt. often forms zonal grains with central parts enriched in Zr (more than 3 apfu) and marginal zones enriched in REEs. The detailed study of the chemical composition (294 microprobe analyses) of EGMs from the drill cores of the Mt. Alluaiv-Mt. Kedykvyrpakhk deposits reveal more than 70% Zr-enriched samples. Single-crystal X-ray diffraction (XRD) was performed separately for the Zr-rich (4.17 Zr apfu) core and the REE-rich (0.54 REE apfu) marginal zone. It was found that extra Zr incorporates into the octahedral M1A site, where it replaces Ca, leading to the symmetry lowering from R3¯m to R32. We demonstrated that the incorporation of extra Zr into EGMs makes the calculation of the eudialyte formula on the basis of Si + Al + Zr + Ti + Hf + Nb + Ta + W = 29 apfu inappropriate. Full article
(This article belongs to the Special Issue Study of the Eudialyte Group Minerals)
Show Figures

Graphical abstract

27 pages, 6269 KiB  
Article
Eudialyte Group Minerals from the Lovozero Alkaline Massif, Russia: Occurrence, Chemical Composition, and Petrogenetic Significance
by Julia A. Mikhailova, Yakov A. Pakhomovsky, Taras L. Panikorovskii, Ayya V. Bazai and Victor N. Yakovenchuk
Minerals 2020, 10(12), 1070; https://doi.org/10.3390/min10121070 - 29 Nov 2020
Cited by 9 | Viewed by 3470
Abstract
The Lovozero Alkaline Massif intruded through the Archean granite-gneiss and Devonian volcaniclastic rocks ca. 360 Ma ago and formed a large laccolith-type body. The lower part of the massif (the Layered complex) is composed of regularly repeating rhythms: melanocratic nepheline syenite (lujavrite, at [...] Read more.
The Lovozero Alkaline Massif intruded through the Archean granite-gneiss and Devonian volcaniclastic rocks ca. 360 Ma ago and formed a large laccolith-type body. The lower part of the massif (the Layered complex) is composed of regularly repeating rhythms: melanocratic nepheline syenite (lujavrite, at the top), leucocratic nepheline syenite (foyaite), foidolite (urtite). The upper part of the massif (the Eudialyte complex) is indistinctly layered, and lujavrite enriched with eudialyte-group minerals (EGM) prevails there. In this article, we present the results of a study of the chemical composition and petrography of more than 400 samples of the EGM from the main types of rock of the Lovozero massif. In all types of rock, the EGM form at the late magmatic stage later than alkaline clinopyroxenes and amphiboles or simultaneously with it. When the crystallization of pyroxenes and EGM is simultaneous, the content of ferrous iron in the EGM composition increases. The Mn/Fe ratio in the EGM increases during fractional crystallization from lujavrite to foyaite and urtite. The same process leads to an increase in the modal content of EGM in the foyaite of the Layered complex and to the appearance of primary minerals of the lovozerite group in the foyaite of the Eudialyte complex. Full article
(This article belongs to the Special Issue Study of the Eudialyte Group Minerals)
Show Figures

Figure 1

14 pages, 5661 KiB  
Article
The Na2−nHn[Zr(Si2O7)]∙mH2O Minerals and Related Compounds (n = 0–0.5; m = 0.1): Structure Refinement, Framework Topology, and Possible Na+-Ion Migration Paths
by Natalya A. Kabanova, Taras L. Panikorovskii, Vladimir V. Shilovskikh, Natalya S. Vlasenko, Victor N. Yakovenchuk, Sergey M. Aksenov, Vladimir N. Bocharov and Sergey V. Krivovichev
Crystals 2020, 10(11), 1016; https://doi.org/10.3390/cryst10111016 - 9 Nov 2020
Cited by 10 | Viewed by 4194
Abstract
The Na2−nHn[Zr(Si2O7)]∙mH2O family of minerals and related compounds (n = 0–0.5; m = 0.1) consist of keldyshite, Na3H[Zr2(Si2O7)2], and parakeldyshite, Na2 [...] Read more.
The Na2−nHn[Zr(Si2O7)]∙mH2O family of minerals and related compounds (n = 0–0.5; m = 0.1) consist of keldyshite, Na3H[Zr2(Si2O7)2], and parakeldyshite, Na2[Zr(Si2O7)], and synthetic Na2[Zr(Si2O7)]∙H2O. The crystal structures of these materials are based upon microporous heteropolyhedral frameworks formed by linkage of Si2O7 groups and ZrO6 octahedra with internal channels occupied by Na+ cations and H2O molecules. The members of the family have been studied by the combination of theoretical (geometrical–topological analysis, Voronoi migration map calculation, structural complexity calculation), and empirical methods (single-crystal X-ray diffraction, microprobe analysis, and Raman spectroscopy for parakeldyshite). It was found that keldyshite and parakeldyshite have the same fsh topology, while Na2ZrSi2O7∙H2O is different and has the xat topology. The microporous heteropolyhedral frameworks in these materials have a 2-D system of channels suitable for the Na+-ion migration. The crystal structure of keldyshite can be derived from that of parakeldyshite by the Na+ + O2− ↔ OH + □ substitution mechanism, widespread in the postcrystallization processes in hyperagpaitic rocks. Full article
(This article belongs to the Special Issue Crystal Chemistry and Properties of Minerals)
Show Figures

Graphical abstract

43 pages, 15897 KiB  
Article
Copper Minerals at Vesuvius Volcano (Southern Italy): A Mineralogical Review
by Giuseppina Balassone, Carmela Petti, Nicola Mondillo, Taras L. Panikorovskii, Roberto de Gennaro, Piergiulio Cappelletti, Angela Altomare, Nicola Corriero, Maria Cangiano and Loredana D’Orazio
Minerals 2019, 9(12), 730; https://doi.org/10.3390/min9120730 - 26 Nov 2019
Cited by 29 | Viewed by 11991
Abstract
This work is part of a project focused on the Somma–Vesuvius volcano and aimed at identifying Cu minerals related to mineralizing processes associated with magmatic activity in an active magmatic-hydrothermal system. A mineralogical survey was carried out on a set of samples represented [...] Read more.
This work is part of a project focused on the Somma–Vesuvius volcano and aimed at identifying Cu minerals related to mineralizing processes associated with magmatic activity in an active magmatic-hydrothermal system. A mineralogical survey was carried out on a set of samples represented by sublimates and fumarolic products from the collection of the Mineralogical Museum of the University of Naples Federico II (Italy). These samples are mainly related to most recent eruptive episodes of Vesuvius activity, from 1631 onward. Copper-bearing minerals were characterized, as well as associated minerals, by X-ray diffraction (XRD) scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). An investigation on the structural complexity of Cu-mineral assemblages with different temperature formations was also carried out using the TOPOS software package. The main copper phases are sulfates, followed by vanadates, hydroxyhalides, oxides, carbonates, silicates and finally, phosphates. New mineral occurrences for Vesuvius, both Cu-bearing and Cu-free, are described. Nevertheless, the fumarolic/alteration minerals at Vesuvius cannot be considered of economic relevance as a copper reservoir, this type of mineralizations are significant for copper crystal chemistry and for the knowledge of the mineralogical variants. The obtained datasets can be of interest for the knowledge of volcanic byproducts of copper ore deposits (i.e., porphyry copper systems) and of (base) metal segregation processes. Full article
Show Figures

Figure 1

12 pages, 9719 KiB  
Article
Dmisteinbergite, CaAl2Si2O8, a Metastable Polymorph of Anorthite: Crystal-Structure and Raman Spectroscopic Study of the Holotype Specimen
by Andrey A. Zolotarev, Sergey V. Krivovichev, Taras L. Panikorovskii, Vladislav V. Gurzhiy, Vladimir N. Bocharov and Mikhail A. Rassomakhin
Minerals 2019, 9(10), 570; https://doi.org/10.3390/min9100570 - 20 Sep 2019
Cited by 36 | Viewed by 6286
Abstract
The crystal structure of dmisteinbergite has been determined using crystals from the type locality in Kopeisk city, Chelyabinsk area, Southern Urals, Russia. The mineral is trigonal, with the following structure: P312, a = 5.1123(2), c = 14.7420(7) Å, V = 333.67(3) Å [...] Read more.
The crystal structure of dmisteinbergite has been determined using crystals from the type locality in Kopeisk city, Chelyabinsk area, Southern Urals, Russia. The mineral is trigonal, with the following structure: P312, a = 5.1123(2), c = 14.7420(7) Å, V = 333.67(3) Å3, R1 = 0.045, for 762 unique observed reflections. The most intense bands of the Raman spectra at 327s, 439s, 892s, and 912s cm −1 correspond to different types of tetrahedral stretching vibrations: Si–O, Al–O, O–Si–O, and O–Al–O. The weak bands at 487w, 503w, and 801w cm−1 can be attributed to the valence and deformation modes of Si–O and Al–O bond vibrations in tetrahedra. The weak bands in the range of 70–200 cm−1 can be attributed to Ca–O bond vibrations or lattice modes. The crystal structure of dmisteinbergite is based upon double layers of six-membered rings of corner-sharing AlO4 and SiO4 tetrahedra. The obtained model shows an ordering of Al and Si over four distinct crystallographic sites with tetrahedral coordination, which is evident from the average <T–O> bond lengths (T = Al, Si), equal to 1.666, 1.713, 1.611, and 1.748 Å for T1, T2, T3, and T4, respectively. One of the oxygen sites (O4) is split, suggesting the existence of two possible conformations of the [Al2Si2O8]2 layers, with different systems of ditrigonal distortions in the adjacent single layers. The observed disorder has a direct influence upon the geometry of the interlayer space and the coordination of the Ca2 site. Whereas the coordination of the Ca1 site is not influenced by the disorder and is trigonal antiprismatic (distorted octahedral), the coordination environment of the Ca2 site includes disordered O atoms and is either trigonal prismatic or trigonal antiprismatic. The observed structural features suggest the possible existence of different varieties of dmisteinbergite that may differ in: (i) degree of disorder of the Al/Si tetrahedral sites, with completely disordered structure having the P63/mcm symmetry; (ii) degree of disorder of the O sites, which may have a direct influence on the coordination features of the Ca2+ cations; (iii) polytypic variations (different stacking sequences and layer shifts). The formation of dmisteinbergite is usually associated with metastable crystallization in both natural and synthetic systems, indicating the kinetic nature of this phase. Information-based complexity calculations indicate that the crystal structures of metastable CaAl2Si2O8 polymorphs dmisteinbergite and svyatoslavite are structurally and topologically simpler than that of their stable counterpart, anorthite, which is in good agreement with Goldsmith’s simplexity principle and similar previous observations. Full article
Show Figures

Figure 1

13 pages, 4691 KiB  
Article
Thermal Behavior and Phase Transition of Uric Acid and Its Dihydrate Form, the Common Biominerals Uricite and Tinnunculite
by Alina R. Izatulina, Vladislav V. Gurzhiy, Maria G. Krzhizhanovskaya, Nikita V. Chukanov and Taras L. Panikorovskii
Minerals 2019, 9(6), 373; https://doi.org/10.3390/min9060373 - 22 Jun 2019
Cited by 17 | Viewed by 5790
Abstract
Single crystals and powder samples of uric acid and uric acid dihydrate, known as uricite and tinnunculite biominerals, were extracted from renal stones and studied using single-crystal and powder X-ray diffraction (SC and PXRD) at various temperatures, as well as IR spectroscopy. The [...] Read more.
Single crystals and powder samples of uric acid and uric acid dihydrate, known as uricite and tinnunculite biominerals, were extracted from renal stones and studied using single-crystal and powder X-ray diffraction (SC and PXRD) at various temperatures, as well as IR spectroscopy. The results of high-temperature PXRD experiments revealed that the structure of uricite is stable up to 380 °C, and then it loses crystallinity. The crystal structure of tinnunculite is relatively stable up to 40 °C, whereas above this temperature, rapid release of H2O molecules occurs followed by the direct transition to uricite phase without intermediate hydration states. SCXRD studies and IR spectroscopy data confirmed the similarity of uricite and tinnunculite crystal structures. SCXRD at low temperatures allowed us to determine the dynamics of the unit cells induced by temperature variations. The thermal behavior of uricite and tinnunculite is essentially anisotropic; the structures not only expand, but also contract with temperature increase. The maximal expansion occurs along the unit cell parameter of 7 Å (b in uricite and a in tinnunculite) as a result of the shifts of chains of H-bonded uric acid molecules and relaxation of the π-stacking forces, the weakest intermolecular interactions in these structures. The strongest contraction in the structure of uricite occurs perpendicular to the (101) plane, which is due to the orthogonalization of the monoclinic angle. The structure of tinnunculite also contracts along the [010] direction, which is mostly due to the stretching mechanism of the uric acid chains. These phase transitions that occur within the range of physiological temperatures emphasize the particular importance of the structural studies within the urate system, due to their importance in terms of human health. The removal of supersaturation in uric acid in urine at the initial stages of stone formation can occur due to the formation of metastable uric acid dihydrate in accordance with the Ostwald rule, which would serve as a nucleus for the subsequent growth of the stone at further formation stages; afterward, it irreversibly dehydrates into anhydrous uric acid. Full article
Show Figures

Figure 1

Back to TopTop