The AM-4 Family of Layered Titanosilicates: Single-Crystal-to-Single-Crystal Transformation, Synthesis and Ionic Conductivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineral Samples
2.2. Synthesis
2.3. Acidic Treatment
2.4. Chemical Analysis
2.5. Powder and Single-Crystal X-ray Diffraction
2.6. Rietveld Refinement
2.7. Raman Spectroscopy
2.8. Theoretical Studies of Topology and Conductivity Properties
2.9. Electrochemical Measurements
- The AM-4 sample (0.25 g) with graphite electrodes. For the impedance measuring two-contact cell, the sample was heated to 250 °C in a tubular furnace, kept at this temperature for 30 min, and resistance was recorded in the cooling mode. Then, the sample was kept at 500 °C for 30 min, after which its conductivity was recorded in the cooling mode.
- Two parallel AM-4 samples with silver-containing conductive paste. The samples were calcined at 550 °C for 2 h. The impedance measurements were carried out in the heating mode with thermostating at each temperature for 10–15 min. AM-4 during the measurement was heated to 723 °C. At this temperature, a sharp change in conductivity was observed; this is associated with the softening of the sample and the transition to a glassy state. To compare the conductivity of the samples, after the transition to the glassy state and this sample, a tablet was made with the following calcination mode: 550 °C for 2 h and 720 °C for 30 min, as well as additional burning of the paste at 550 °C for 1 h.
- The AM-4:Li sample with silver-containing conductive paste. Preparation and measurement of the electrical conductivity of the sample is similar to the examples from the second point.
3. Results
3.1. The Hydrothermal Synthesis of AM-4:Li Modification
3.2. Composition
3.3. Acidic Treatment–Powder Diffraction
3.4. Recycling Experiments
3.5. Single-Crystal X-ray Diffraction
3.6. Rieveld Refinement
3.7. Raman Spectroscopy
3.8. Theoretical Calculations of the Ion-Conductive Properties for the Lintisite Group Compounds
3.9. Conductivity of the AM-4:Na and AM-4:Li Modifications
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krivovichev, S.V. (Ed.) Minerals as Advanced Materials II; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-20017-5. [Google Scholar]
- Krivovichev, S.V. (Ed.) Minerals as Advanced Materials I; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-77122-7. [Google Scholar]
- Nikolaev, A.I.; Ivanyuk, G.Y.; Krivovichev, S.V.; Yakovenchuk, V.N.; Pakhomovsky, Y.A.; Gerasimova, L.G.; Maslova, M.V.; Selivanova, E.A.; Spiridonova, D.V.; Konopleva, N.G. Nanoporous Titanosilicates: Crystallochemistry, Conditions of Localization in Alkaline Arrays, and Prospects for Synthesis. Vestn. KSC 2010, 51–62. (In Russian) [Google Scholar]
- Clearfield, A.; Bortun, L.; Bortun, A. Alkali Metal Ion Exchange by the Framework Titanium Silicate M2Ti2O3SiO4·nH2O (M=H, Na). React. Funct. Polym. 2000, 43, 85–95. [Google Scholar] [CrossRef]
- Al-Attar, L.; Dyer, A.; Harjulab, R. Sorption of Uranium onto Titanosilicate Materials. J. Radioanal. Nucl. Chem. 2001, 247, 121–128. [Google Scholar] [CrossRef]
- Yakovenchuk, V.N.; Nikolaev, A.P.; Selivanova, E.A.; Pakhomovsky, Y.A.; Korchak, J.A.; Spiridonova, D.V.; Zalkind, O.A.; Krivovichev, S.V. Ivanyukite-Na-T, Ivanyukite-Na-C, Ivanyukite-K, and Ivanyukite-Cu: New Microporous Titanosilicates from the Khibiny Massif (Kola Peninsula, Russia) and Crystal Structure of Ivanyukite-Na-T. Am. Miner. 2009, 94, 1450–1458. [Google Scholar] [CrossRef]
- Perovskiy, I.A.; Yanicheva, N.Y.; Stalyugin, V.V.; Panikorovskii, T.L.; Golov, A.A. Sorption of Multivalent Cations on Titanosilicate Obtained from Natural Raw Materials. The Mechanism and Thermodynamics of Sorption. Microporous Mesoporous Mater. 2021, 311, 110716. [Google Scholar] [CrossRef]
- Panikorovskii, T.L.; Kalashnikova, G.O.; Nikolaev, A.I.; Perovskiy, I.A.; Bazai, A.V.; Yakovenchuk, V.N.; Bocharov, V.N.; Kabanova, N.A.; Krivovichev, S.V. Ion-Exchange-Induced Transformation and Mechanism of Cooperative Crystal Chemical Adaptation in Sitinakite: Theoretical and Experimental Study. Minerals 2022, in press. [Google Scholar] [CrossRef]
- Kuznicki, S.M. Preparation of Small-Pored Crystalline Titanium Molecular Sieve Zeolites 1990. U.S. Patent 4939939, 17 March 1990. [Google Scholar]
- Ricchiardi, G.; Vitillo, J.G.; Cocina, D.; Gribov, E.N.; Zecchina, A. Direct Observation and Modelling of Ordered Hydrogen Adsorption and Catalyzed Ortho–Para Conversion on ETS-10 Titanosilicate Material. Phys. Chem. Chem. Phys. 2007, 9, 2753–2760. [Google Scholar] [CrossRef]
- Anson, A.; Lin, C.C.H.; Kuznicki, T.M.; Kuznicki, S.M. Separation of Ethylene/Ethane Mixtures by Adsorption on Small-Pored Titanosilicate Molecular Sieves. Chem. Eng. Sci. 2010, 65, 807–811. [Google Scholar] [CrossRef]
- Lopes, C.B.; Otero, M.; Coimbra, J.; Pereira, E.; Rocha, J.; Lin, Z.; Duarte, A. Removal of Low Concentration Hg2+ from Natural Waters by Microporous and Layered Titanosilicates. Microporous Mesoporous Mater. 2007, 103, 325–332. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; Kalashnikova, G.O.; Shefer, K.I.; Mel’gunova, E.A.; Panchenko, V.N.; Nikolaev, A.I.; Gil, A. Effect of the Acid Activation on a Layered Titanosilicate AM-4: The Fine-Tuning of Structural and Physicochemical Properties. Appl. Clay Sci. 2020, 186, 105445. [Google Scholar] [CrossRef]
- Siling, M.I.; Laricheva, T.N. Titanium Compounds as Catalysts for Esterification and Transesterification. Russ. Chem. Rev. 1996, 65, 279–286. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Díaz, U.; Corma, A. Layered Zeolitic Materials: An Approach to Designing Versatile Functional Solids. Dalt. Trans. 2014, 43, 10292. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, G. Heterophyllosilicates, a Potential Source of Nanolayers for Materials Science. In Minerals as Advanced Materials I; Springer: Berlin/Heidelberg, Germany, 2008; pp. 157–163. [Google Scholar]
- Chukanov, N.V.; Pekov, I.V. Heterosilicates with Tetrahedral-Octahedral Frameworks: Mineralogical and Crystal-Chemical Aspects. Rev. Miner. Geochem. 2005, 57, 105–143. [Google Scholar] [CrossRef]
- Zubkova, N.V.; Nikolova, R.P.; Chukanov, N.V.; Kostov-Kytin, V.V.; Pekov, I.V.; Varlamov, D.A.; Larikova, T.S.; Kazheva, O.N.; Chervonnaya, N.A.; Shilov, G.V.; et al. Crystal Chemistry and Properties of Elpidite and Its Ag-Exchanged Forms. Minerals 2019, 9, 420. [Google Scholar] [CrossRef]
- Panikorovskii, T.L.; Yakovenchuk, V.N.; Pakhomovsky, Y.A.; Bazai, A.V.; Ivanyuk, G.Y.; Kalashnikova, G.O.; Yanicheva, N.Y.; Aksenov, S.M.; Nikolaev, A.I.; Chukanov, N.V.; et al. Natural Titanosilicates from the Kola Alkaline Province as Prototypes for Functional Materials. Proc. Fersman Sci. Sess. Geol. Inst. KSC RAS 2020, 17, 427–431. (In Russian) [Google Scholar] [CrossRef]
- Pekov, I.V.; Zubkova, N.V.; Yapaskurt, V.O.; Belakovskiy, D.I.; Lykova, I.S.; Britvin, S.N.; Turchkova, A.G.; Pushcharovsky, D.Y. Kamenevite, K2TiSi3O9·H2O, a New Mineral with Microporous Titanosilicate Framework from the Khibiny Alkaline Complex, Kola Peninsula, Russia. Eur. J. Miner. 2019, 31, 557–564. [Google Scholar] [CrossRef]
- Lykova, I.S.; Pekov, I.V.; Zubkova, N.V.; Chukanov, N.V.; Yapaskurt, V.O.; Chervonnaya, N.A.; Zolotarev, A.A. Crystal Chemistry of Cation-Exchanged Forms of Epistolite-Group Minerals, Part I. Ag- and Cu-Exchanged Lomonosovite and Ag-Exchanged Murmanite. Eur. J. Miner. 2015, 27, 535–549. [Google Scholar] [CrossRef]
- Mer’kov, A.N.; Bussen, I.V.; Goiko, E.A.; Kul’chitskaya, E.A.; Men’shikov, Y.P.; Nedorezova, A.P. Raite and Zorite—New Minerals from the Lovozero Tundra. Zap. RMO 1973, 102, 54–62. (In Russian) [Google Scholar] [CrossRef]
- Liu, X.; Thomas, J.K. Synthesis of Microporous Titanosilicates ETS-10 and ETS-4 Using Solid TiO2 as the Source of Titanium. Chem. Commun. 1996, 12, 1435. [Google Scholar] [CrossRef]
- Pérez-Carvajal, J.; Lalueza, P.; Casado, C.; Téllez, C.; Coronas, J. Layered Titanosilicates JDF-L1 and AM-4 for Biocide Applications. Appl. Clay Sci. 2012, 56, 30–35. [Google Scholar] [CrossRef]
- Yakovenchuk, V.N.; Pakhomovsky, Y.A.; Bogdanova, A.N. Kukisvumite—A New Mineral from the Alkaline Pegmatites of the Khibiny Massif (Kola Peninsula). Miner. Zhurnal 1991, 13, 63–67. (In Russian) [Google Scholar]
- Dadachov, M.S.; Rocha, J.; Ferreira, A.; Lin, Z.; Anderson, M.W. Ab Initio Structure Determination of Layered Sodium Titanium Silicate Containing Edge-Sharing Titanate Chains (AM-4) Na3(Na,H)Ti2O2[Si2O6]·2.2H2O. Chem. Commun. 1997, 20, 2371–2372. [Google Scholar] [CrossRef]
- Men’shikov, Y.P.; Sokolova, E.V.; Egorov-Tismenko, Y.K.; Khomyakov, A.P.; Polezhaeva, L.I. Sitinakite, Na2KTi4Si2O13(OH)·4H2O—A New Mineral. Zap. RMO 1992, 121, 94–99. (In Russian) [Google Scholar]
- Behrens, E.A.; Poojary, D.M.; Clearfield, A. Syntheses, Crystal Structures, and Ion-Exchange Properties of Porous Titanosilicates, HM3Ti4O4(SiO4)3 ·4H2O (M = H+, K+, Cs+ ), Structural Analogues of the Mineral Pharmacosiderite. Chem. Mater. 1996, 8, 1236–1244. [Google Scholar] [CrossRef]
- Bortun, A.I.; Bortun, L.N.; Clearfield, A. Hydrothermal Synthesis of Sodium Zirconium Silicates and Characterization of Their Properties. Chem. Mater. 1997, 9, 1854–1864. [Google Scholar] [CrossRef]
- Panikorovskii, T.L.; Yakovenchuk, V.N.; Yanicheva, N.Y.; Pakhomovsky, Y.A.; Shilovskikh, V.V.; Bocharov, V.N.; Krivovichev, S.V. Crystal Chemistry of Ivanyukite-Group Minerals, A3–XH1+x[Ti4O4(SiO4)3](H2O)n (A = Na, K, Cu), ( n = 6–9, x = 0–2): Crystal Structures, Ion-Exchange, Chemical Evolution. Miner. Mag. 2021, 85, 607–619. [Google Scholar] [CrossRef]
- Gerasimova, L.; Nikolaev, A.; Maslova, M.; Shchukina, E.; Samburov, G.; Yakovenchuk, V.; Ivanyuk, G. Titanite Ores of the Khibiny Apatite-Nepheline-Deposits: Selective Mining, Processing and Application for Titanosilicate Synthesis. Minerals 2018, 8, 446. [Google Scholar] [CrossRef]
- Dadachov, M.S.; Harrison, W.T.A. Synthesis and Crystal Structure of Na4[(TiO)4(SiO4)3]·6H2O, a Rhombohedrally Distorted Sodium Titanium Silicate Pharmacosiderite Analogue. J. Solid State Chem. 1997, 134, 409–415. [Google Scholar] [CrossRef]
- Britvin, S.N.; Gerasimova, L.G.; Ivanyuk, G.Y.; Kalashnikova, G.O.; Krzhizhanovskaya, M.G.; Krivovivhev, S.V.; Mararitsa, V.F.; Nikolaev, A.I.; Oginova, O.A.; Panteleev, V.N.; et al. Application of Titanium-Containing Sorbents for Treating Liquid Radioactive Waste with the Subsequent Conservation of Radionuclides in Synroc-Type Titanate Ceramics. Theor. Found. Chem. Eng. 2016, 50, 598–606. [Google Scholar] [CrossRef]
- Nikolaev, A.I.; Samburov, G.O.; Kalashnikova, G.O. Method for the Extraction of Silver from Pyrometallurgical Waste. Patent number RU 2021124566 A, 16 February 2022. [Google Scholar]
- Spiridonova, D.V.; Krivovichev, S.V.; Yakovenchuk, V.N.; Pakhomovsky, Y.A. Crystal Structures of the Rb- and Sr-Exchanged Forms of Ivanyukite-Na-T. Geol. Ore Depos. 2011, 53, 670–677. [Google Scholar] [CrossRef]
- Yakovenchuk, V.N.; Selivanova, E.A.; Krivovichev, S.V.; Pakhomovsky, Y.A.; Spiridonova, D.V.; Kasikov, A.G.; Ivanyuk, G.Y. Ivanyukite-Group Minerals: Crystal Structure and Cation-Exchange Properties. In Minerals as Advanced Materials II; Springer: Berlin/Heidelberg, Germany, 2011; pp. 205–211. [Google Scholar]
- Ivanyuk, G.Y.; Yakovenchuk, V.N.; Pakhomovsky, Y.A. Where Are New Minerals Hiding? The Main Features of Rare Mineral Localization Within Alkaline Massifs. In Minerals as Advanced Materials II; Springer: Berlin/Heidelberg, Germany, 2011; pp. 13–24. [Google Scholar]
- Lin, Y.-Y.; Gustafson, W.J.; Murray, S.E.; Shoemaker, D.P.; Ertekin, E.; Krogstad, J.A.; Perry, N.H. Perovskite Na-Ion Conductors Developed from Analogous Li3xLa2/3−xTiO3 (LLTO): Chemo-Mechanical and Defect Engineering. J. Mater. Chem. A 2021, 9, 21241–21258. [Google Scholar] [CrossRef]
- Nowagiel, M.; Samsel, M.J.; Pietrzak, T.K. Towards the High Phase Purity of Nanostructured Alluaudite-Type Glass-Ceramics Cathode Materials for Sodium Ion Batteries. Materials 2021, 14, 4997. [Google Scholar] [CrossRef] [PubMed]
- Evstigneeva, M.A.; Nalbandyan, V.B.; Petrenko, A.A.; Medvedev, B.S.; Kataev, A.A. A New Family of Fast Sodium Ion Conductors: Na2M2TeO6 (M = Ni, Co, Zn, Mg). Chem. Mater. 2011, 23, 1174–1181. [Google Scholar] [CrossRef]
- Takahashi, T.; Kuwabara, K.; Shibata, M. Solid-State Ionics—Conductivities of Na+ Ion Conductors Based on NASICON. Solid State Ion. 1980, 1, 163–175. [Google Scholar] [CrossRef]
- Gault, R.A.; Ercit, T.S.; Grice, J.D.; Van Velthuizen, J. Manganokukisvumite, a New Mineral Species from Mont Saint-Hilaire, Quebec. Can. Miner. 2004, 42, 781–785. [Google Scholar] [CrossRef]
- Khomyakov, A.P.; Polezhaeva, L.I.; Merlino, S.; Pasero, M. Lintisite, Na3LiTiSi4O14 2H2O—A New Mineral. Zap. RMO 1990, 119, 76–80. (In Russian) [Google Scholar]
- Yakovenchuk, V.N.; Ivanyuk, G.Y.; Krivovichev, S.V.; Pakhomovsky, Y.A.; Selivanova, E.A.; Korchak, J.A.; Men’shikov, Y.P.; Drogobuzhskaya, S.V.; Zalkind, O.A. Eliseevite, Na1.5Li[Ti2Si4O12.5(OH)1.5]·2H2O, a New Microporous Titanosilicate from the Lovozero Alkaline Massif (Kola Peninsula, Russia). Am. Miner. 2011, 96, 1624–1629. [Google Scholar] [CrossRef]
- Yakovenchuk, V.N.; Ivanyuk, G.Y.; Pakhomovsky, Y.A.; Selivanova, E.A.; Men’Shikov, Y.P.; Korchak, J.A.; Krivovichev, S.V.; Spiridonova, D.V.; Zalkind, O.A. Punkaruaivite, LiTi2[Si4O11(OH)](OH) 2·H2O, a New Mineral Species from Hydrothermal Assemblages, Khibiny and Lovozero Alkaline Massifs, Kola Peninsula, Russia. Can. Miner. 2010, 48, 41–50. [Google Scholar] [CrossRef]
- Samburov, G.O.; Kalashnikova, G.O.; Panikorovskii, T.L.; Bocharov, V.N.; Kasikov, A.; Selivanova, E.; Bazai, A.V.; Bernadskaya, D.; Yakovenchuk, V.N.; Krivovichev, S.V. A Synthetic Analog of the Mineral Ivanyukite: Sorption Behavior to Lead Cations. Crystals 2022, 12, 311. [Google Scholar] [CrossRef]
- Casado, C.; Ambroj, D.; Mayoral, Á.; Vispe, E.; Téllez, C.; Coronas, J. Synthesis, Swelling, and Exfoliation of Microporous Lamellar Titanosilicate AM-4. Eur. J. Inorg. Chem. 2011, 2011, 2247–2253. [Google Scholar] [CrossRef]
- Kalashnikova, G.O.; Zhitova, E.S.; Selivanova, E.A.; Pakhomovsky, Y.A.; Yakovenchuk, V.N.; Ivanyuk, G.Y.; Kasikov, A.G.; Drogobuzhskaya, S.V.; Elizarova, I.R.; Kiselev, Y.G.; et al. The New Method for Obtaining Titanosilicate AM-4 and Its Decationated Form: Crystal Chemistry, Properties and Advanced Areas of Application. Microporous Mesoporous Mater. 2021, 313, 110787. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; Lukoyanov, I.A.; Kalashnikova, G.O.; Panchenko, V.N.; Shefer, K.I.; Gerasimov, E.Y.; Mel’gunov, M.S. Synthesis of Glycidol via Transesterification Glycerol with Dimethylcarbonate in the Presence of Composites Based on a Layered Titanosilicate AM-4 and ZIF-8. Mol. Catal. 2023, 539, 113014. [Google Scholar] [CrossRef]
- Yakovenchuk, V.N.; Krivovichev, S.V.; Pakhomovsky, Y.A.; Selivanova, E.A.; Ivanyuk, G.Y. Microporous Titanosilicates of the Lintisite-Kukisvumite Group and Their Transformation in Acidic Solutions. In Minerals as Advanced Materials II; Springer: Berlin/Heidelberg, Germany, 2011; pp. 229–238. [Google Scholar]
- Blatov, V.A.; Ilyushin, G.D.; Blatova, O.A.; Anurova, N.A.; Ivanov-Schits, A.K.; Dem’yanets, L.N. Analysis of Migration Paths in Fast-Ion Conductors with Voronoi–Dirichlet Partition. Acta Crystallogr. Sect. B Struct. Sci. 2006, 62, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Kalashnikova, G.O.; Nikolaev, A.I.; Gerasimova, L.G.; Selivanova, E.A.; Yakovenchuk, V.N.; Ivayuk, G.Y.; Pakhomovsky, Y.A.; Krivovichev, S.V. Method for Producing Csystalline Titanosilicate. Patent RU 2567314 C1, 2 July 2015. [Google Scholar]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Izumi, F.; Momma, K. Three-Dimensional Visualization in Powder Diffraction. Solid State Phenom. 2007, 130, 15–20. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Redfern, S.A.T. Unit Cell Refinement from Powder Diffraction Data: The Use of Regression Diagnostics. Miner. Mag. 1997, 61, 65–77. [Google Scholar] [CrossRef]
- Agilent Technologies CrysAlis CCD and CrysAlis RED; Oxford Diffraction Ltd.: Yarnton, UK, 2014.
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Pasero, M.; Merlino, S.; Ferro, O. The Crystal Structure of Kukisvumite, Na6ZnTi4(Si2O6)4O4·4H2O. Z. Krist. Cryst. Mater. 2000, 215, 352–356. [Google Scholar] [CrossRef]
- Merlino, S.; Pasero, M.; Khomyakov, A.P. The Crystal Structure of Lintisite, Na3LiTi2[Si2O6]2O2·2H2O, a New Titanosilicate from Lovozero (USSR). Z. Krist. 1990, 193, 137–148. [Google Scholar] [CrossRef]
- Anurova, N.A.; Blatov, V.A.; Ilyushin, G.D.; Proserpio, D.M. Natural Tilings for Zeolite-Type Frameworks. J. Phys. Chem. C 2010, 114, 10160–10170. [Google Scholar] [CrossRef]
- Eremin, R.A.; Kabanova, N.A.; Morkhova, Y.A.; Golov, A.A.; Blatov, V.A. High-Throughput Search for Potential Potassium Ion Conductors: A Combination of Geometrical-Topological and Density Functional Theory Approaches. Solid State Ion. 2018, 326, 188–199. [Google Scholar] [CrossRef]
- Xie, L.S.; Alexandrov, E.V.; Skorupskii, G.; Proserpio, D.M.; Dincǎ, M. Diverse π-π Stacking Motifs Modulate Electrical Conductivity in Tetrathiafulvalene-Based Metal-Organic Frameworks. Chem. Sci. 2019, 10, 8558–8565. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, V.Y.; Medrish, I.V.; Ilyushin, G.D.; Blatov, V.A. From Clusters to Crystals: Scale Chemistry of Intermetallics. Struct. Chem. 2019, 30, 2015–2027. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Blatov, V.A.; Delgado-Friedrichs, O.; O’Keeffe, M.; Proserpio, D.M. Three-Periodic Nets and Tilings: Natural Tilings for Nets. Acta Crystallogr. Sect. A Found. Crystallogr. 2007, 63, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Anurova, N.A.; Blatov, V.A. Analysis of Ion-Migration Paths in Inorganic Frameworks by Means of Tilings and Voronoi–Dirichlet Partition: A Comparison. Acta Crystallogr. Sect. B Struct. Sci. 2009, 65, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wong, L.L.; Adams, S. SoftBV—A Software Tool for Screening the Materials Genome of Inorganic Fast Ion Conductors. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2019, 75, 18–33. [Google Scholar] [CrossRef]
- Wong, L.L.; Phuah, K.C.; Dai, R.; Chen, H.; Chew, W.S.; Adams, S. Bond Valence Pathway Analyzer—An Automatic Rapid Screening Tool for Fast Ion Conductors within SoftBV. Chem. Mater. 2021, 33, 625–641. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Henkelman, G.; Jónsson, H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys. 2000, 113, 9978–9985. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Emelyanova, Y.V.; Morozova, M.V.; Mikhailovskaya, Z.A.; B’yanova, E.C. Impedance Spectroscopy: Theory and Application; Ministry of Education and Science of the Russian Federation, Ural Federal University: Ekaterinburg, Russia, 2017. [Google Scholar]
- Yakovenchuk, V.; Pakhomovsky, Y.; Panikorovskii, T.; Zolotarev, A.; Mikhailova, J.; Bocharov, V.; Krivovichev, S.; Ivanyuk, G. Chirvinskyite, (Na,Ca)13(Fe,Mn,□)2(Ti,Nb)2(Zr,Ti)3-(Si2O7)4(OH,O,F)12, a New Mineral with a Modular Wallpaper Structure, from the Khibiny Alkaline Massif (Kola Peninsula, Russia). Minerals 2019, 9, 219. [Google Scholar] [CrossRef]
- Celestian, A.J.; Chappell, C.J.; Rucks, M.J.; Norris, P. Structure Determination and Time-Resolved Raman Spectroscopy of Yttrium Ion Exchange into Microporous Titanosilicate ETS-4. Inorg. Chem. 2016, 55, 11057–11063. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.L.; López, A.; Theiss, F.L.; Graça, L.M.; Scholz, R. A Vibrational Spectroscopic Study of the Silicate Mineral Lomonosovite Na5Ti2(Si2O7)(PO4)O2. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 134, 53–57. [Google Scholar] [CrossRef]
- Zhang, M.; Redhammer, G.J.; Salje, E.K.H.; Mookherjee, M. LiFeSi2O6 and NaFeSi2O6 at Low Temperatures: An Infrared Spectroscopic Study. Phys. Chem. Miner. 2002, 29, 609–616. [Google Scholar] [CrossRef]
- McMillan, P.F. Structural Studies of Silicate Glasses and Melts—Applications and Limitations of Raman Spectroscopy. Am. Miner. 1984, 69, 622–644. [Google Scholar]
- Celestian, A.J.; Powers, M.; Rader, S. In Situ Raman Spectroscopic Study of Transient Polyhedral Distortions during Cesium Ion Exchange into Sitinakite. Am. Miner. 2013, 98, 1153–1161. [Google Scholar] [CrossRef]
- Ignatyev, I.S.; Montejo, M.; López González, J.J. Structure and Vibrational Spectra of Ti(IV) Hydroxides and Their Clusters with Expanded Titanium Coordination. DFT Study. J. Phys. Chem. A 2007, 111, 7973–7979. [Google Scholar] [CrossRef]
- Hu, W.; Li, L.; Li, G.; Liu, Y.; Withers, R.L. Atomic-Scale Control of TiO6 Octahedra through Solution Chemistry towards Giant Dielectric Response. Sci. Rep. 2015, 4, 6582. [Google Scholar] [CrossRef] [PubMed]
- Kabanova, N.A.; Morkhova, Y.A.; Antonyuk, A.V.; Frolov, E.I. Prospective Oxygen-Ion Conductors LnXO: Geometry and Energy Calculations. Solid State Ion. 2023, 391, 116142. [Google Scholar] [CrossRef]
- Shu, J.; Wu, K.; Wang, P.; Li, P.; Lin, X.; Shao, L.; Shui, M.; Long, N.; Wang, D. Lithiation and Delithiation Behavior of Sodium Lithium Titanate Anode. Electrochim. Acta 2015, 173, 595–606. [Google Scholar] [CrossRef]
- Nangia, A.K.; Desiraju, G.R. Crystal Engineering: An Outlook for the Future. Angew. Chemie Int. Ed. 2019, 58, 4100–4107. [Google Scholar] [CrossRef] [PubMed]
- Rabone, J.; Yue, Y.-F.; Chong, S.Y.; Stylianou, K.C.; Bacsa, J.; Bradshaw, D.; Darling, G.R.; Berry, N.G.; Khimyak, Y.Z.; Ganin, A.Y.; et al. An Adaptable Peptide-Based Porous Material. Science 2010, 329, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.; Karothu, D.P.; Naumov, P. Crystal Adaptronics: Mechanically Reconfigurable Elastic and Superelastic Molecular Crystals. Angew. Chem. Int. Ed. 2018, 57, 8837–8846. [Google Scholar] [CrossRef]
- Carrington, E.J.; McAnally, C.A.; Fletcher, A.J.; Thompson, S.P.; Warren, M.; Brammer, L. Solvent-Switchable Continuous-Breathing Behaviour in a Diamondoid Metal–Organic Framework and Its Influence on CO2 versus CH4 Selectivity. Nat. Chem. 2017, 9, 882–889. [Google Scholar] [CrossRef]
- Yao, Z.-S.; Guan, H.; Shiota, Y.; He, C.-T.; Wang, X.-L.; Wu, S.-Q.; Zheng, X.; Su, S.-Q.; Yoshizawa, K.; Kong, X.; et al. Giant Anisotropic Thermal Expansion Actuated by Thermodynamically Assisted Reorientation of Imidazoliums in a Single Crystal. Nat. Commun. 2019, 10, 4805. [Google Scholar] [CrossRef]
- Reed, D.A.; Keitz, B.K.; Oktawiec, J.; Mason, J.A.; Runčevski, T.; Xiao, D.J.; Darago, L.E.; Crocellà, V.; Bordiga, S.; Long, J.R. A Spin Transition Mechanism for Cooperative Adsorption in Metal–Organic Frameworks. Nature 2017, 550, 96–100. [Google Scholar] [CrossRef]
- Yamagishi, H.; Sato, H.; Hori, A.; Sato, Y.; Matsuda, R.; Kato, K.; Aida, T. Self-Assembly of Lattices with High Structural Complexity from a Geometrically Simple Molecule. Science 2018, 361, 1242–1246. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Hu, C.; Ward, M.D. Guest Exchange through Single Crystal–Single Crystal Transformations in a Flexible Hydrogen-Bonded Framework. J. Am. Chem. Soc. 2014, 136, 14200–14206. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.S.; Trinh, M.T.; Kann, R.L.; Chen, J.; Elbaz, G.A.; Masurkar, A.; Atallah, T.L.; Paley, M.V.; Patel, N.; Paley, D.W.; et al. Single-Crystal-to-Single-Crystal Intercalation of a Low-Bandgap Superatomic Crystal. Nat. Chem. 2017, 9, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, B.; Xue, J.-P.; Xie, J.; Yao, Z.-S.; Tao, J. Giant Single-Crystal-to-Single-Crystal Transformations Associated with Chiral Interconversion Induced by Elimination of Chelating Ligands. Nat. Commun. 2021, 12, 6908. [Google Scholar] [CrossRef]
- Kalashnikova, G.O.; Selivanova, E.A.; Yakovenchuk, V.N.; Pachomovsky, Y.A.; Chernyat’eva, A.P.; Krivovichev, S.V.; Ivanyuk, G.Y. Titanosilicate Nanopuzzle Based on Single-Crystal-to-Single-Crystal Transformation of Kukisvumite → Ti2Si4O10(OH)4. In Minerals as Advanced Materials III; Springer: Berlin/Heidelberg, Germany, 2013; pp. 45–48. [Google Scholar]
Compound | Formulae | Space Group | Unit Cell Parameters | Source |
---|---|---|---|---|
Kukisvumite | Na3Zn0.5[Ti2Si4O14]·2H2O | Pccn | a = 28.889(4), b = 8.604(4), c = 5.215(3) Å | [26] |
Manganokukisvumite | Na3Mn0.5[Ti2Si4O14]·2H2O | Pccn | a = 29.05(2), b = 8.612(6), c = 5.220(4) Å | [43] |
Lintisite | Na3LiTi2[Si4O14]·2H2O | C2/c | a = 28.583(4), b = 8.600(1), c = 5.219(1) Å, β = 91.03(2)° | [44] |
Eliseevite | Na1.5LiTi2[Si4O12.5(OH)1.5]·2H2O | C2/c | a = 27.48(1), b = 8.669(4), c = 5.246(2) Å, β = 90.782(8)° | [45] |
Punkaruaivite | Li[Ti2Si4O11(OH)3]·H2O | C2/c | a = 26.68(1), b = 8.75(1), c = 5.24(1) Å, β = 91.2(2)° | [46] |
AM-4 | Na3(Na,H)[Ti2Si4O14]·2H2O | A2/a | a = 5.187(2), b = 8.582(2), c = 29.239(3) Å, β = 89.49(5)° | [27] |
Mineral/Material | Kukisvumite | K3 | Lintisite | L3 |
---|---|---|---|---|
Formula | Na3Zn0.50Ti2(Si4O12)O2·2H2O | Ti2(Si4O5)(OH)2)(OH)2 | LiNa3Ti2(Si4O12)2O2·2H2O | Ti(Si2O5)(OH))(OH) |
Temperature/K | 293(2) | 293(2) | 293(2) | 293(2) |
Crystal system | orthorhombic | orthorhombic | monoclinic | monoclinic |
Space group | Pccn | P212121 | C2/c | P21/c |
a/Å | 28.8905(10) | 23.418(3) | 28.5323(9) | 11.9324(16) |
b/Å | 8.5875(3) | 8.7456(8) | 8.5895(3) | 8.7471(11) |
c/Å | 5.2086(2) | 5.2039(5) | 5.2076(2) | 5.2029(5) |
β/° | 90 | 90 | 90.982(3) | 100.669(12) |
Volume/Å3 | 1292.24(8) | 1065.77(19) | 1276.08(8) | 533.66(11) |
Z | 4 | 4 | 4 | 2 |
ρcalcg/cm3 | 2.904 | 2.693 | 2.832 | 2.689 |
μ/mm−1 | 2.710 | 2.032 | 1.828 | 2.029 |
F(000) | 1102.0 | 848.0 | 1072.0 | 424.0 |
Crystal size/mm3 | 0.22 × 0.11 × 0.08 | 0.1 × 0.04 × 0.03 | 0.17 × 0.12 × 0.1 | 0.2 × 0.1 × 0.09 |
Radiation | Mo Kα (λ = 0.71073) | |||
2Θ range for data collection/° | 8.464 to 66.742 | 6.96 to 51.988 | 6.392 to 66.802 | 6.95 to 51.988 |
Index ranges | −31 ≤ h ≤ 43, −12 ≤ k ≤ 12, −5 ≤ l ≤ 7 | −28 ≤ h ≤ 25, −10 ≤ k ≤ 9, −5 ≤ l ≤ 6 | −42 ≤ h ≤ 42, −12 ≤ k ≤ 12, −7 ≤ l ≤ 7 | −14 ≤ h ≤ 14, −10 ≤ k ≤ 10, −6 ≤ l ≤ 6 |
Reflections collected | 10,481 | 5222 | 15,644 | 3725 |
Independent reflections | 2180 [Rint = 0.0303, Rsigma = 0.0251] | 1982 [Rint = 0.0878, Rsigma = 0.0613] | 2248 [Rint = 0.0434, Rsigma = 0.0296] | 1048 [Rint = 0.0845, Rsigma = 0.0532] |
Data/restraints/parameters | 2180/0/133 | 1982/120/177 | 2248/0/127 | 1048/12/92 |
Goodness of fit on F2 | 1.180 | 2.853 | 1.065 | 1.948 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0384, wR2 = 0.1039 | R1 = 0.2270, wR2 = 0.5765 | R1 = 0.0331, wR2 = 0.0877 | R1 = 0.1433, wR2 = 0.4223 |
Final R indexes [all data] | R1 = 0.0443, wR2 = 0.1062 | R1 = 0.2354, wR2 = 0.5825 | R1 = 0.0478, wR2 = 0.0937 | R1 = 0.1502, wR2 = 0.4277 |
Largest diff. peak/hole/e Å−3 | 0.83/−0.88 | 6.66/−3.53 | 0.96/−0.61 | 3.43/−1.68 |
Flack parameter | 0.5 |
Constituent | Kukisvumite | K3 | Lintisite | L3 |
---|---|---|---|---|
in wt. % | ||||
Li2O * | – | – | 2.70 | – |
Na2O | 16.10 | 0.09 | 14.71 | 0.30 |
SiO2 | 42.75 | 54.47 | 45.58 | 56.09 |
K2O | – | 0.09 | – | – |
TiO2 | 26.86 | 35.08 | 28.83 | 33.99 |
MnO | 0.74 | – | – | – |
FeO | 0.25 | 0.26 | 0.30 | 0.49 |
ZnO | 5.88 | – | – | – |
Nb2O5 | 0.86 | 0.37 | 0.52 | 1.49 |
H2O ** | 6.50 | 8.40 | 7.36 | 9.10 * |
Sum | 99.94 | 98.76 | 100.00 | 101.46 |
in formula coefficients (on the basis of Si = 4) | ||||
Na | 2.92 | 0.01 | 2.50 | 0.04 |
K | – | 0.01 | – | – |
Li | – | – | 0.95 | – |
Zn | 0.41 | – | – | – |
Mn2+ | 0.06 | – | – | – |
Ti | 1.89 | 1.94 | 1.90 | 1.82 |
Nb | 0.04 | 0.01 | 0.02 | 0.05 |
Fe3+ | 0.02 | 0.02 | 0.02 | 0.03 |
Si | 4.00 | 4.00 | 4.00 | 4.00 |
H | 4.07 | 4.12 | 4.32 | 4.34 |
O | 15.86 | 14.00 | 15.78 | 14.00 |
Compound | Formulae | Em (Na+), eV | Em (Li+/Zn2+), eV | Em (H+), eV | GII | ICSD Code | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1D | 2D | 3D | 1D | 2D | 3D | 1D | 2D | 3D | ||||
Kukisvumite | H8Na6ZnTi4Si8O32 | 1.11 | 1.54 | >5 | 0.50 | 1.91 | 3.67 | 0.39 | 0.59 | 1.08 | 0.25 | 92530 |
AM-4 | Na8Ti4Si8O28 | 0.53 * | 1.15 | 1.15 | - | - | - | 0.35 | 0.85 | 1.20 | 0.29 | 84261 |
Lintisite | H4LiNa3Si4Ti2O16 | 1.49 | >5 | >5 | 0.76 | 2.43 | 4.12 | 0.41 | 0.60 | 0.93 | 0.32 | - |
Type of Atom Position | AM-4-I | AM-4-II | ||
---|---|---|---|---|
Cation | Em, eV | Cation | Em, eV | |
«cross-linking» position | Li+ | 0.68 | Na+ | 0.34 |
framework position | Na+ | 1.85 | Li+ | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalashnikova, G.O.; Krivovichev, S.V.; Yakovenchuk, V.N.; Selivanova, E.A.; Avdontceva, M.S.; Ivanyuk, G.Y.; Pakhomovsky, Y.A.; Gryaznova, D.V.; Kabanova, N.A.; Morkhova, Y.A.; et al. The AM-4 Family of Layered Titanosilicates: Single-Crystal-to-Single-Crystal Transformation, Synthesis and Ionic Conductivity. Materials 2024, 17, 111. https://doi.org/10.3390/ma17010111
Kalashnikova GO, Krivovichev SV, Yakovenchuk VN, Selivanova EA, Avdontceva MS, Ivanyuk GY, Pakhomovsky YA, Gryaznova DV, Kabanova NA, Morkhova YA, et al. The AM-4 Family of Layered Titanosilicates: Single-Crystal-to-Single-Crystal Transformation, Synthesis and Ionic Conductivity. Materials. 2024; 17(1):111. https://doi.org/10.3390/ma17010111
Chicago/Turabian StyleKalashnikova, Galina O., Sergey V. Krivovichev, Victor N. Yakovenchuk, Ekaterina A. Selivanova, Margarita S. Avdontceva, Gregory Yu. Ivanyuk, Yakov A. Pakhomovsky, Darya V. Gryaznova, Natalya A. Kabanova, Yelizaveta A. Morkhova, and et al. 2024. "The AM-4 Family of Layered Titanosilicates: Single-Crystal-to-Single-Crystal Transformation, Synthesis and Ionic Conductivity" Materials 17, no. 1: 111. https://doi.org/10.3390/ma17010111