Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Authors = Shuhao Huo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2018 KiB  
Review
Influence of Light Regimes on Production of Beneficial Pigments and Nutrients by Microalgae for Functional Plant-Based Foods
by Xiang Huang, Feng Wang, Obaid Ur Rehman, Xinjuan Hu, Feifei Zhu, Renxia Wang, Ling Xu, Yi Cui and Shuhao Huo
Foods 2025, 14(14), 2500; https://doi.org/10.3390/foods14142500 - 17 Jul 2025
Viewed by 481
Abstract
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic [...] Read more.
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic microalgae are particularly important as a source of food products due to their ability to biosynthesize high-value compounds. Their photosynthetic efficiency and biosynthetic activity are directly influenced by light conditions. The primary goal of this study is to track the changes in the light requirements of various high-value microalgae species and use advanced systems to regulate these conditions. Artificial intelligence (AI) and machine learning (ML) models have emerged as pivotal tools for intelligent microalgal cultivation. This approach involves the continuous monitoring of microalgal growth, along with the real-time optimization of environmental factors and light conditions. By accumulating data through cultivation experiments and training AI models, the development of intelligent microalgae cell factories is becoming increasingly feasible. This review provides a concise overview of the regulatory mechanisms that govern microalgae growth in response to light conditions, explores the utilization of microalgae-based products in plant-based foods, and highlights the potential for future research on intelligent microalgae cultivation systems. Full article
Show Figures

Graphical abstract

24 pages, 1332 KiB  
Review
Strategies for the Removal of Per- and Polyfluoroalkyl Substances: A Review
by Feng Wang, Mingtong Wang, Ling Xu, Jingya Qian, Bin Zou, Shuhao Huo, Guoqiang Guan and Kai Cui
Catalysts 2025, 15(7), 678; https://doi.org/10.3390/catal15070678 - 12 Jul 2025
Viewed by 796
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of synthetic fluorine-containing organic compounds that exhibit chemical and thermal stability due to the highly stable carbon–fluorine bonds present in their molecular structures. This characteristic makes them slow to degrade in the natural environment. With [...] Read more.
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of synthetic fluorine-containing organic compounds that exhibit chemical and thermal stability due to the highly stable carbon–fluorine bonds present in their molecular structures. This characteristic makes them slow to degrade in the natural environment. With the widespread application of these compounds in the industrial and consumer goods sectors, environmental media such as water, air, soil, and food have been severely polluted, posing a range of significant threats to public health. Therefore, the development of efficient, economical, and environmentally friendly PFAS removal technologies has become a current research hotspot. This review systematically summarizes the current technologies for removing PFASs from four perspectives—physical, chemical, biological, and combined treatments—enabling a clear understanding of the existing treatment strategies to be discussed. In addition, suggestions for future research on PFAS removal are provided. Full article
Show Figures

Graphical abstract

30 pages, 1493 KiB  
Review
Improving the Properties of Laccase Through Heterologous Expression and Protein Engineering
by Guoqiang Guan, Beidian Li, Ling Xu, Jingya Qian, Bin Zou, Shuhao Huo, Zhongyang Ding, Kai Cui and Feng Wang
Microorganisms 2025, 13(6), 1422; https://doi.org/10.3390/microorganisms13061422 - 18 Jun 2025
Viewed by 711
Abstract
Laccase, a member of the blue multicopper oxidase family, is widely distributed across diverse taxonomic groups, including fungi, bacteria, plants, and insects. This enzyme drives biocatalytic processes through the oxidation of phenolic compounds, aromatic amines, and lignin derivatives, underpinning its significant potential in [...] Read more.
Laccase, a member of the blue multicopper oxidase family, is widely distributed across diverse taxonomic groups, including fungi, bacteria, plants, and insects. This enzyme drives biocatalytic processes through the oxidation of phenolic compounds, aromatic amines, and lignin derivatives, underpinning its significant potential in the food industry, cosmetics, and environmental remediation. However, wild-type laccases face critical limitations, such as low catalytic efficiency, insufficient expression yields, and poor stability. To address these bottlenecks, this review systematically examines optimization strategies for heterologous laccase expression by fungal and bacterial systems. Additionally, we discuss protein engineering for laccase modification, with a focus on the structural basis and active-site redesign. The comprehensive analysis presented herein provides strategic suggestions for advancing laccase engineering, ultimately establishing a theoretical framework for developing high-efficiency, low-cost engineered variants for large-scale biomanufacturing and green chemistry applications. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

19 pages, 1637 KiB  
Article
Proteomic Analysis of Listeria monocytogenes Subjected to Pulsed Magnetic Field
by Di Chen, Jingya Qian, Shuhao Huo, Feng Wang, Haile Ma and Shan Liu
Foods 2025, 14(11), 1871; https://doi.org/10.3390/foods14111871 - 24 May 2025
Viewed by 448
Abstract
As one of the non-thermal technologies, the pulsed magnetic field (PMF) has increasingly attracted attention for its application in food microbial inactivation. In this study, a proteomic analysis was conducted to elucidate the molecular mechanism underlying the inactivation of Listeria monocytogenes (L. monocytogenes) by [...] Read more.
As one of the non-thermal technologies, the pulsed magnetic field (PMF) has increasingly attracted attention for its application in food microbial inactivation. In this study, a proteomic analysis was conducted to elucidate the molecular mechanism underlying the inactivation of Listeria monocytogenes (L. monocytogenes) by a PMF. A total of 79 proteins, comprising 65 upregulated and 14 downregulated proteins, were successfully identified as differentially expressed proteins (DEPs, >1.2-fold or <0.83-fold, p-value < 0.05) in Listeria monocytogenes exposed to a PMF at 8 T with 20 pulses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that PMF exposure significantly impacted nutrient transport, the composition of cytoplasmic and intracellular substances, and various metabolic processes in L. monocytogenes, such as carbohydrate metabolism, amino acid metabolism, and nicotinate and nicotinamide metabolism. The disruption of cellular functions and metabolic pathways may contribute to the death of L. monocytogenes under PMF treatment. These findings provide valuable insights and serve as a reference for further investigations into the inactivation mechanisms induced by PMFs. Full article
Show Figures

Figure 1

37 pages, 17326 KiB  
Article
Staggered Two-Bolt Connections in Transmission Towers: A Comprehensive Study on Failure Mechanisms and Design Codes
by Songzhao Qu, Yang Zhou, Peng Yin, Xiongyan Li, Hairong Wu, Wenming Wang, Shuhao Huo, Wei An, Qiusong Tian and Yijin Wu
Buildings 2025, 15(4), 629; https://doi.org/10.3390/buildings15040629 - 18 Feb 2025
Cited by 1 | Viewed by 1040
Abstract
Steel-lattice transmission towers require efficient and reliable connection designs to ensure structural safety and cost-effectiveness. While traditional gusset plate connections increase their complexity and structural weight, direct bolted connections offer a simpler and lighter alternative. However, the adoption of staggered bolt arrangements, necessitated [...] Read more.
Steel-lattice transmission towers require efficient and reliable connection designs to ensure structural safety and cost-effectiveness. While traditional gusset plate connections increase their complexity and structural weight, direct bolted connections offer a simpler and lighter alternative. However, the adoption of staggered bolt arrangements, necessitated by the geometric constraints of chord angle members, challenges the applicability of existing design standards—particularly regarding block shear and net section failure modes. This study explores the structural behavior of staggered two-bolt angle connections through a combination of experimental testing and numerical modeling. Twelve full-scale specimens were subjected to axial tension to investigate the effects of key geometric parameters, including end distance, edge distance, and bolt stagger. Finite element analyses, which incorporate material nonlinearity and fracture criteria, delve deeper into the stress distribution and failure mechanisms. The results demonstrate significant deviations in failure modes compared with conventional parallel bolt arrangements, underscoring the limitations of current design standards (DL/T 5486, ASCE 10-15, and EN 1993-1-8) in accurately predicting the capacity of staggered connections. Based on the identified failure modes of staggered two-bolt connections, this study proposes an enhanced design methodology for member fracture capacity, incorporating block shear calculation models from the three aforementioned standards. Comparative analysis demonstrates that the ASCE standard provides superior predictive accuracy, with experimental validation exceeding 95% agreement. The study culminates in specific design recommendations for staggered two-bolt connections, offering critical insights into stress redistribution mechanisms, material behavior, and deformation-induced failure patterns. These findings contribute to the development of more accurate and safer design guidelines for bolted connections in steel transmission towers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 3017 KiB  
Article
Testing the Purity of Limnospira fusiformis Cultures After Axenicity Treatments
by Michael Schagerl, Alexander Kaptejna, Fabian Polz, Sameh S. Ali, Shuhao Huo, Joana Seneca, Petra Pjevac and Vera Hechtl
Cells 2025, 14(2), 136; https://doi.org/10.3390/cells14020136 - 17 Jan 2025
Viewed by 1030
Abstract
Contaminations are challenging for monocultures, as they impact the culture conditions and thus influence the growth of the target organism and the overall biomass composition. In phycology, axenic cultures comprising a single living species are commonly strived for both basic research and industrial [...] Read more.
Contaminations are challenging for monocultures, as they impact the culture conditions and thus influence the growth of the target organism and the overall biomass composition. In phycology, axenic cultures comprising a single living species are commonly strived for both basic research and industrial applications, because contaminants reduce significance for analytic purposes and interfere with the safety and quality of commercial products. We aimed to establish axenic cultures of Limnospira fusiformis, known as the food additive “Spirulina”. Axenicity is strived because it ensures that pathogens or harmful microorganisms are absent and that the harvested biomass is consistent in terms of quality and composition. For the axenic treatment, we applied sterile filtration, ultrasonication, pH treatment, repeated centrifugation, and administration of antibiotics. For testing axenicity, we considered the most common verification method plate tests with Lysogeny Broth (LB) medium, which indicated axenicity after treatments were performed. In addition, we included plate tests with Reasoner’s 2A (R2A) agar and modified Zarrouk+ medium, the latter comparable to the biochemical properties of L. fusiformis’ cultivation medium. In contrast to LB plates, the other media, particularly Zarrouk+, indicated bacterial contamination. We conclude that LB-agar plates are inappropriate for contamination screening of extremophiles. Contamination was also verified by cultivation-independent methods like flow cytometry and 16S rRNA genome amplicon sequencing. We detected taxa of the phyla Proteobacteria, Bacteriodota, Firmicutes and to a lesser extent Verrucomicrobiota. Contaminants are robust taxa, as they survived aggressive treatments. Sequencing data suggest that some of them are promising candidates for in-depth studies to commercially exploit them. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Figure 1

12 pages, 2091 KiB  
Article
Inactivation of Pichia membranaefaciens in Soybean Paste by Dual-Frequency and Moderate Thermosonication
by Jingya Qian, Shubei Chen, Shuhao Huo, Feng Wang, Bin Zou, Cunshan Zhou, Lei Zhang and Haile Ma
Foods 2024, 13(22), 3600; https://doi.org/10.3390/foods13223600 - 11 Nov 2024
Cited by 2 | Viewed by 902
Abstract
Dual-frequency and moderate thermosonication (TS, 300 + 300 W, 20 + 40 kHz, 25~60 °C) was employed to inactivate Pichia membranifaciens in soybean paste. The aim was to evaluate the effect of TS on the inactivation of P. membranaefaciens and on the quality [...] Read more.
Dual-frequency and moderate thermosonication (TS, 300 + 300 W, 20 + 40 kHz, 25~60 °C) was employed to inactivate Pichia membranifaciens in soybean paste. The aim was to evaluate the effect of TS on the inactivation of P. membranaefaciens and on the quality of soybean paste. The Weibull model fitted the survival data of P. membranaefaciens in thermosonicated soybean paste well and a decrease of 5 log of P. membranaefaciens in soybean paste was obtained at TS50°C, TS55°C, TS60°C, and T65°C for 15.41, 7.49, 2.27, and 18.61 min. Scanning electron microscope observation revealed TS50°C damaged the cell structure, leading to the leakage of intracellular contents. The physicochemical properties of soybean paste treated by TS were more retained than in paste treated by heat. The GC-MS analysis indicated that the flavor components had increased after TS treatment, especially at TS50°C. In conclusion, TS can inactive P. membranaefaciens in soybean paste without causing significant changes in its physicochemical and flavor qualities. Full article
Show Figures

Figure 1

21 pages, 8277 KiB  
Article
Identification and Expression Analysis of TCP Transcription Factors Under Abiotic Stress in Phoebe bournei
by Wenzhuo Lv, Hao Yang, Qiumian Zheng, Wenhai Liao, Li Chen, Yiran Lian, Qinmin Lin, Shuhao Huo, Obaid Ur Rehman, Wei Liu, Kehui Zheng, Yanzi Zhang and Shijiang Cao
Plants 2024, 13(21), 3095; https://doi.org/10.3390/plants13213095 - 3 Nov 2024
Cited by 2 | Viewed by 1452
Abstract
The TCP gene family encodes plant transcription factors crucial for regulating growth and development. While TCP genes have been identified in various species, they have not been studied in Phoebe bournei (Hemsl.). This study identified 29 TCP genes in the P. bournei genome, [...] Read more.
The TCP gene family encodes plant transcription factors crucial for regulating growth and development. While TCP genes have been identified in various species, they have not been studied in Phoebe bournei (Hemsl.). This study identified 29 TCP genes in the P. bournei genome, categorizing them into Class I (PCF) and Class II (CYC/TB1 and CIN). We conducted analyses on the PbTCP gene at both the protein level (physicochemical properties) and the gene sequence level (subcellular localization, chromosomal distribution, phylogenetic relationships, conserved motifs, and gene structure). Most P. bournei TCP genes are localized in the nucleus, except PbTCP9 in the mitochondria and PbTCP8 in both the chloroplast and nucleus. Chromosomal mapping showed 29 TCP genes unevenly distributed across 10 chromosomes, except chromosome 8 and 9. We also analyzed the promoter cis-regulatory elements, which are mainly involved in plant growth and development and hormone responses. Notably, most PbTCP transcription factors respond highly to light. Further analysis revealed three subfamily genes expressed in five P. bournei tissues: leaves, root bark, root xylem, stem xylem, and stem bark, with predominant PCF genes. Using qRT-PCR, we examined six representative genes—PbTCP16, PbTCP23, PbTCP7, PbTCP29, PbTCP14, and PbTCP15—under stress conditions such as high temperature, drought, light exposure, and dark. PbTCP14 and PbTCP15 showed significantly higher expression under heat, drought, light and dark stress. We hypothesize that TCP transcription factors play a key role in growth under varying light conditions, possibly mediated by auxin hormones. This work provides insights into the TCP gene family’s functional characteristics and stress resistance regulation in P. bournei. Full article
(This article belongs to the Special Issue Molecular Biology and Bioinformatics of Forest Trees)
Show Figures

Figure 1

20 pages, 8124 KiB  
Article
Identification and Characterization of the DOF Gene Family in Phoebe bournei and Its Role in Abiotic Stress—Drought, Heat and Light Stress
by Kehui Zheng, Mengmeng Lv, Jiaying Qian, Yiran Lian, Ronglin Liu, Shuhao Huo, Obaid Ur Rehman, Qinmin Lin, Zhongyang Zhou, Xiaomin Liu and Shijiang Cao
Int. J. Mol. Sci. 2024, 25(20), 11147; https://doi.org/10.3390/ijms252011147 - 17 Oct 2024
Cited by 2 | Viewed by 1322
Abstract
Phoebe bournei is a second-class endangered and protected species unique to China, and it holds significant ecological and economic value. DNA binding one zinc finger (Dof) transcription factors are plant-specific regulators. Numerous studies have demonstrated that Dof genes are involved in plant growth, [...] Read more.
Phoebe bournei is a second-class endangered and protected species unique to China, and it holds significant ecological and economic value. DNA binding one zinc finger (Dof) transcription factors are plant-specific regulators. Numerous studies have demonstrated that Dof genes are involved in plant growth, development and responses to abiotic stress. In this study, we identified and analyzed 34 PbDof gene members at the whole-genome level. The results indicated that the 34 PbDof genes were unevenly distributed across 12 chromosomes. We utilized the Dof genes from Arabidopsis thaliana and P. bournei to construct a phylogenetic tree and categorized these genes into eight subgroups. In the collinearity analysis, there were 16 homologous gene pairs between AtDof and PbDof and nine homologous gene pairs between ZmDof and PbDof. We conducted a cis-acting element analysis and found that cis-acting elements involved in light response were the most abundant in PbDof genes. Through SSR site prediction, we analyzed that the evolution level of Dof genes is low. Additionally, we assessed the expression profiles of eight PbDof genes under high temperature, drought, and light stress using qRT-PCR. In particular, PbDof08 and PbDof16 are significantly upregulated under the three stresses. This study provides foundational information for PbDof genes and offers new insights for further research on the mechanism of Dof transcription factors responding to stress, as well as the adaptation of P. bournei to environmental changes. Full article
Show Figures

Figure 1

16 pages, 2437 KiB  
Article
Highly Efficient Degradation of 2-Methylisoborneol by Laccase Assisted by a Micro-Electric Field
by Ling Xu, Beidian Li, Tingting Liu, Anzhou Ma, Guoqiang Zhuang, Jingya Qian, Yi Cui, Shuhao Huo, Jiexiang Xia and Feng Wang
Catalysts 2024, 14(9), 649; https://doi.org/10.3390/catal14090649 - 23 Sep 2024
Cited by 1 | Viewed by 1197
Abstract
Taste and odor (T&O) compounds have emerged as crucial parameters for assessing water quality. Therefore, identifying effective methodologies for the removal of these compounds is imperative. In this study, an effective approach utilizing laccase assisted by a micro-electric field was developed for the [...] Read more.
Taste and odor (T&O) compounds have emerged as crucial parameters for assessing water quality. Therefore, identifying effective methodologies for the removal of these compounds is imperative. In this study, an effective approach utilizing laccase assisted by a micro-electric field was developed for the degradation of 2-methylisoborneol (2-MIB). For this purpose, the optimal conditions for the laccase-catalyzed degradation of 2-MIB were determined, and they were pH 4.0, 25 °C, 150 rpm, 0.1 U/mL of laccase, and 200 ng/L of 2-MIB. Under these specified conditions, the degradation efficiency of 2-MIB was approximately 78% after a 4 h reaction period. Subsequently, the introduction of an electric field yielded a synergistic effect with the enzyme for 2-MIB degradation. At an electric current intensity of 0.04 A over a 4 h duration, the degradation efficiency increased to 90.78%. An analysis using SPME-GC/MS provided information on the degradation intermediates of 2-MIB resulting from laccase-catalyzed degradation, electrocatalytic degradation, and micro-electric-assisted laccase degradation. The potential degradation pathways of 2-MIB illustrated that these three methods result in common degradation products, such as capric aldehyde, nonylaldehyde, and 2-ethylhexanol, and their final products include 3-pentanone, acetone, and 2-butanone. This study provides an enzyme–electrochemical method for the efficient and rapid degradation and removal of 2-MIB. The strategy of laccase catalysis assisted by a micro-electric field has good potential for the removal of pollutants from the natural environment. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Figure 1

26 pages, 1769 KiB  
Review
Application of Immobilized Enzymes in Juice Clarification
by Feng Wang, Hui Xu, Miaomiao Wang, Xiaolei Yu, Yi Cui, Ling Xu, Anzhou Ma, Zhongyang Ding, Shuhao Huo, Bin Zou and Jingya Qian
Foods 2023, 12(23), 4258; https://doi.org/10.3390/foods12234258 - 24 Nov 2023
Cited by 31 | Viewed by 5798
Abstract
Immobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking. Different immobilization [...] Read more.
Immobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking. Different immobilization methods are adopted for different enzymes to accommodate their different characteristics. This article systematically reviews the methods of enzyme immobilization and the use of immobilized supports in juice clarification. In addition, the mechanisms and effects of clarification with immobilized pectinase, immobilized laccase, and immobilized xylanase in fruit juice are elaborated upon. Furthermore, suggestions and prospects are provided for future studies in this area. Full article
(This article belongs to the Special Issue Enzymes' Chemistry in Food)
Show Figures

Figure 1

26 pages, 921 KiB  
Review
Removal of Taste and Odor Compounds from Water: Methods, Mechanism and Prospects
by Feng Wang, Xiaohui Li, Tingting Liu, Xiang Li, Yi Cui, Ling Xu, Shuhao Huo, Bin Zou, Jingya Qian, Anzhou Ma and Guoqiang Zhuang
Catalysts 2023, 13(10), 1356; https://doi.org/10.3390/catal13101356 - 10 Oct 2023
Cited by 6 | Viewed by 6831
Abstract
In recent years, taste and odor (T&O) compounds in drinking water are becoming a serious problem, which has brought many challenges to drinking water treatment plants. Due to global concerns about the emergence of T&O compounds, researchers have proposed various water treatment technologies [...] Read more.
In recent years, taste and odor (T&O) compounds in drinking water are becoming a serious problem, which has brought many challenges to drinking water treatment plants. Due to global concerns about the emergence of T&O compounds, researchers have proposed various water treatment technologies to ensure the quality of drinking water. In this paper, abiotic and biotic methods for the treatment of T&O compounds are reviewed, including process parameters, advantages and disadvantages, removal efficiency and mechanism. Geosmin (GSM) and 2-methylisoborneol (2-MIB) are the most common odorous substances with earthy and musty smells. The chemical and biological methods for the possible degradation pathways of these two compounds are summarized. Furthermore, suggestions and approaches are provided for efficient and safe strategies for T&O compound treatments and their future applications. Full article
Show Figures

Graphical abstract

15 pages, 4418 KiB  
Article
The AP2 Transcription Factor BrSHINE3 Regulates Wax Accumulation in Nonheading Chinese Cabbage
by Zhaoyan Huo, Yang Xu, Song Yuan, Jiang Chang, Shuhao Li, Jinwei Wang, Huanhuan Zhao, Ru Xu and Fenglin Zhong
Int. J. Mol. Sci. 2022, 23(21), 13454; https://doi.org/10.3390/ijms232113454 - 3 Nov 2022
Cited by 8 | Viewed by 2490
Abstract
Wax is an acellular structural substance attached to the surface of plant tissues. It forms a protective barrier on the epidermis of plants and plays an important role in resisting abiotic and biotic stresses. In this paper, nonheading Chinese cabbage varieties with and [...] Read more.
Wax is an acellular structural substance attached to the surface of plant tissues. It forms a protective barrier on the epidermis of plants and plays an important role in resisting abiotic and biotic stresses. In this paper, nonheading Chinese cabbage varieties with and without wax powder were observed using scanning electron microscopy, and the surface of waxy plants was covered with a layer of densely arranged waxy crystals, thus differentiating them from the surface of waxless plants. A genetic analysis showed that wax powder formation in nonheading Chinese cabbage was controlled by a pair of dominant genes. A preliminary bulked segregant analysis sequencing (BSA-seq) assay showed that one gene was located at the end of chromosome A09. Within this interval, we identified BraA09000626, encoding an AP2 transcription factor homologous to Arabidopsis AtSHINE3, and we named it BrSHINE3. By comparing the CDS of the gene in the two parental plants, a 35 bp deletion in the BrSHINE3 gene of waxless plants resulted in a frameshift mutation. Tissue analysis showed that BrSHINE3 was expressed at significantly higher levels in waxy plant rosette stage petioles and bolting stage stems than in the tissues of waxless plants. We speculate that this deletion in BrSHINE3 bases in the waxless material may inhibit wax synthesis. The overexpression of BrSHINE3 in Arabidopsis induced the accumulation of wax on the stem surface, indicating that BrSHINE3 is a key gene that regulates the formation of wax powder in nonheading Chinese cabbage. The analysis of the subcellular localization showed that BrSHINE3 is mainly located in the nucleus and chloroplast of tobacco leaves, suggesting that the gene may function as a transcription factor. Subsequent transcriptome analysis of the homology of BrSHINE3 downstream genes in nonheading Chinese cabbage showed that these genes were downregulated in waxless materials. These findings provide a basis for a better understanding of the nonheading Chinese cabbage epidermal wax synthesis pathway and provide important information for the molecular-assisted breeding of nonheading Chinese cabbage. Full article
(This article belongs to the Special Issue Crop Stress Biology and Molecular Breeding 2.0)
Show Figures

Figure 1

15 pages, 1430 KiB  
Article
Enhancing Bioenergy Production from the Raw and Defatted Microalgal Biomass Using Wastewater as the Cultivation Medium
by Gang Li, Yuhang Hao, Tenglun Yang, Wenbo Xiao, Minmin Pan, Shuhao Huo and Tao Lyu
Bioengineering 2022, 9(11), 637; https://doi.org/10.3390/bioengineering9110637 - 2 Nov 2022
Cited by 31 | Viewed by 6153
Abstract
Improving the efficiency of using energy and decreasing impacts on the environment will be an inevitable choice for future development. Based on this direction, three kinds of medium (modified anaerobic digestion wastewater, anaerobic digestion wastewater and a standard growth medium BG11) were used [...] Read more.
Improving the efficiency of using energy and decreasing impacts on the environment will be an inevitable choice for future development. Based on this direction, three kinds of medium (modified anaerobic digestion wastewater, anaerobic digestion wastewater and a standard growth medium BG11) were used to culture microalgae towards achieving high-quality biodiesel products. The results showed that microalgae culturing with anaerobic digestate wastewater could increase lipid content (21.8%); however, the modified anaerobic digestion wastewater can boost the microalgal biomass production to 0.78 ± 0.01 g/L when compared with (0.35–0.54 g/L) the other two groups. Besides the first step lipid extraction, the elemental composition, thermogravimetric and pyrolysis products of the defatted microalgal residues were also analysed to delve into the utilisation potential of microalgae biomass. Defatted microalgae from modified wastewater by pyrolysis at 650 °C resulted in an increase in the total content of valuable products (39.47%) with no significant difference in the content of toxic compounds compared to other groups. Moreover, the results of the life cycle assessment showed that the environmental impact (388.9 mPET2000) was lower than that of raw wastewater (418.1 mPET2000) and standard medium (497.3 mPET2000)-cultivated groups. Consequently, the method of culturing microalgae in modified wastewater and pyrolyzing algal residues has a potential to increase renewable energy production and reduce environmental impact. Full article
(This article belongs to the Special Issue Acceleration of Biodiesel Production)
Show Figures

Figure 1

24 pages, 1361 KiB  
Article
Explicit Solutions to Large Deformation of Cantilever Beams by Improved Homotopy Analysis Method I: Rotation Angle
by Yinshan Li, Xinye Li, Shuhao Huo and Chen Xie
Appl. Sci. 2022, 12(13), 6400; https://doi.org/10.3390/app12136400 - 23 Jun 2022
Cited by 5 | Viewed by 2796
Abstract
An improved homotopy analysis method (IHAM) is proposed to solve the nonlinear differential equation, especially for the case when nonlinearity is strong in this paper. As an application, the method was used to derive explicit solutions to the rotation angle of a cantilever [...] Read more.
An improved homotopy analysis method (IHAM) is proposed to solve the nonlinear differential equation, especially for the case when nonlinearity is strong in this paper. As an application, the method was used to derive explicit solutions to the rotation angle of a cantilever beam under point load at the free end. Compared with the traditional homotopy method, the derivation includes two steps. A new nonlinear differential equation is firstly constructed based on the current nonlinear differential equation of the rotation angle and the auxiliary quadratic nonlinear differential equation. In the second step, a high-order non-linear iterative homotopy differential equation is established based on the new non-linear differential equation and the auxiliary linear differential equation. The analytical solution to the rotation angle is then derived by solving this high-order homotopy equation. In addition, the convergence range can be extended significantly by the homotopy–Páde approximation. Compared with the traditional homotopy analysis method, the current improved method not only speeds up the convergence of the solution, but also enlarges the convergence range. For the large deflection problem of beams, the new solution for the rotation angle is more approachable to the engineering designers than the implicit exact solution by the Euler–Bernoulli law. It should have significant practical applications in the design of long bridges or high-rise buildings to minimize the potential error due to the extreme length of the beam-like structures. Full article
Show Figures

Figure 1

Back to TopTop