Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (1,051)

Search Parameters:
Authors = Qi Peng

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2450 KiB  
Article
Activation of Focal Adhesion Pathway by CIDEA as Key Regulatory Axis in Lipid Deposition in Goat Intramuscular Precursor Adipocytes
by Peng Shao, Qi Li, Yu Liao, Yong Wang, Yaqiu Lin, Hua Xiang, Zhanyu Du, Changhui Zhang, Jiangjiang Zhu and Lian Huang
Animals 2025, 15(16), 2374; https://doi.org/10.3390/ani15162374 - 13 Aug 2025
Abstract
Intramuscular fat (IMF) content determines the quality of goat meat and is regulated by the comprehensive effect of the proliferation and adipogenesis of intramuscular preadipocytes. Our previous RNA-seq data revealed that cell death-inducing DNA fragmentation factor alpha (DFFA)-like effector (CIDE) A was upregulated [...] Read more.
Intramuscular fat (IMF) content determines the quality of goat meat and is regulated by the comprehensive effect of the proliferation and adipogenesis of intramuscular preadipocytes. Our previous RNA-seq data revealed that cell death-inducing DNA fragmentation factor alpha (DFFA)-like effector (CIDE) A was upregulated during the development of intramuscular fat in the longissimus dorsi muscle tissue, implying an important role in lipid homeostasis. However, the mechanism by which CIDEA, a member of the CIDE family, regulates intramuscular fat deposition in goat muscle is unknown, so we explored the function and underlying mechanism of CIDEA in goat intramuscular preadipocytes. To address this, we altered CIDEA in intramuscular preadipocytes and resolved the effect and mechanism of CIDEA in adipogenesis through RT-PCR, Western blot, triglyceride and LD determinations, CCK-8, and RNA-seq. It was found that CIDEA increased lipid droplets (LDs) and triglyceride contents and inhibited cell proliferation. Meanwhile, the lipid metabolism-related genes PPARγ, C/EBPα, SREBP1c, PLIN1, TIP47, ADFP, DGAT1, ACC, FASN, ACSL1, and FABP3 were upregulated, while the lipolysis and β-oxidation genes HSL, ACOX1, and CPT1B, as well as the proliferation marker gene CDK1, were all downregulated upon CIDEA overexpression. Differentially expressed genes in CIDEA dysregulation groups through RNA-seq were selected and were enriched in the apelin and focal adhesion signaling pathways. Specifically, the Western blot and rescue assays found that focal adhesion, but not apelin, was the key signaling pathway in CIDEA regulating lipid deposition in goat intramuscular preadipocytes. In summary, this study reveals that CIDEA promotes lipid deposition in intramuscular preadipocytes through the focal adhesion pathway and inhibits cell proliferation. This work clarifies the functional role and downstream signaling pathway of CIDEA in intramuscular fat deposition and provides theoretical support for improving meat quality by targeting key phenotype-related genes. Full article
Show Figures

Figure 1

16 pages, 2505 KiB  
Article
Rapid Detection of Pesticide Residues in Leaf Vegetables by SERS Technology
by Fang Peng, Shuanggen Huang, Qi Chen, Ni Tong and Yan Wu
Sensors 2025, 25(16), 4912; https://doi.org/10.3390/s25164912 - 8 Aug 2025
Viewed by 218
Abstract
Organophosphate pesticides, fungicides, and neonicotinoid insecticides are frequently employed in the cultivation and production of leafy vegetables. The conventional detection methods for these pesticides rely on chromatographic techniques, which are characterized by good precision and sensitivity. Nevertheless, these methods suffer from drawbacks such [...] Read more.
Organophosphate pesticides, fungicides, and neonicotinoid insecticides are frequently employed in the cultivation and production of leafy vegetables. The conventional detection methods for these pesticides rely on chromatographic techniques, which are characterized by good precision and sensitivity. Nevertheless, these methods suffer from drawbacks such as complex sample pretreatment, prolonged detection times, and high costs, hindering the realization of on-site detection. This paper introduces a detection method based on surface-enhanced Raman spectroscopy (SERS) for the quantitative and qualitative analysis of pesticide residues in leafy vegetables. Gold nanoparticles (AuNPs) were meticulously synthesized to serve as the substrate for enhancing Raman signals. The average particle size was approximately 50 nm, and a significant absorption peak appeared at 536 nm. The density functional theory (DFT) with the B3LYP/6-311G was utilized to calculate the theoretical Raman spectra of the pesticides. The characteristic Raman peaks of the pesticides were selected as calibration peaks to establish calibration equations relating the concentration of pesticide residues to the intensity of these calibration peaks. By substituting the intensity of the calibration peak corresponding to the lowest detectable limit in the SERS spectra into the calibration equation, the quantitative detection limit was calculated. The study revealed that the detection limit for phosmet residues in Chinese cabbage could be was below 0.5 mg/kg, with an R2 of 0.93363, a standard deviation ranging from 3.87% to 8.56%, and recovery rates between 94.67% and 112.89%. For thiabendazole residues in water spinach, the detection limit could be below 1 mg/kg, with an R2 of 0.98291, a standard deviation of between 1.71% and 9.29%, and recovery rates ranging from 87.67% to 107.83%. In the case of acetamiprid residues in pakchoi, the detection limit could also be below 1 mg/kg, with an R2 of 0.95332, a standard deviation of between 4.00% and 9.10%, and recovery rates ranging from 90.67% to 113.75%. These findings demonstrate that the SERS-based detection method for the semi-quantitative and qualitative analysis of pesticide residues in leafy vegetables is an effective approach, enabling rapid and reliable detection of pesticide residues in leafy vegetables. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

12 pages, 5808 KiB  
Article
A High-Precision Hydrogen Sensor Array Based on Pt-Modified SnO2 for Suppressing Humidity and Oxygen Interference
by Meile Wu, Zhixin Wu, Hefei Chen, Zhanyu Wu, Peng Zhang, Lin Qi, He Zhang and Xiaoshi Jin
Chemosensors 2025, 13(8), 294; https://doi.org/10.3390/chemosensors13080294 - 7 Aug 2025
Viewed by 216
Abstract
Humidity and oxygen have significant impacts on the accuracy of hydrogen detection, especially for metal oxide semiconductor sensors at room temperature. Addressing this challenge, this study employs a screen-printed 1 × 2 resistive sensor array made from an identical 1 wt.% platinum-modified tin [...] Read more.
Humidity and oxygen have significant impacts on the accuracy of hydrogen detection, especially for metal oxide semiconductor sensors at room temperature. Addressing this challenge, this study employs a screen-printed 1 × 2 resistive sensor array made from an identical 1 wt.% platinum-modified tin oxide nanoparticle material. Fabrication variability between the two sensing elements was intentionally leveraged to enhance array output differentiation and information content. Systematic hydrogen-sensing tests were conducted on the array under diverse oxygen and moisture conditions. Three distinct feature types—the steady-state value, resistance change, and area under the curve—were extracted from the output of each array element. These features, integrated with their quotient, formed a nine-feature vector matrix. A multiple linear regression model based on this array output was developed and validated for hydrogen prediction, achieving a coefficient of determination of 0.95, a mean absolute error of 125 ppm, and a mean relative standard deviation of 7.07%. The combined information of the array provided significantly more stable and precise hydrogen concentration predictions than linear or nonlinear models based on individual sensor features. This approach offers a promising path for mass-producing highly interference-resistant, precise, and stable room-temperature hydrogen sensor arrays. Full article
(This article belongs to the Section Materials for Chemical Sensing)
Show Figures

Figure 1

13 pages, 1194 KiB  
Review
Kiwifruit Peelability (Actinidia spp.): A Review
by Beibei Qi, Peng Li, Jiewei Li, Manrong Zha and Faming Wang
Horticulturae 2025, 11(8), 927; https://doi.org/10.3390/horticulturae11080927 - 6 Aug 2025
Viewed by 244
Abstract
Kiwifruit (Actinidia spp.) is a globally important economic fruit with high nutritional value. Fruit peelability, defined as the mechanical ease of separating the peel from the fruit flesh, is a critical quality trait influencing consumer experience and market competitiveness and has emerged [...] Read more.
Kiwifruit (Actinidia spp.) is a globally important economic fruit with high nutritional value. Fruit peelability, defined as the mechanical ease of separating the peel from the fruit flesh, is a critical quality trait influencing consumer experience and market competitiveness and has emerged as a critical breeding target in fruit crop improvement programs. The present review systematically synthesized existing studies on kiwifruit peelability, and focused on its evolutionary trajectory, genotypic divergence, quantitative evaluation, possible underlying mechanisms, and artificial manipulation strategies. Kiwifruit peelability research has advanced from early exploratory studies in New Zealand (2010s) to systematic investigations in China (2020s), with milestones including the development of evaluation metrics and the identification of genetic resources. Genotypic variation exists among kiwifruit genera. Several Actinidia eriantha accessions and the novel Actinidia longicarpa cultivar ‘Guifei’ exhibit superior peelability, whereas most commercial Actinidia chinensis and Actinidia deliciosa cultivars exhibit poor peelability. Quantitative evaluation highlights the need for standardized metrics, with “skin-flesh adhesion force” and “peel toughness” proposed as robust, instrument-quantifiable indicators to minimize operational variability. Mechanistically, peelability is speculated to be governed by cell wall polysaccharide metabolism and phytohormone signaling networks. Pectin degradation and differential distribution during fruit development form critical “peeling zones”, whereas ethylene, abscisic acid, and indoleacetic acid may regulate cell wall remodeling and softening, collectively influencing skin-flesh adhesion. Owing to the scarcity of easy-to-peel kiwifruit cultivars, artificial manipulation methods, including manual peeling benchmarking, lye treatment, and thermal peeling, can be employed to further optimize kiwifruit peelability. Currently, shortcomings include incomplete genotype-phenotype characterization, limited availability of easy-peeling germplasms, and a fragmented understanding of the underlying mechanisms. Future research should focus on methodological innovation, germplasm development, and the elucidation of relevant mechanisms. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

25 pages, 10827 KiB  
Article
Integrated Transcriptomic and Metabolomic Analysis Reveals Nitrogen-Mediated Delay of Premature Leaf Senescence in Red Raspberry Leaves
by Qiang Huo, Feiyang Chang, Peng Jia, Ziqian Fu, Jiaqi Zhao, Yiwen Gao, Haoan Luan, Ying Wang, Qinglong Dong, Guohui Qi and Xuemei Zhang
Plants 2025, 14(15), 2388; https://doi.org/10.3390/plants14152388 - 2 Aug 2025
Viewed by 336
Abstract
The premature senescence of red raspberry leaves severely affects plant growth. In this study, the double-season red raspberry cultivar ‘Polka’ was used, with N150 (0.10 g N·kg−1) selected as the treatment group (T150) and N0 (0 g N·kg−1 [...] Read more.
The premature senescence of red raspberry leaves severely affects plant growth. In this study, the double-season red raspberry cultivar ‘Polka’ was used, with N150 (0.10 g N·kg−1) selected as the treatment group (T150) and N0 (0 g N·kg−1) set as the control (CK). This study systematically investigated the mechanism of premature senescence in red raspberry leaves under different nitrogen application levels by measuring physiological parameters and conducting a combined multi-omics analysis of transcriptomics and metabolomics. Results showed that T150 plants had 8.34 cm greater height and 1.45 cm greater ground diameter than CK. The chlorophyll, carotenoid, soluble protein, and sugar contents in all leaf parts of T150 were significantly higher than those in CK, whereas soluble starch contents were lower. Malondialdehyde (MDA) content and superoxide anion (O2) generation rate in the lower leaves of T150 were significantly lower than those in CK. Superoxide sismutase (SOD) and peroxidase (POD) activities in the middle and lower functional leaves of T150 were higher than in CK, while catalase (CAT) activity was lower. Transcriptomic analysis identified 4350 significantly differentially expressed genes, including 2062 upregulated and 2288 downregulated genes. Metabolomic analysis identified 135 differential metabolites, out of which 60 were upregulated and 75 were downregulated. Integrated transcriptomic and metabolomic analysis showed enrichment in the phenylpropanoid biosynthesis (ko00940) and flavonoid biosynthesis (ko00941) pathways, with the former acting as an upstream pathway of the latter. A premature senescence pathway was established, and two key metabolites were identified: chlorogenic acid content decreased, and naringenin chalcone content increased in early senescent leaves, suggesting their pivotal roles in the early senescence of red raspberry leaves. Modulating chlorogenic acid and naringenin chalcone levels could delay premature senescence. Optimizing fertilization strategies may thus reduce senescence risk and enhance the productivity, profitability, and sustainability of the red raspberry industry. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology)
Show Figures

Figure 1

12 pages, 2396 KiB  
Article
Helical Airflow Synthesis of Quinoxalines: A Continuous and Efficient Mechanochemical Approach
by Jiawei Zhang, Zeli Xiao, Qi Huang, Yang Zhao, Bo Jin and Rufang Peng
Chemistry 2025, 7(4), 121; https://doi.org/10.3390/chemistry7040121 - 29 Jul 2025
Viewed by 304
Abstract
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents [...] Read more.
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents while significantly reducing reaction time. The structures of the synthesized compounds were characterized using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) absorption spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-performance liquid chromatography (HPLC). Using the synthesis of 2,3-diphenylquinoxaline (1) as a model reaction, the synthetic process was investigated with UV–Vis spectroscopy. The results demonstrate that when the total feed amount was 2 g with a carrier gas pressure of 0.8 MPa, the reaction completed within 2 min, achieving a yield of 93%. Furthermore, kinetic analysis of the reaction mechanism was performed by monitoring the UV–Vis spectra of the products at different time intervals. The results indicate that the synthesis of 1 follows the A4 kinetic model, which describes a two-dimensional diffusion-controlled product growth process following decelerated nucleation. Full article
Show Figures

Figure 1

23 pages, 6132 KiB  
Article
Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China
by Yu Guo, Xinwei Wang, Hongying Cao, Qin Peng, Yunshe Dong, Yunchun Qi, Jian Liu, Ning Lv, Feihu Yin, Xiujin Yuan and Mei Zeng
Remote Sens. 2025, 17(15), 2634; https://doi.org/10.3390/rs17152634 - 29 Jul 2025
Viewed by 211
Abstract
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation [...] Read more.
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation dynamics in arid Northwestern China during 2000 to 2020, using the annual peak fractional vegetation cover (FVC) as the primary indicator. The Sen’s slope estimator with the Mann–Kendall test and the coefficient of variation were employed to assess the spatiotemporal variations in FVC, while the Pearson correlation, geographic detector model and random forest model were applied to identify the dominant driving factors for FVC. The results indicated that (1) overall vegetation cover was low (averaged peak FVC = 0.191), showing a spatial pattern of higher values in the northwest and lower values in the southeast; high FVC values were primarily observed in mountainous areas and river corridors; (2) the annual peak FVC increased significantly at a rate of 0.0508 yr−1, with 33.72% of the region showing significant improvements and 5.49% degradation; (3) the spatial pattern of FVC was shaped by the distribution of land use types (59.46%), while the temporal dynamics of FVC were driven by land use changes (16.37%) and the land use intensity (37.56%); (4) both the spatial pattern and the temporal dynamics were limited by the environmental conditions. These findings highlight the critical role of anthropogenic activities in shaping the spatiotemporal variations in FVC, particularly emphasizing the distinct contributions of changes in land use types and land use intensity. This study could provide a scientific basis for sustainable land management and restoration strategies in arid regions facing global changes. Full article
Show Figures

Figure 1

22 pages, 4650 KiB  
Article
IoT Monitoring and Evaluating System for the Construction Quality of Foundation Pile
by Kai Wu, Peng Zhang, Jiejun Yuan, Xiaqing Qian and Runen Qi
Buildings 2025, 15(15), 2660; https://doi.org/10.3390/buildings15152660 - 28 Jul 2025
Viewed by 314
Abstract
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of [...] Read more.
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of foundation pile construction process quality is established to monitor the key parameters for quality control in the foundation pile construction process, such as pile length, position, verticality, water–cement ratio, grouting volume, drilling/lifting speed, etc. Next, the absolute gray relational degree analysis method and the analytic hierarchy process (AHP) entropy-weighted combination weighting method are used to divide the monitoring data into different levels and determine the weight coefficients for quality indicators during foundation pile construction. Last, the IoT monitoring and evaluation system of the foundation piles construction process quality is applied to engineering. The results indicate that the monitoring system is convenient and efficient, and the quality evaluation method is reliable. The construction process quality of cement-mixing piles is rated as excellent. The construction process quality of bored piles Z0103 and Z0232 is excellent, and pile Z0012 is qualified. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

7 pages, 292 KiB  
Proceeding Paper
New Contribution to the Anomalous π0γγ Decay in SU(2) Chiral Perturbation Theory
by Zhen-Yan Lu, Shu-Peng Wang and Qi Lu
Proceedings 2025, 123(1), 1; https://doi.org/10.3390/proceedings2025123001 - 28 Jul 2025
Viewed by 238
Abstract
The introduction of axions gives rise to additional one-loop diagrams for the two-photon decays of neutral pions via axion-pion mixing. We compute this correction that has been overlooked in existing calculations, within the framework of SU(2) chiral perturbation theory. Our analysis shows that [...] Read more.
The introduction of axions gives rise to additional one-loop diagrams for the two-photon decays of neutral pions via axion-pion mixing. We compute this correction that has been overlooked in existing calculations, within the framework of SU(2) chiral perturbation theory. Our analysis shows that the correction is proportional to the axion-photon coupling and the square of the axion mass. In the classical axion parameter space, this correction is strongly suppressed by the axion decay constant. However, for QCD axions in the MeV or higher mass range, the correction may become significant. Furthermore, when combined with experimental measurements of the decay width of the π0γγ process, our results rule out the standard QCD axion as a viable explanation for the observed discrepancy between chiral perturbation theory predictions and experimental data. Full article
(This article belongs to the Proceedings of The 5th International Conference on Symmetry (Symmetry 2025))
Show Figures

Figure 1

26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 267
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

15 pages, 5275 KiB  
Article
Effect of Copper in Gas-Shielded Solid Wire on Microstructural Evolution and Cryogenic Toughness of X80 Pipeline Steel Welds
by Leng Peng, Rui Hong, Qi-Lin Ma, Neng-Sheng Liu, Shu-Biao Yin and Shu-Jun Jia
Materials 2025, 18(15), 3519; https://doi.org/10.3390/ma18153519 - 27 Jul 2025
Viewed by 342
Abstract
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding [...] Read more.
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding (GMAW) parameters. The mechanical capacities were assessed via tensile testing, Charpy V-notch impact tests at −20 °C and Vickers hardness measurements. Microstructural evolution was characterized through optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Key findings reveal that increasing the Cu content from 0.13 wt.% to 0.34 wt.% reduces the volume percentage of acicular ferrite (AF) in the weld metal by approximately 20%, accompanied by a significant decline in cryogenic toughness, with the average impact energy decreasing from 221.08 J to 151.59 J. Mechanistic analysis demonstrates that the trace increase in the Cu element. The phase transition temperature and inclusions is not significant but can refine the prior austenite grain size of the weld, so that the total surface area of the grain boundary increases, and the surface area of the inclusions within the grain is relatively small, resulting in the nucleation of acicular ferrite within the grain being weak. This microstructural transition lowers the critical crack size and diminishes the density for high-angle grain boundaries (HAGBs > 45°), which weakens crack deflection capability. Consequently, the crack propagation angle decreases from 54.73° to 45°, substantially reducing the energy required for stable crack growth and deteriorating low-temperature toughness. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 1273 KiB  
Article
Screening of Substrates and Optimization of Formulations for Exogenous Nutrient Bags of Morchella sextelata (Black Morel)
by Qi Yan, Weidong Zhang, Qi Wang, Tonghui Yang, Peng Wang, Ya Yu, Xiao Tan, Xueping Kang and Jiawei Wen
Horticulturae 2025, 11(7), 863; https://doi.org/10.3390/horticulturae11070863 - 21 Jul 2025
Viewed by 266
Abstract
In the artificial cultivation of Morchella sextelata (Black Morel), exogenous nutrient bags (ENBs) commonly employ wheat grains as the primary substrate raw material. However, this approach is costly and runs counter to the “non-grain” development direction advocated by the edible mushroom industry. Under [...] Read more.
In the artificial cultivation of Morchella sextelata (Black Morel), exogenous nutrient bags (ENBs) commonly employ wheat grains as the primary substrate raw material. However, this approach is costly and runs counter to the “non-grain” development direction advocated by the edible mushroom industry. Under controlled field conditions, twelve self-made formulations were set up and compared with a conventional market formulation to comprehensively analyze their impacts on the agronomic traits, yield, soil physicochemical properties, and economic benefits of M. sextelata fruiting bodies. The research findings indicate that the nutrient bag formulations have a significant effect on soil available nutrients. Specifically, the contents of alkali-hydrolysable nitrogen (AN) and available potassium (AK) exhibit a significantly negative correlation with M. sextelata yield (r = −0.60, p < 0.05; r = −0.72, p < 0.01, respectively). Among all the treatment groups, the KY1 formulation (comprising 30% wheat grains, 5% rice bran, 60% corncobs, 2% rice husks, 1% lime, and 1% gypsum) achieved the highest yield of 915.13 kg per 667 m2, which was 16.1% higher than that of the control group. The net economic benefit per unit area (667 m2) reached CNY 75,282.15, representing a 20.7% increase compared to the traditional wheat grains-based formulation. In conclusion, partially substituting wheat grains with rice bran in ENBs can not only reduce reliance on staple food resources but also enhance yield and economic efficiency. Due to the differences in cultivated strains and environmental conditions, the impact on morel yield is substantial; therefore, the results of this study need further validation through pilot trials. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

11 pages, 657 KiB  
Article
Axial Flux Permanent Magnet Synchronous Motor Cogging Torque Calculation Method Based on Harmonic Screening
by Xiao-Kun Zhao, Xin-Peng Zou, Qi-Chao Guo and Liang-Kuan Zhu
Energies 2025, 18(14), 3779; https://doi.org/10.3390/en18143779 - 17 Jul 2025
Viewed by 290
Abstract
This paper proposes a harmonic screening-based method for calculating the cogging torque of the axial flux permanent magnet synchronous motor. The magnetic field energy in the air gap is derived from the air gap flux and the magnetomotive force of rotor. The cogging [...] Read more.
This paper proposes a harmonic screening-based method for calculating the cogging torque of the axial flux permanent magnet synchronous motor. The magnetic field energy in the air gap is derived from the air gap flux and the magnetomotive force of rotor. The cogging torque is then obtained using the energy-based method. Compared with finite element analysis, the proposed approach is significantly faster while maintaining high accuracy. It is particularly effective for scenarios involving stator staggering, which can facilitate quick calculation of cogging torques of many different staggering angles, offering rapid insights into motor performance during the initial design. The method achieves a similarity accuracy with FEA results and reduces computation time, demonstrating both its efficiency and reliability. Full article
Show Figures

Figure 1

13 pages, 4616 KiB  
Article
Effect of Benzoic Acid on Nutrient Digestibility and Rectal Microbiota of Weaned Holstein Dairy Calves
by Haonan Dai, Dewei Du, Qi Huang, Jia Guo, Shujing Li, Wenli Yu, Zengyuan Zhao and Peng Sun
Animals 2025, 15(14), 2080; https://doi.org/10.3390/ani15142080 - 14 Jul 2025
Viewed by 423
Abstract
Our previous study has shown that supplementation of 0.50% benzoic acid (BA) increased growth performance, promoted rumen fermentation, and improved the composition and function of rumen microbiota. This research was designed to conduct a deeper exploration of the impacts of dietary supplementation with [...] Read more.
Our previous study has shown that supplementation of 0.50% benzoic acid (BA) increased growth performance, promoted rumen fermentation, and improved the composition and function of rumen microbiota. This research was designed to conduct a deeper exploration of the impacts of dietary supplementation with BA on the apparent digestibility of nutrients and the composition of rectal microbiota in weaned Holstein dairy calves. Sixteen Holstein heifer calves with similar body weights (91.2 ± 0.7 kg) were selected and randomly allocated into two groups, each comprising eight calves. Calves in the control group (CON group) were fed with a basal diet, while those in the benzoic acid group (BA group) were fed with the basal diet supplemented with 0.50% benzoic acid (on a dry matter basis). The experimental period started at 60 days of age and ended at 102 days of age, lasting for a total of 42 days. The calves were weaned at 60 days of age, with a transition period of 7 days. Feed samples were collected every two weeks, fecal samples were collected from 99 to 101 days of age, and blood samples were collected at 102 days of age. The results showed that supplementation with BA did not influence the digestibility of dry matter, crude protein, ether extract, neutral detergent fiber, acid detergent fiber, calcium, and phosphorus between the two groups. Compared with the CON group, BA supplementation tended to decrease the total cholesterol (TC) in the serum of the calves (p = 0.067). Supplementation with BA increased the relative abundances of the two beneficial bacteria, Bifidobacterium and Bifidobacterium pseudolongum (p < 0.05, LDA > 2), but decreased that of the harmful bacterium, Clostridium sensu stricto 1, in the rectum of dairy calves. The microbial functional prediction revealed that the fecal microbial metabolism involved in primary bile acid biosynthesis was higher in the calves from the BA group. In conclusion, the present study demonstrated that adding 0.50% BA to the diet did not influence the apparent nutrient digestibility, but improved rectal microbiota health, which finally promoted the growth performance in weaned Holstein dairy calves. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

15 pages, 845 KiB  
Article
Aboveground and Belowground Input Effects on Soil Health in Urban Camphor Tree Forests
by Xuejia Huang, Yuanying Peng, Wende Yan, Tianyi Yan, Xiaocui Liang, Junjie Lei, Xiaoyong Chen and Yaqin Qi
Sustainability 2025, 17(14), 6358; https://doi.org/10.3390/su17146358 - 11 Jul 2025
Viewed by 253
Abstract
Urban forests provide essential ecosystem services, including improving soil health, sequestering carbon (C), and supporting biodiversity. However, the effects of anthropogenic litter and root management on soil biogeochemical processes in urban environments remain poorly understood. This study applied the Detritus Inputs and Removal [...] Read more.
Urban forests provide essential ecosystem services, including improving soil health, sequestering carbon (C), and supporting biodiversity. However, the effects of anthropogenic litter and root management on soil biogeochemical processes in urban environments remain poorly understood. This study applied the Detritus Inputs and Removal Treatment (DIRT) framework to examine how aboveground and belowground organic inputs influence soil organic carbon (SOC), total nitrogen (TN), soil water content (SWC), and enzymatic activities in subtropical urban camphor tree forests in China. Six treatments were implemented: litter removal (LR), litter addition (LA), root exclusion (RE), combined litter and root removal (LR + RE), combined litter addition and root exclusion (LA + RE), and an undisturbed litter control (LC). The results showed that the LA treatment significantly enhanced SOC, TN, SWC, and key soil enzyme activities (protease, catalase, and urease) compared to the LC, highlighting the crucial role of litter in enhancing soil fertility and microbial functioning. These elevated enzyme activities suggest intensified microbial nutrient cycling and metabolic activity in response to organic matter inputs. In contrast, the combined LR + RE treatment reduced SOC and enzyme activities but unexpectedly increased TN, indicating disrupted nutrient cycling, possibly due to accelerated microbial nitrogen mineralization and decomposition of existing soil organic matter in the absence of fresh carbon inputs. The LA treatment also showed the highest carbon-to-nitrogen (C:N) ratio, reflecting a carbon-enriched environment that may favor long-term carbon stabilization. Additionally, SWC was most improved under the LA + RE treatment, suggesting its potential for enhancing soil moisture retention in urban settings. These findings underscore the complementary roles of litter and root inputs in maintaining soil health and biogeochemical balance in urban forests. The study provides insights into enzyme-mediated soil processes under varying organic input regimes and highlights the value of targeted organic matter management to enhance urban ecosystem services. Full article
Show Figures

Figure 1

Back to TopTop