A High-Precision Hydrogen Sensor Array Based on Pt-Modified SnO2 for Suppressing Humidity and Oxygen Interference
Abstract
1. Introduction
2. Materials and Methods
2.1. Sensor Array Fabrication and Experimental Methodology
2.2. Measurement Setup
3. Results and Discussion
3.1. H2-Sensing Properties of the Elements
3.2. Impact of RH and O2
3.3. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, N.; Suematsu, K.; Yuasa, M.; Kida, T.; Shimanoe, K. Effect of Water Vapor on Pd-Loaded SnO2 Nanoparticles Gas Sensor. ACS Appl. Mater. Interfaces 2015, 7, 5863–5869. [Google Scholar] [CrossRef] [PubMed]
- Suematsu, K.; Sasaki, M.; Ma, N.; Yuasa, M.; Shimanoe, K. Antimony-Doped Tin Dioxide Gas Sensors Exhibiting High Stability in the Sensitivity to Humidity Changes. ACS Sens. 2016, 1, 913–920. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Cai, D.; Li, H.; Liu, Y.; Wang, D.; Wang, L.; Li, Q.; Wang, T. Room-Temperature Hydrogen Sensor Based on Grain-Boundary Controlled Pt Decorated In2O3 Nanocubes. Sens. Actuators B 2014, 201, 351–359. [Google Scholar] [CrossRef]
- Lee, J.; Jung, Y.; Sung, S.-H.; Lee, G.; Kim, J.; Seong, J.; Shim, Y.-S.; Jun, S.C.; Jeon, S. High-Performance Gas Sensor Array for Indoor Air Quality Monitoring: The Role of Au Nanoparticles on WO3, SnO2, and NiO-Based Gas Sensors. J. Mater. Chem. A 2021, 9, 1159–1167. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Y.; Liu, J.; Li, H.-Y.; Hu, Z.; Luo, X.; Gao, N.; Zhang, B.; Jiang, J.; Zhong, A.; et al. Sensitive H2 Gas Sensors Based on SnO2 Nanowires. Sens. Actuators B 2021, 345, 130334. [Google Scholar] [CrossRef]
- Wu, C.-H.; Zhu, Z.; Chang, H.-M.; Jiang, Z.-X.; Hsieh, C.-Y.; Wu, R.-J. Pt@NiO Core–Shell Nanostructure for a Hydrogen Gas Sensor. J. Alloys Compd. 2020, 814, 151815. [Google Scholar] [CrossRef]
- Kabitakis, V.; Gagaoudakis, E.; Moschogiannaki, M.; Kiriakidis, G.; Seitkhan, A.; Firdaus, Y.; Faber, H.; Yengel, E.; Loganathan, K.; Deligeorgis, G.; et al. A Low-Power CuSCN Hydrogen Sensor Operating Reversibly at Room Temperature. Adv. Funct. Mater. 2022, 32, 2102635. [Google Scholar] [CrossRef]
- Punetha, D.; Kar, M.; Pandey, S.K. A New Type Low-Cost, Flexible and Wearable Tertiary Nanocomposite Sensor for Room Temperature Hydrogen Gas Sensing. Sci. Rep. 2020, 10, 2151. [Google Scholar] [CrossRef]
- Abdullah, Q.N.; Ahmed, A.R.; Ali, A.M.; Yam, F.K.; Hassan, Z.; Bououdina, M. Novel SnO2-Coated β-Ga2O3 Nanostructures for Room Temperature Hydrogen Gas Sensor. Int. J. Hydrogen Energy 2021, 46, 7000–7010. [Google Scholar] [CrossRef]
- Nam, Y.; Kim, K.-B.; Kim, S.H.; Park, K.-H.; Lee, M.-I.; Cho, J.W.; Lim, J.; Hwang, I.-S.; Kang, Y.C.; Hwang, J.-H. Synergistic Integration of Machine Learning with Microstructure/Composition-Designed SnO2 and WO3 Breath Sensors. ACS Sens. 2024, 9, 182–194. [Google Scholar] [CrossRef]
- Choi, P.G.; Masuda, Y. Surface Modification of Nanosheet-Type Tin Oxide with Au-Pd for Hydrogen Gas Sensing. J. Alloys Compd. 2023, 960, 170888. [Google Scholar] [CrossRef]
- Hossein-Babaei, F.; Ghafarinia, V. Compensation for the Drift-like Terms Caused by Environmental Fluctuations in the Responses of Chemoresistive Gas Sensors. Sens. Actuators B 2010, 143, 641–648. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y. Recent Progress on Anti-Humidity Strategies of Chemiresistive Gas Sensors. Materials 2022, 15, 8728. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Haensch, A.; Kim, I.; Barsan, N.; Weimar, U.; Lee, J. Gas Sensors: The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO2-Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic Studies (Adv. Funct. Mater. 23/2011). Adv. Funct. Mater. 2011, 21, 4402. [Google Scholar] [CrossRef]
- Fan, X.; Wang, J.; Sun, C.; Huang, C.; Lu, Y.; Dai, P.; Xu, Y.; He, W. Effect of Pr/Zn on the anti-humidity and acetone-sensing properties of Co3O4 prepared by electrospray. RSC Adv. 2022, 12, 19384–19393. [Google Scholar] [CrossRef]
- Oh, J.; Kim, S.H.; Lee, M.-J.; Hwang, H.; Ku, W.; Lim, J.; Hwang, I.-S.; Lee, J.-H.; Hwang, J.-H. Machine Learning-Based Discrimination of Indoor Pollutants Using an Oxide Gas Sensor Array: High Endurance against Ambient Humidity and Temperature. Sens. Actuators B 2022, 364, 131894. [Google Scholar] [CrossRef]
- Chu, J.; Li, W.; Yang, X.; Wu, Y.; Wang, D.; Yang, A.; Yuan, H.; Wang, X.; Li, Y.; Rong, M. Identification of Gas Mixtures via Sensor Array Combining with Neural Networks. Sens. Actuators B 2021, 329, 129090. [Google Scholar] [CrossRef]
- Ji, H.; Zhu, H.; Zhang, R.; Zhang, S.; Yuan, Z.; Meng, F. Semiconductor Sensor Virtual Array: Gas Detection Strategy in Internet of Things to Suppress Humidity Interference. IEEE Internet Things J. 2024, 11, 4934–4941. [Google Scholar] [CrossRef]
- Kim, S.H.; Moon, Y.K.; Lee, J.-H.; Kang, Y.C.; Jeong, S.-Y. Hierarchically Porous PdO-Functionalized SnO2 Nano-Architectures for Exclusively Selective, Sensitive, and Fast Detection of Exhaled Hydrogen. J. Mater. Chem. A 2023, 11, 1159–1169. [Google Scholar] [CrossRef]
- Cai, Z.; Park, S. A Superior Sensor Consisting of Porous, Pd Nanoparticle–Decorated SnO2 Nanotubes for the Detection of Ppb-Level Hydrogen Gas. J. Alloys Compd. 2022, 907, 164459. [Google Scholar] [CrossRef]
- Pandey, G.; Lawaniya, S.D.; Kumar, S.; Dwivedi, P.K.; Awasthi, K. A Highly Selective, Efficient Hydrogen Gas Sensor Based on Bimetallic (Pd–Au) Alloy Nanoparticle (NP)-Decorated SnO2 Nanorods. J. Mater. Chem. A 2023, 11, 26687–26697. [Google Scholar] [CrossRef]
- Badie, C.; Lee, J.-H.; Mirzaei, A.; Kim, H.W.; Sayegh, S.; Bechelany, M.; Santinacci, L.; Kim, S.S. Enhanced Sensitivity towards Hydrogen by a TiN Interlayer in Pd-Decorated SnO2 Nanowires. J. Mater. Chem. A 2023, 11, 12202–12213. [Google Scholar] [CrossRef]
- Perez-Cortes, L.; Hernandez-Rodriguez, C.; Mazingue, T.; Lomello-Tafin, M. Functionality of Surface Acoustic Wave (SAW) Transducer for Palladium–Platinum-Based Hydrogen Sensor. Sens. Actuators A 2016, 251, 35–41. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, C.; Xu, B.; Li, Y. Optical Fiber Hydrogen Sensor with Single Sagnac Interferometer Loop Based on Vernier Effect. Sens. Actuators B 2018, 255, 3011–3016. [Google Scholar] [CrossRef]
- Kim, S.; Song, Y.; Lim, H.-R.; Kwon, Y.-T.; Hwang, T.-Y.; Song, E.; Lee, S.; Lee, Y.-I.; Cho, H.-B.; Choa, Y.-H. Fabrication and Characterization of Thermochemical Hydrogen Sensor with Laminated Structure. Int. J. Hydrogen Energy 2017, 42, 749–756. [Google Scholar] [CrossRef]
- Wu, M.; Hu, S.; Wu, Z.; Wang, Z.; Li, M.; Liu, X.; Jin, X.; Lee, J.-H. Hydrogen Sensing Properties of FET-Type Sensors with Pt-In2O3 at Room Temperature. Chemosensors 2024, 12, 32. [Google Scholar] [CrossRef]
- Li, Z.; Yan, S.; Wu, Z.; Li, H.; Wang, J.; Shen, W.; Wang, Z.; Fu, Y. Hydrogen Gas Sensor Based on Mesoporous In2O3 with Fast Response/Recovery and ppb Level Detection Limit. Int. J. Hydrogen Energy 2018, 43, 22746–22755. [Google Scholar] [CrossRef]
Number | Inputs | n | R2 | MAE (ppm) | RSDm (%) |
---|---|---|---|---|---|
1 | M1 | 3 | 0.90 | 200 | 14.45 |
2 | M2 | 3 | 0.73 | 278 | 32.01 |
3 | M1/M2 | 3 | 0.16 | 546 | 6.22 |
4 | [M1, M2] | 6 | 0.91 | 190 | 10.88 |
5 | [M1, M2, M1/M2] | 9 | 0.95 | 125 | 7.07 |
6 | [M1, M12, M13] | 9 | 0.94 | 135 | 10.57 |
7 | [M2, M22, M23] | 9 | 0.69 | 241 | 96.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Wu, Z.; Chen, H.; Wu, Z.; Zhang, P.; Qi, L.; Zhang, H.; Jin, X. A High-Precision Hydrogen Sensor Array Based on Pt-Modified SnO2 for Suppressing Humidity and Oxygen Interference. Chemosensors 2025, 13, 294. https://doi.org/10.3390/chemosensors13080294
Wu M, Wu Z, Chen H, Wu Z, Zhang P, Qi L, Zhang H, Jin X. A High-Precision Hydrogen Sensor Array Based on Pt-Modified SnO2 for Suppressing Humidity and Oxygen Interference. Chemosensors. 2025; 13(8):294. https://doi.org/10.3390/chemosensors13080294
Chicago/Turabian StyleWu, Meile, Zhixin Wu, Hefei Chen, Zhanyu Wu, Peng Zhang, Lin Qi, He Zhang, and Xiaoshi Jin. 2025. "A High-Precision Hydrogen Sensor Array Based on Pt-Modified SnO2 for Suppressing Humidity and Oxygen Interference" Chemosensors 13, no. 8: 294. https://doi.org/10.3390/chemosensors13080294
APA StyleWu, M., Wu, Z., Chen, H., Wu, Z., Zhang, P., Qi, L., Zhang, H., & Jin, X. (2025). A High-Precision Hydrogen Sensor Array Based on Pt-Modified SnO2 for Suppressing Humidity and Oxygen Interference. Chemosensors, 13(8), 294. https://doi.org/10.3390/chemosensors13080294