Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Authors = Pu Ren

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1604 KiB  
Article
The Enhancement of a Saccharum spontaneum Population and a Genetic Impact Analysis of the Agronomic and Yield Traits of Its Progeny
by Jiayong Liu, Maoyong Ran, Liping Zhao, Lianan Tao, Fenggang Zan, Li Yao, Xin Hu, Shenglin Ren, Yong Zhao, Hongming Xia, Jing Zhang, Xinyuan Pu, Zhongfu Zhang and Zuhu Deng
Plants 2025, 14(12), 1750; https://doi.org/10.3390/plants14121750 - 7 Jun 2025
Viewed by 473
Abstract
Saccharum spontaneum serves as an essential genetic resource for sugarcane improvement. Traditional breeding methods, characterized by slow selection and limited germplasm exploitation, often lead to suboptimal progeny performance. In this study, we revised the utilization strategy by initially hybridizing several S. spontaneum clones, [...] Read more.
Saccharum spontaneum serves as an essential genetic resource for sugarcane improvement. Traditional breeding methods, characterized by slow selection and limited germplasm exploitation, often lead to suboptimal progeny performance. In this study, we revised the utilization strategy by initially hybridizing several S. spontaneum clones, followed by intercrossing their F1 progeny to establish a heterogeneous ‘polymeric’ population, which was then subjected to ‘nobilization’. A natural Saccharum spontaneum (S0) plant was used as the parent to create a hybrid (S1) containing two S. spontaneum bloodlines. The agronomic traits of S1 were compared, leading to the identification of three superior hybrids. These hybrids were then crossed in a complete diallel design, resulting in six crosses. Significant genetic variation was observed for the agronomic traits. Compared with S0, the plant height in S1 increased by 31.5%, and by 32.22% in S2. The stem diameter in S1 increased by 38.71%, and by 51.61% in S2. The single stem weight increased by 125% in S1 and 150% in S2. Other yield traits also showed varying degrees of improvement. A correlation analysis indicated that the plant height, stalk diameter, single stalk weight, and leaf width were significantly positively correlated with yield, and the leaf width with brix. There was no significant correlation between the millable stalks and yield. This study successfully developed a novel S. spontaneum hybrid with significantly improved agronomic traits, enhancing the genetic foundation of S. spontaneum germplasm for nobilization breeding programs. These findings provide a valuable germplasm base for developing high-performance sugarcane varieties, improving the utilization of S. spontaneum. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 2559 KiB  
Article
Co-Production of Polysaccharides and Platform Sugars from Wheat Straw Fermented with Irpex lacteus
by Jun Pu, Taoli Huhe, Xiao Ding, Ruling Yuan, Sainan Zhang, Jianjun Ren and Dongze Niu
Sustainability 2025, 17(10), 4581; https://doi.org/10.3390/su17104581 - 16 May 2025
Viewed by 448
Abstract
Sustainable valorization of lignocellulosic biomass, such as wheat straw (WS), into valuable products is key for efficient resource utilization. This study investigated an integrated strategy combining Irpex lacteus fermentation with subsequent alkali extraction to improve WS valorization. Alkali extraction parameters, including sodium hydroxide [...] Read more.
Sustainable valorization of lignocellulosic biomass, such as wheat straw (WS), into valuable products is key for efficient resource utilization. This study investigated an integrated strategy combining Irpex lacteus fermentation with subsequent alkali extraction to improve WS valorization. Alkali extraction parameters, including sodium hydroxide concentration, solid-to-liquid (S:L) ratio, temperature, and time, were optimized based on polysaccharide yield and purity. Optimal conditions were identified as 0.8 mol/L sodium hydroxide, a 1:25 S:L ratio, 90 °C, and 1 h, yielding 6.63% polysaccharides with 52.01% purity. Compared to untreated straw, the combined fermentation and alkali extraction treatment significantly altered the WS residue’s composition and structure, substantially reducing hemicellulose and acid detergent lignin while consequently increasing relative cellulose content. This enhanced cellulose accessibility resulted in a markedly improved glucose yield upon enzymatic hydrolysis, reaching 586 g/kg dry matter for the residue after combined treatment. Demonstrating a strong synergistic effect, this yield represents a 5.42-fold increase compared to untreated WS and a 3.30-fold increase compared to solely fermented straw. Analyses of SEM, FTIR, and XRD confirmed that the integrated treatment effectively disrupted the lignocellulosic structure by removing lignin and hemicellulose. This created a more porous morphology and increased cellulose exposure, which was deemed more critical for hydrolysis than the observed 18.58% increase in the cellulose crystallinity index relative to untreated straw. Thermogravimetric analysis further reflected these structural and compositional changes through altered thermal decomposition profiles. Therefore, integrating polysaccharide extraction with fungal fermentation is a highly effective strategy for improving resource efficiency in WS valorization. This approach enables the efficient co-production of valuable polysaccharides alongside significantly boosted platform sugar yields, offering a promising route towards more economically viable and sustainable WS utilization. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

19 pages, 6302 KiB  
Article
Serine Hydroxymethyltransferase Modulates Midgut Physiology in Aedes aegypti Through miRNA Regulation: Insights from Small RNA Sequencing and Gene Expression Analysis
by Qian Pu, Yujiao Han, Zhuanzhuan Su, Houming Ren, Qingshan Ou, Symphony Kashyap and Shiping Liu
Biomolecules 2025, 15(5), 644; https://doi.org/10.3390/biom15050644 - 30 Apr 2025
Viewed by 523
Abstract
Aedes aegypti mosquitoes are critical vectors of arboviruses, responsible for transmitting pathogens that pose significant public health challenges. Serine hydroxymethyltransferase (SHMT), a key enzyme in one-carbon metabolism, plays a vital role in various biological processes, including DNA synthesis, energy metabolism, and cell proliferation. [...] Read more.
Aedes aegypti mosquitoes are critical vectors of arboviruses, responsible for transmitting pathogens that pose significant public health challenges. Serine hydroxymethyltransferase (SHMT), a key enzyme in one-carbon metabolism, plays a vital role in various biological processes, including DNA synthesis, energy metabolism, and cell proliferation. Although SHMT is expressed at low levels in the midgut of Aedes aegypti, its silencing has been shown to inhibit blood meal digestion. The precise mechanisms by which SHMT regulates midgut physiology in mosquitoes remain poorly understood. In this study, we employed small RNA sequencing and quantitative PCR to identify differentially expressed miRNAs (DEMs) following SHMT downregulation. We focused on a subset of DEMs—miR-2940-5p, miR-2940-3p, miR-2941, and miR-306-5p—to explore their potential biological functions. To further elucidate the molecular mechanisms underlying the miRNA response to SHMT downregulation, we analyzed the expression levels of key genes involved in the miRNA biogenesis pathway. Our results demonstrated that several critical enzymes, including Drosha, Dicer1, and AGO1, exhibited significant changes in expression upon SHMT silencing. This study provides new insights into the molecular mechanisms through which SHMT influences the biological functions and nutritional metabolism of the mosquito midgut. By linking SHMT activity to miRNA regulation, our findings highlight a potential pathway by which SHMT modulates midgut physiology, offering a foundation for future research into mosquito biology and vector control strategies. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

10 pages, 4378 KiB  
Article
Mid-Infrared Ultraflat Broadband Supercontinuum Generation with 10 dB Bandwidth of 2340 nm in a Tapered Fluorotellurite Fiber
by Guochuan Ren, Linjing Yang, Chuanfei Yao, Xuan Wang, Luyao Pu, Kaihang Li, Ling Zhang and Pingxue Li
Photonics 2025, 12(4), 297; https://doi.org/10.3390/photonics12040297 - 24 Mar 2025
Viewed by 478
Abstract
We demonstrate mid-infrared ultraflat broadband supercontinuum (SC) generation in a 40 cm long tapered fluorotellurite fiber pumped by a Raman soliton source. By tapering the end of the large-core-diameter fluorotellurite fiber, the dispersion is regulated and the nonlinear effect is enhanced, which effectively [...] Read more.
We demonstrate mid-infrared ultraflat broadband supercontinuum (SC) generation in a 40 cm long tapered fluorotellurite fiber pumped by a Raman soliton source. By tapering the end of the large-core-diameter fluorotellurite fiber, the dispersion is regulated and the nonlinear effect is enhanced, which effectively extends the mid-infrared SC spectral range and increases the spectral flatness. Finally, we obtained an SC light source with a spectral range from 1.8 to 4.7 μm; the 10 dB bandwidth of the source completely covers 1.88–4.22 μm, which has the farthest flat spectral edge in fluorotellurite fibers. The output power of the SC laser is about 1.04 W, and the power ratio of those above 3 μm in the spectrum to the total SC is ~24%. The optical-to-optical conversion efficiency is about 75%. Our results show that tapering of fluorotellurite fiber is an effective method to further extend and flatten the mid-infrared SC. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

16 pages, 1395 KiB  
Article
Multiplet Network for One-Shot Mixture Raman Spectrum Identification
by Bo Wang, Pu Zhang, Xiangping Zhu, Hua Wang, Wenzhen Ren, Chuan Jin and Wei Zhao
Photonics 2025, 12(4), 295; https://doi.org/10.3390/photonics12040295 - 21 Mar 2025
Viewed by 426
Abstract
Raman spectroscopy is widely used for material identification, but mixture analysis remains challenging due to noise and fluorescence interference. To tackle this issue, we propose the Multiplet Network, an advanced deep-learning model specifically designed for identifying components in mixtures. This model employs a [...] Read more.
Raman spectroscopy is widely used for material identification, but mixture analysis remains challenging due to noise and fluorescence interference. To tackle this issue, we propose the Multiplet Network, an advanced deep-learning model specifically designed for identifying components in mixtures. This model employs a shared-weight residual network to map both mixture and candidate spectra into a unified feature space, where least-squares regression is utilized to predict the components. Our framework enhances feature extraction and component identification capabilities, outperforming traditional regression methods. Experimental evaluations on the RRUFF dataset showed that our model achieved superior accuracy, especially as the number of candidate spectra increased. Furthermore, it exhibited remarkable robustness against Gaussian noise and baseline variations, maintaining high accuracy under challenging conditions. To assess the real-world applicability, the model was tested on experimentally collected mixture spectra with significant noise and baseline shifts. The results confirmed that it effectively identified major components under complex spectral conditions. Additionally, the unique structure of the model’s feature extraction combined with least squares allowed it to handle varying sizes of spectral libraries, ensuring both flexibility and scalability. Overall, our approach provides a robust and adaptable solution for Raman mixture analysis, with strong potential for complex chemical and material identification in practical applications. Full article
(This article belongs to the Special Issue Research, Development and Application of Raman Scattering Technology)
Show Figures

Figure 1

23 pages, 8037 KiB  
Article
Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats
by Peng Zang, Pu Chen, Junli Chen, Jingchao Sun, Haiyun Lan, Haisheng Dong, Wei Liu, Nan Xu, Weiran Wang, Lingwei Hou, Bowen Sun, Lujia Zhang, Jiaqiang Huang, Pengjie Wang, Fazheng Ren and Siyuan Liu
Nutrients 2025, 17(4), 724; https://doi.org/10.3390/nu17040724 - 18 Feb 2025
Cited by 1 | Viewed by 1832
Abstract
Background/Objectives: Long-term spaceflight in a microgravity environment frequently results in gastrointestinal dysfunction, presenting substantial challenges to astronauts’ health. Hericium erinaceus, a plant recognized for its dual use as food and medicine, contains a key functional component called Hericium erinaceus polysaccharide (HEP), [...] Read more.
Background/Objectives: Long-term spaceflight in a microgravity environment frequently results in gastrointestinal dysfunction, presenting substantial challenges to astronauts’ health. Hericium erinaceus, a plant recognized for its dual use as food and medicine, contains a key functional component called Hericium erinaceus polysaccharide (HEP), which is purported to promote gastrointestinal health. This study aims to investigate the protective effects of HEP against gastrointestinal disturbances induced by simulated weightlessness and to elucidate its regulatory mechanisms. Methods: Sprague Dawley rats subjected to a tail suspension model were administered either a standard diet or a diet supplemented with 0.125% HEP over a period of 4 weeks (the intake of HEP is approximately 157.5 mg/kg bw/d, n = 8), metagenomics and targeted metabolomics to investigate the effects of HEP on gastrointestinal hormone secretion disorders, gut microbiota dysbiosis, and intestinal barrier damage induced by simulated weightlessness. Results: Dietary supplementation with HEP was observed to significantly alleviate weightlessness-induced gastrointestinal hormone disruptions, enhancing motility and intestinal barrier function while reducing inflammation. In addition, HEP improved gut microbiota by boosting beneficial bacteria as Oscillibacter sp.1-3, Firmicutes bacterium ASF500, and Lactobacillus reuteri, while reducing harmful bacteria like Escherichia coli and Mucispirillum schaedleri at the species level. Furthermore, HEP altered the serum metabolic profile of the rats, reducing inflammation by upregulating the tryptophan metabolism pathway and enhancing the production of short-chain fatty acids. Conclusions: HEP effectively protects against gastrointestinal dysfunction induced by simulated weightlessness by regulating hormone secretion and maintaining intestinal homeostasis. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

20 pages, 14504 KiB  
Article
Acoustic Emission/Mine Microseismic Sensor Network Optimization Based on Grid Loop Search and Particle Swarm Source Location
by Yiling Chen, Xueyi Shang, Yi Ren, Linghao Liu, Xiaoying Li, Yu Zhang, Xiao Wu, Zhuqing Li, Yang Tai, Yuanyuan Pu and Guanghua Xiang
Processes 2025, 13(2), 496; https://doi.org/10.3390/pr13020496 - 10 Feb 2025
Viewed by 838
Abstract
The layout of acoustic emission sensors plays a critical role in non-destructive structural testing. This study proposes a grid-based optimization method focused on multi-source location results, in contrast to traditional sensor layout optimization methods that construct a correlation matrix based on sensor layout [...] Read more.
The layout of acoustic emission sensors plays a critical role in non-destructive structural testing. This study proposes a grid-based optimization method focused on multi-source location results, in contrast to traditional sensor layout optimization methods that construct a correlation matrix based on sensor layout and one source location. Based on the seismic source travel time theory, the proposed method establishes a location objective function based on minimum travel time differences, which is solved through the particle swarm optimization (PSO). Furthermore, based on location accuracy across various configurations, the method systematically evaluates potential optimal sensor locations through grid search. Synthetic tests and laboratory pencil-lead break (PLB) experiments are conducted to compare the effectiveness of PSO, genetic algorithm (GA), and simulated annealing (SA), with the following conclusions. (1) In the synthetic tests, the proposed method achieved an average location error of 1.78 mm, outperforming that based on the traditional layout, GA and SA. (2) For different noise cases, the location accuracy separately improved by 24.89% (σ = 0.5 μs), 12.59% (σ = 2 μs), and 15.06% (σ = 5 μs) compared with the traditional layout. (3) For the PLB experiments, the optimized layout achieved an average location error of 9.37 mm, which improved the location accuracy by 59.15% compared with the traditional layout. Full article
Show Figures

Figure 1

15 pages, 21790 KiB  
Article
Research on the Corrosion Behavior of Mo/C276 Coating Deposited by HVOF Method in Deep-Sea Cold Seep Environments
by Pu Zhang, Hao Zhang, Wentao Hu, Yongjun Wang, Xiaofei Wu, Zhengwei Zhang, Zhihao Ren, Xu Zhai, Xian Zeng and Minggang Tang
Coatings 2025, 15(2), 194; https://doi.org/10.3390/coatings15020194 - 6 Feb 2025
Viewed by 688
Abstract
In this study, the Mo/C276 coating was deposited on Q690E steel by high velocity oxy-fuel spraying (HVOF), and the coating was treated with an organosilicon sealer. Further, the corrosion behaviors of the coating in the simulated deep-sea cold spring environment with hydrogen sulfide [...] Read more.
In this study, the Mo/C276 coating was deposited on Q690E steel by high velocity oxy-fuel spraying (HVOF), and the coating was treated with an organosilicon sealer. Further, the corrosion behaviors of the coating in the simulated deep-sea cold spring environment with hydrogen sulfide and high pressure were studied. The results show that when the oxygen flow rate is 220 NL/min, the coating has the lowest porosity of 1.71% and excellent mechanical properties. Combined with the micromorphology and elemental analysis of the coating, it was assumed that the Fe element generated by the corrosion of the Q690E substrate migrates to the surface of the coating. The corrosion tests in the simulated deep-sea cold showed that before the failure of the coating in the edge and corner areas, the corrosion rate of the coating was less than 0.002 mm/a, which could meet the long-term use requirements in the real cold spring environment. Full article
Show Figures

Figure 1

18 pages, 2059 KiB  
Review
How Developments in Genebanks Could Shape Utilization Strategies for Domestic Animals
by Qianzi Ren, Ying Gong, Peng Su, Gang Liu, Yabin Pu, Fuqing Yu, Yuehui Ma, Zhenqing Wang, Yefang Li and Lin Jiang
Agriculture 2025, 15(2), 133; https://doi.org/10.3390/agriculture15020133 - 9 Jan 2025
Viewed by 1313
Abstract
Global geographical, climatic, and ecological diversity has given rise to a wealth of domestic animals, which are essential for food security and agricultural sustainability. Since the 1960s, these critical genetic resources have declined significantly due to overdevelopment, ecological degradation, and climate change, posing [...] Read more.
Global geographical, climatic, and ecological diversity has given rise to a wealth of domestic animals, which are essential for food security and agricultural sustainability. Since the 1960s, these critical genetic resources have declined significantly due to overdevelopment, ecological degradation, and climate change, posing a serious threat to global food security. In the face of these challenges, we emphasize the critical importance of promoting indigenous livestock and poultry germplasm resources in biodiversity conservation to enhance the adaptability and resilience of agricultural systems. To promote the sustainable management and conservation of genetic resources, a multistakeholder international cooperation framework is needed. Globally, many national and international institutions have initiated a variety of conservation measures, legislation, and technical strategies. In particular, genebanks play an indispensable role in the conservation of important livestock and poultry genetic resources. These banks not only aid in maintaining biodiversity but also provide valuable genetic material for future breeding programmes and scientific research. Through systematic collection, conservation and evaluation, genebanks ensure the long-term availability and sustainable use of genetic resources and provide an important foundation for addressing global environmental change and agricultural challenges. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

24 pages, 4915 KiB  
Article
Spatio-Temporal Heterogeneity of Ecological Quality in a Typical Dryland of Northern China Driven by Climate Change and Human Activities
by Shuai Li, Junliang Gao, Pu Guo, Ge Zhang, Yu Ren, Qi Lu, Qinwen Bai and Jiahua Lu
Plants 2024, 13(23), 3341; https://doi.org/10.3390/plants13233341 - 28 Nov 2024
Viewed by 873
Abstract
With the intensification of climate change and anthropogenic impacts, the ecological environment in drylands faces serious challenges, underscoring the necessity for regionally adapted ecological quality evaluation. This study evaluates the suitability of the original Remote Sensing Ecological Index (oRSEI), modified RSEI (mRSEI), and [...] Read more.
With the intensification of climate change and anthropogenic impacts, the ecological environment in drylands faces serious challenges, underscoring the necessity for regionally adapted ecological quality evaluation. This study evaluates the suitability of the original Remote Sensing Ecological Index (oRSEI), modified RSEI (mRSEI), and adapted RSEI (aRSEI) in a typical dryland region of northern China. Spatio-temporal changes in ecological quality from 2000 to 2022 were analyzed using Theil–Sen median trend analysis, the Mann–Kendall test, and the Hurst exponent. Multiple regression residual analysis quantified the relative contributions of climate change and human activities to ecological quality changes. Results showed that (1) the aRSEI was the most suitable index for the study area; (2) observed changes exhibited significant spatial heterogeneity, with improvements generally in the inner areas of the Yellow River and declines in the outer areas; and (3) changes in ecological quality were primarily driven by climate change and human activities, with human activities dominating from 2000 to 2011 and the influence of climate change increasing from 2012 to 2022. This study compares the efficacy of RSEIs in evaluating dryland ecological quality, identifies spatio-temporal change patterns, and elucidates driving mechanisms, offering scientific evidence and policy recommendations for targeted conservation and restoration measures to address future changes in dryland regions. Full article
Show Figures

Figure 1

13 pages, 1282 KiB  
Article
Molecular Mechanism: Inhibition of Fusarium oxysporum T-2 Toxin Synthesis by Surfactin in Dried Fish: Induction of Yap1 Nucleation by ROS Accumulation
by Qi Deng, Xueting Ren, Qin Hu, Yuehua Pu, Lukman Iddrisu, Anand Kumar, Meifang Hua, Jianmeng Liao, Zhijia Fang and Ravi Gooneratne
Molecules 2024, 29(22), 5402; https://doi.org/10.3390/molecules29225402 - 15 Nov 2024
Viewed by 1215
Abstract
(1) T-2 toxin synthesized by Fusarium oxysporum (F. oxysporum) can cause deterioration of dried fish and endanger human health. (2) The molecular mechanism by which antibacterial lipopeptides surfactin inhibited F. oxysporum growth and toxin production was elucidated by investigating the intracellular [...] Read more.
(1) T-2 toxin synthesized by Fusarium oxysporum (F. oxysporum) can cause deterioration of dried fish and endanger human health. (2) The molecular mechanism by which antibacterial lipopeptides surfactin inhibited F. oxysporum growth and toxin production was elucidated by investigating the intracellular ROS production pathway and the subcellular distribution and transcriptional activity of the transcription factor Yap1 and its regulation of Tri5 gene in F. oxysporum. (3) Surfactin caused hyphal damage and nucleic acid and protein leakage; thus, the growth of F. oxysporum was disrupted. Surfactin’s excessive accumulation of intracellular ROS triggered the translocation of transcription factor Yap1 into the nucleus, resulting in toxin cluster gene Tri5 expression inhibition, thereby blocking T-2 toxin synthesis. (4) This is a novel mechanism by which surfactin inhibits the growth and T-2 toxin synthesis of F. oxysporum from multiple aspects, including cell structural integrity and the ROS-Yap1 signaling pathway. (5) This study provides a theoretical basis for the application of surfactin in the antifungal control of aquatic dry products. Full article
(This article belongs to the Special Issue Advancing Food Safety: Chemistry in Food Microbiology Control)
Show Figures

Graphical abstract

29 pages, 6187 KiB  
Article
Promoting Sustainability: Collaborative Governance Pathways for Virtual Water Interactions and Environmental Emissions
by Jiawen Yu, Shengyang Pu, Hui Cheng, Cai Ren, Xiaoying Lai and Aihua Long
Sustainability 2024, 16(21), 9309; https://doi.org/10.3390/su16219309 - 26 Oct 2024
Cited by 3 | Viewed by 1762
Abstract
This study explores the water consumption and greenhouse gas (GHG) emissions in the Yarkand River Basin, focusing on their dynamic interactions across industrial sectors. Utilizing environmental input–output analysis (IOA), the CROPWAT model, and life cycle assessment (LCA), we quantified the historical evolution of [...] Read more.
This study explores the water consumption and greenhouse gas (GHG) emissions in the Yarkand River Basin, focusing on their dynamic interactions across industrial sectors. Utilizing environmental input–output analysis (IOA), the CROPWAT model, and life cycle assessment (LCA), we quantified the historical evolution of physical and virtual water cycles in relation to the water–carbon nexus. Our findings reveal that the planting industry, particularly the production of export-oriented, water-intensive crops like cotton, significantly contributes to both blue and green water consumption, exacerbating regional water scarcity. The persistent external market demand drives this over-extraction, further strained by the basin’s limited water retention capabilities. Although advancements have been made in reducing the per-unit water footprint of crops, total water consumption continues to rise due to agricultural expansion, intensifying pressure on blue water resources. Additionally, agricultural GHG emissions have surged, driven by increased electricity consumption, heavy fertilizer use, and escalating soil N2O emissions. In light of these challenges, our research underscores the critical need for integrated resource management strategies that align with sustainable development goals. By promoting efficient water allocation within the agricultural sector and diversifying crop structures downstream, we can enhance ecosystem resilience and reduce environmental degradation. Furthermore, the advancement of value-added agricultural processing and the implementation of innovative water conservation technologies are essential for fostering economic sustainability. These strategies not only mitigate the environmental impacts associated with agricultural practices but also strengthen the region’s adaptive capacity in the face of climate change and fluctuating market demands. Our findings contribute to the broader discourse on sustainable agricultural practices, emphasizing the interconnectedness of water management, climate resilience, and economic viability in arid regions. Full article
(This article belongs to the Special Issue Recent Advances in Climate Change and Water Resources)
Show Figures

Figure 1

16 pages, 4126 KiB  
Article
An Efficient Multi-Scale Wavelet Approach for Dehazing and Denoising Ultrasound Images Using Fractional-Order Filtering
by Li Wang, Zhenling Yang, Yi-Fei Pu, Hao Yin and Xuexia Ren
Fractal Fract. 2024, 8(9), 549; https://doi.org/10.3390/fractalfract8090549 - 23 Sep 2024
Cited by 3 | Viewed by 1556
Abstract
Ultrasound imaging is widely used in medical diagnostics due to its non-invasive and real-time capabilities. However, existing methods often overlook the benefits of fractional-order filters for denoising and dehazing. Thus, this work introduces an efficient multi-scale wavelet method for dehazing and denoising ultrasound [...] Read more.
Ultrasound imaging is widely used in medical diagnostics due to its non-invasive and real-time capabilities. However, existing methods often overlook the benefits of fractional-order filters for denoising and dehazing. Thus, this work introduces an efficient multi-scale wavelet method for dehazing and denoising ultrasound images using a fractional-order filter, which integrates a guided filter, directional filter, fractional-order filter, and haze removal to the different resolution images generated by a multi-scale wavelet. In the directional filter stage, an eigen-analysis of each pixel is conducted to extract structural features, which are then classified into edges for targeted filtering. The guided filter subsequently reduces speckle noise in homogeneous anatomical regions. The fractional-order filter allows the algorithm to effectively denoise while improving edge definition, irrespective of the edge size. Haze removal can effectively eliminate the haze caused by attenuation. Our method achieved significant improvements, with PSNR reaching 31.25 and SSIM 0.905 on our ultrasound dataset, outperforming other methods. Additionally, on external datasets like McMaster and Kodak24, it achieved the highest PSNR (29.68, 28.62) and SSIM (0.858, 0.803). Clinical evaluations by four radiologists confirmed its superiority in liver and carotid artery images. Overall, our approach outperforms existing speckle reduction and structural preservation techniques, making it highly suitable for clinical ultrasound imaging. Full article
(This article belongs to the Section Life Science, Biophysics)
Show Figures

Figure 1

20 pages, 4752 KiB  
Article
Genome-Wide Identification and Characterization of Alternative Oxidase (AOX) Genes in Foxtail Millet (Setaria italica): Insights into Their Abiotic Stress Response
by Hui Zhang, Yidan Luo, Yujing Wang, Juan Zhao, Yueyue Wang, Yajun Li, Yihao Pu, Xingchun Wang, Xuemei Ren and Bo Zhao
Plants 2024, 13(18), 2565; https://doi.org/10.3390/plants13182565 - 12 Sep 2024
Cited by 2 | Viewed by 1635
Abstract
Alternative oxidase (AOX) serves as a critical terminal oxidase within the plant respiratory pathway, playing a significant role in cellular responses to various stresses. Foxtail millet (Setaria italica), a crop extensively cultivated across Asia, is renowned for its remarkable [...] Read more.
Alternative oxidase (AOX) serves as a critical terminal oxidase within the plant respiratory pathway, playing a significant role in cellular responses to various stresses. Foxtail millet (Setaria italica), a crop extensively cultivated across Asia, is renowned for its remarkable tolerance to abiotic stresses and minimal requirement for fertilizer. In this study, we conducted a comprehensive genome-wide identification of AOX genes in foxtail millet genome, discovering a total of five SiAOX genes. Phylogenetic analysis categorized these SiAOX members into two subgroups. Prediction of cis-elements within the promoter regions, coupled with co-expression network analysis, intimated that SiAOX proteins are likely involved in the plant’s adaptive response to abiotic stresses. Employing RNA sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR), we scrutinized the expression patterns of the SiAOX genes across a variety of tissues and under multiple abiotic stress conditions. Specifically, our analysis uncovered that SiAOX1, SiAOX2, SiAOX4, and SiAOX5 display distinct tissue-specific expression profiles. Furthermore, SiAOX2, SiAOX3, SiAOX4, and SiAOX5 exhibit responsive expression patterns under abiotic stress conditions, with significant differences in expression levels observed between the shoot and root tissues of foxtail millet seedlings. Haplotype analysis of SiAOX4 and SiAOX5 revealed that these genes are in linkage disequilibrium, with Hap_2 being the superior haplotype for both, potentially conferring enhanced cold stress tolerance in the cultivar group. These findings suggest that both SiAOX4 and SiAOX5 may be targeted for selection in future breeding programs aimed at improving foxtail millet’s resilience to cold stress. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Graphical abstract

16 pages, 5384 KiB  
Article
An Evaluation of the Corrosion Inhibition Performance of Chitosan Modified by Quaternary Ammonium Salt for Carbon Steel in Stone Processing Wastewater
by Jingjing Xiang, Chaofan Mo, Chao Peng, Lin Yang, Tingtao Wan, Yuntian Song, Xuanhui Lei, Pu Liu, Bo Gao, Dajun Ren, Chong Zhao, Yanjun Huang, Yi Wang and Lei Zhang
Molecules 2024, 29(14), 3401; https://doi.org/10.3390/molecules29143401 - 19 Jul 2024
Cited by 1 | Viewed by 1432
Abstract
Chitosan was used as the raw material. A quaternization reaction was carried out between 2,3-epoxypropyltrimethylammonium chloride and water-soluble chitosan to prepare quaternary ammonium salt water-soluble chitosan (QWSC), and its corrosion inhibition performance against the corrosion of carbon steel in stone processing wastewater was [...] Read more.
Chitosan was used as the raw material. A quaternization reaction was carried out between 2,3-epoxypropyltrimethylammonium chloride and water-soluble chitosan to prepare quaternary ammonium salt water-soluble chitosan (QWSC), and its corrosion inhibition performance against the corrosion of carbon steel in stone processing wastewater was evaluated. The corrosion inhibition efficiencies of QWSC on carbon steel in stone processing wastewater were investigated through weight loss, as well as electrochemical and surface morphology characterization techniques. The results show that QWSC has superior corrosion inhibition performance for A3 carbon steel. When an amount of 60 mL·L−1 is added, the corrosion inhibition efficiency can reach 59.51%. Electrochemical research has shown that a QWSC inhibitor is a mixed-type corrosion inhibitor. The inhibition mechanisms of the QWSC inhibitor revealed that the positive charge on the surface of carbon steel in stone wastewater was conducive to the adsorption of Cl in the medium, which produced an excessive negative charge on the metal’s surface. At the same time, the quaternary ammonium cation and amino cation formed in QWSC in stone processing wastewater can be physically absorbed on the surface of A3 carbon steel, forming a thin-film inhibitor to prevent metal corrosion. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

Back to TopTop