Mid-Infrared Ultraflat Broadband Supercontinuum Generation with 10 dB Bandwidth of 2340 nm in a Tapered Fluorotellurite Fiber
Abstract
:1. Introduction
2. Experiments and Results
3. Simulation and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gasser, C.; Kilgus, J.; Harasek, M.; Lendl, B.; Brandstetter, M. Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser. Opt. Express 2018, 26, 12169–12179. [Google Scholar] [CrossRef] [PubMed]
- Ycas, G.; Giorgetta, F.R.; Baumann, E.; Coddington, I.; Herman, D.; Diddams, S.A.; Newbury, N.R. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm. Nat. Photonics 2018, 12, 202–208. [Google Scholar] [CrossRef]
- Timmers, H.; Kowligy, A.; Lind, A.; Cruz, F.C.; Nader, N.; Silfies, M.; Ycas, G.; Allison, T.K.; Schunemann, P.G.; Papp, S.B.; et al. Molecular fingerprinting with bright, broadband infrared frequency combs. Optica 2018, 5, 727–732. [Google Scholar] [CrossRef]
- Borondics, F.; Jossent, M.; Sandt, C.; Lavoute, L.; Gaponov, D.; Hideur, A.; Dumas, P.; Février, S. Supercontinuumbased Fourier transform infrared spectromicroscopy. Optica 2018, 5, 378–381. [Google Scholar] [CrossRef]
- Nallala, J.; Lloyd, G.R.; Kendall, C.; Shepherd, N.A.; Barr, H.; Stone, N. Identification of GI cancers utilizing rapid mid-infrared spectral imaging. Proc. SPIE 2016, 9703, 970303. [Google Scholar]
- Yang, W.; Zhang, B.; Xue, G.; Yin, K.; Hou, J. Thirteen watt all-fiber midinfrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 µm MOPA system. Opt. Lett. 2014, 39, 1849–1852. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Zhang, B.; Wu, T.; Zhao, Y.; Hou, J. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration. Photonics Res. 2019, 7, 1061–1065. [Google Scholar] [CrossRef]
- Zheng, Z.J.; Ouyang, D.Q.; Zhao, J.Q.; Liu, M.Q.; Ruan, S.C.; Yan, P.G.; Wang, J.Z. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber. Photonics Res. 2016, 4, 135–139. [Google Scholar] [CrossRef]
- Shi, H.; Feng, X.; Tan, F.; Wang, P.; Wang, P. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber. Opt. Mater. Express 2016, 6, 3967–3976. [Google Scholar] [CrossRef]
- Xia, C.; Xu, Z.; Islam, M.N.; Terry, F.L.; Freeman, M.J.; Zakel, A.; Mauricio, J. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 µm with direct pulse pattern modulation. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 422–434. [Google Scholar] [CrossRef]
- Kedenburg, S.; Strutynski, C.; Kibler, B.; Froidevaux, P.; Désévédavy, F.; Gadret, G.; Jules, J.; Steinle, T.; Mörz, F.; Steimnann, A.; et al. High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 µm in robust step-index tellurite fibers. J. Opt. Soc. Am. B 2017, 34, 601–607. [Google Scholar] [CrossRef]
- Thapa, R.; Rhonehouse, D.; Nguyen, D.; Wiersma, K.; Smith, C.; Zong, J.; Chavez-Pirson, A. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 µm. Proc. SPIE 2013, 8898, 889808. [Google Scholar]
- Li, Z.R.; Jia, Z.X.; Yao, C.F.; Zhao, Z.P.; Li, N.; Hu, M.L.; Ohishi, Y.; Qin, W.P.; Qin, G.S. 22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers. Opt. Lett. 2020, 45, 1882–1885. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.H.; Jia, Z.X.; Jiao, Y.D.; Li, Z.R.; Yao, C.F.; Hu, M.L.; Ohishi, Y.; Qin, W.P.; Qin, G.S. 25.8 W all-fiber mid-infrared supercontinuum light sources based on fluorotellurite fibers. IEEE Photonics Technol. Lett. 2022, 34, 367–370. [Google Scholar] [CrossRef]
- Labruyère, A.; Tonello, A.; Couderc, V.; Huss, G.; Leproux, P. Compact supercontinuum sources and their biomedical applications. Opt. Fiber Technol. 2012, 18, 375–378. [Google Scholar] [CrossRef]
- Islam, M.N.; Freeman, M.J.; Peterson, L.M.; Ke, K.; Ifarraguerri, A.; Bailey, C.; Baxley, F.; Wager, M.; Absi, A.; Leonard, J.; et al. Field tests for round-trip imaging at a 1.4 km distance with change detection and ranging using a short-wave infrared supercontinuum laser. Appl. Opt. 2016, 55, 1584–1602. [Google Scholar] [CrossRef]
- Wu, T.; Yang, L.; Dou, Z.; Yin, K.; He, X.; Zhang, B.; Hou, J. Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber. Opt. Lett. 2019, 44, 2378–2381. [Google Scholar] [CrossRef]
- Yin, K.; Zhang, B.; Yang, L.; Hou, J. 15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm. Opt. Lett. 2017, 42, 2334–2337. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, B.; He, X.; Deng, K.; Liu, S.; Hou, J. 20.6 W mid-infrared supercontinuum generation in ZBLAN fiber with spectrum of 1.9–4.3 µm. J. Light. Technol. 2020, 38, 5122–5127. [Google Scholar] [CrossRef]
- Bei, J.; Foo, H.T.C.; Qian, G.; Monro, T.M.; Hemming, A.; Ebendorff-Heidepriem, H. Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water. Opt. Mater. Express 2014, 4, 1213–1226. [Google Scholar] [CrossRef]
- Jia, Z.X.; Yao, C.F.; Jia, S.J.; Wang, F.; Wang, S.B.; Zhao, Z.P.; Qin, G.S.; Ohishi, Y.; Qin, W.P. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber. Appl. Phys. Lett. 2017, 110, 2611061. [Google Scholar] [CrossRef]
- Yao, C.F.; Jia, Z.X.; Li, Z.R.; Jia, S.J.; Zhao, Z.P.; Zhang, L.; Feng, Y.; Qin, G.S.; Ohishi, Y.; Qin, W.P. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica 2018, 5, 1264–1270. [Google Scholar] [CrossRef]
- Jiao, Y.D.; Jia, Z.X.; Zhang, C.Y.; Guo, X.H.; Meng, F.C.; Guo, Q.; Yu, Y.; Ohishi, Y.; Qin, W.P.; Qin, G.S. Over 50 W All-fiber mid-infrared supercontinuum laser. Opt. Express 2023, 31, 31082–31091. [Google Scholar] [CrossRef]
- Yang, L.J.; Wang, X.; Yao, C.F.; Ren, G.C.; Pu, L.Y.; Li, K.H.; Yang, X.L.; Pan, J.C.; Li, P.X. High-power ultraflat broadband supercontinuum generation in fluorotellurite fiber pumped by a dual-wavelength femtosecond laser. Opt. Lett. 2025, 50, 618–621. [Google Scholar] [CrossRef]
- Ren, G.C.; Yao, C.F.; Wang, X.; Pu, L.Y.; Li, K.H.; Li, P.X. Lasing at 2.1 µm pumped by a simultaneous-gain clad laser. Opt. Lett. 2024, 49, 4946–4949. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics. In Nonlinear Science at the Dawn of the 21st Century; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Eftekhar, M.A.; Lopez-Aviles, H.; Wise, F.W.; Amezcua-Correa, R.; Christodoulides, D.N. General theory and observation of Cherenkov radiation induced by multimode solitons. Commun. Phys. 2021, 4, 137. [Google Scholar] [CrossRef]
- Wright, L.G.; Wabnitz, S.; Christodoulides, D.N.; Wise, F.W. Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves. Phys. Rev. Lett. 2015, 115, 223902. [Google Scholar] [CrossRef]
- Stolen, R.H.; Tomlinson, W.J.; Haus, H.A.; Gordon, J.P. Raman response function of silica-core fibers. J. Opt. Soc. Am. B 1989, 6, 1159–1166. [Google Scholar] [CrossRef]
Spectral Range (μm) | 10 dB Bandwidth Range (μm) | Power (W) | Optical-to-Optical Conversion Efficiency | Reference |
---|---|---|---|---|
0.93–3.99 | 2–3.5 | 25.8 | 60.6% | [14] |
1.8–4.2 | 1.9–4.1 | 10.4 | 74% | [24] |
1.22–3.74 | 1.4–3.25 | 50 | 68.47% | [23] |
0.93–3.95 | 1.89–3.52 | 22.7 | 57.2% | [13] |
0.95–3.93 | 1.9–3 | 10.4 | 65% | [22] |
1.02–3.44 | 1.8–3.3 | 4.5 | 42.9% | [21] |
1.8–4.75 | 1.88–4.22 | 1.04 | 75% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, G.; Yang, L.; Yao, C.; Wang, X.; Pu, L.; Li, K.; Zhang, L.; Li, P. Mid-Infrared Ultraflat Broadband Supercontinuum Generation with 10 dB Bandwidth of 2340 nm in a Tapered Fluorotellurite Fiber. Photonics 2025, 12, 297. https://doi.org/10.3390/photonics12040297
Ren G, Yang L, Yao C, Wang X, Pu L, Li K, Zhang L, Li P. Mid-Infrared Ultraflat Broadband Supercontinuum Generation with 10 dB Bandwidth of 2340 nm in a Tapered Fluorotellurite Fiber. Photonics. 2025; 12(4):297. https://doi.org/10.3390/photonics12040297
Chicago/Turabian StyleRen, Guochuan, Linjing Yang, Chuanfei Yao, Xuan Wang, Luyao Pu, Kaihang Li, Ling Zhang, and Pingxue Li. 2025. "Mid-Infrared Ultraflat Broadband Supercontinuum Generation with 10 dB Bandwidth of 2340 nm in a Tapered Fluorotellurite Fiber" Photonics 12, no. 4: 297. https://doi.org/10.3390/photonics12040297
APA StyleRen, G., Yang, L., Yao, C., Wang, X., Pu, L., Li, K., Zhang, L., & Li, P. (2025). Mid-Infrared Ultraflat Broadband Supercontinuum Generation with 10 dB Bandwidth of 2340 nm in a Tapered Fluorotellurite Fiber. Photonics, 12(4), 297. https://doi.org/10.3390/photonics12040297