How Developments in Genebanks Could Shape Utilization Strategies for Domestic Animals
Abstract
:1. Introduction
2. Global Overview of Livestock and Poultry Germplasm Resources
2.1. Present Situation of World Animal Germplasm Resources
2.1.1. Abundant Germplasm Resources of Livestock and Poultry
2.1.2. Severe Issues Affecting the Variety of Livestock and Poultry Species
2.2. Protection of Animal Germplasm Resources
2.2.1. Conservation Plans and Policies
2.2.2. Modalities for the Conservation of Genetic Resources
2.3. Overview of Livestock and Poultry Germplasm Resources in China
2.3.1. China Has Abundant and Diversified Livestock and Poultry Genetic Resources
2.3.2. Distinctive Germplasm Characteristics of Local Livestock and Poultry Germplasm Resources in China
2.3.3. High Risk of Endangerment for a Few Breeds
2.4. Conservation of Livestock Germplasm Resources
2.4.1. Protection Legislation and Systems
2.4.2. Establishment of a Multilevel Mechanism for the Conservation of Genetic Resources
3. Profile of Genebank Construction of Livestock and Poultry Globally
3.1. Developments in the Construction of Important Foreign Germplasm Repositories
3.1.1. NCGRP and AGRIN
3.1.2. EUGENA
3.1.3. CRB-Anim
3.1.4. NARO
3.1.5. NordGen
3.2. Construction of China’s National Livestock and Poultry Genebank
3.2.1. National Germplasm Resource Center for Domestic Animals
3.2.2. National Livestock and Poultry Breeds Genebank
4. Challenges and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boettcher, P.J.; Hoffmann, I.; Baumung, R.; Drucker, A.G.; McManus, C.; Berg, P.; Stella, A.; Nilsen, L.B.; Moran, D.; Naves, M. Genetic resources and genomics for adaptation of livestock to climate change. Front. Genet. 2015, 5, 461. [Google Scholar] [CrossRef]
- Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 2010, 41, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Magoro, A.M.; Mtileni, B.; Hadebe, K.; Zwane, A. Assessment of genetic diversity and conservation in South African indigenous goat ecotypes: A review. Animals 2022, 12, 3353. [Google Scholar] [CrossRef] [PubMed]
- Glowka, L. A Guide to the Convention on Biological Diversity; Union Internationale pour la Conservation de la Nature et de ses Resources: Gland, Switzerland, 1994. [Google Scholar]
- Rischkowsky, B.; Pilling, D. The State of the World’s Animal Genetic Resources for Food and Agriculture; Food & Agriculture Organization: Rome, Italy, 2007. [Google Scholar]
- Wallace, H.; Pollack, M.A.; Roederer-Rynning, C.; Young, A.R. Policy-Making in the European Union; Oxford University Press: New York, NY, USA, 2020. [Google Scholar]
- Wilcove, D.S.; Master, L.L. How many endangered species are there in the United States? Front. Ecol. Environ. 2005, 3, 414–420. [Google Scholar] [CrossRef]
- Malan, S. The improved Boer goat. Small Rumin. Res. 2000, 36, 165–170. [Google Scholar] [CrossRef]
- Knob, D.A.; Alessio, D.R.M.; Thaler Neto, A.; Mozzaquatro, F.D. Reproductive performance and survival of Holstein and Holstein× Simmental crossbred cows. Trop. Anim. Health Prod. 2016, 48, 1409–1413. [Google Scholar] [CrossRef] [PubMed]
- Javed, K.; Farooq, M.; Mian, M.; Durrani, F.; Mussawar, S. Flock size and egg production performance of backyard chicken reared by rural woman in Peshawar, Pakistan. Livest. Res. Rural. Dev. 2003, 15, 80. [Google Scholar]
- Balcha, K.A.; Mengesha, Y.T.; Senbeta, E.K.; Zeleke, N.A. Evaluation of different traits from day-old to age at first eggs of Fayoumi and White leghorn chickens and their reciprocal crossbreeds. J. Adv. Vet. Anim. Res. 2021, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lind, B.M.; Candido-Ribeiro, R.; Singh, P.; Lu, M.; Obreht Vidakovic, D.; Booker, T.R.; Whitlock, M.C.; Yeaman, S.; Isabel, N.; Aitken, S.N. How useful is genomic data for predicting maladaptation to future climate? Glob. Chang. Biol. 2024, 30, e17227. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.M.; Leadley, P.W.; Proença, V.; Alkemade, R.; Scharlemann, J.P.; Fernandez-Manjarrés, J.F.; Araújo, M.B.; Balvanera, P.; Biggs, R.; Cheung, W.W. Scenarios for global biodiversity in the 21st century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [PubMed]
- Mariante, A.d.S.; Egito, A.d. Animal genetic resources in Brazil: Result of five centuries of natural selection. Theriogenology 2002, 57, 223–235. [Google Scholar] [CrossRef] [PubMed]
- IRB UN. Convention on Biological Diversity; Treaty Collection; IRB UN: New Delhi, India, 1992. [Google Scholar]
- Declaration, I. Global Plan of Action for Animal Genetic Resources and the Interlaken Declaration. FAO Commission on Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2007. [Google Scholar]
- Hoffmann, I.; Boerma, D.; Scherf, B. The Global Plan of Action for Animal Genetic Resources—The road to common understanding and agreement. Livest. Sci. 2011, 136, 7–14. [Google Scholar] [CrossRef]
- Cao, J.; Baumung, R.; Boettcher, P.; Scherf, B.; Besbes, B.; Leroy, G. Monitoring and progress in the implementation of the global plan of action on animal genetic resources. Sustainability 2021, 13, 775. [Google Scholar] [CrossRef]
- Scherf, B.; Baumung, R. Monitoring the implementation of the global plan of action for animal genetic resources. Biodiversity 2015, 16, 149–156. [Google Scholar] [CrossRef]
- Berthaud, J. Strategies for conservation of genetic resources in relation with their utilization. Euphytica 1997, 96, 1–12. [Google Scholar] [CrossRef]
- Welsh, C.; Stewart, T.; Schwab, C.; Blackburn, H. Pedigree analysis of 5 swine breeds in the United States and the implications for genetic conservation. J. Anim. Sci. 2010, 88, 1610–1618. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, L.; Hu, F. Agro-biodiversity conservation and implications in China. In Organic Agriculture and Biodiversity in China; Elsevier: Amsterdam, The Netherlands, 2024; pp. 25–45. [Google Scholar]
- Silversides, F.; Purdy, P.; Blackburn, H. Comparative costs of programmes to conserve chicken genetic variation based on maintaining living populations or storing cryopreserved material. Br. Poult. Sci. 2012, 53, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Katayama, M.; Hirayama, T.; Tani, T.; Nishimori, K.; Onuma, M.; Fukuda, T. Chick derived induced pluripotent stem cells by the poly-cistronic transposon with enhanced transcriptional activity. J. Cell. Physiol. 2018, 233, 990–1004. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Cheng, K.M.; Silversides, F.G. Production of donor-derived offspring from cryopreserved ovarian tissue in Japanese quail (Coturnix japonica). Biol. Reprod. 2010, 83, 15–19. [Google Scholar] [CrossRef]
- Zomerdijk, F.; Hiemstra, S.-J.; d’Arbaumont, M.; Tixier-Boichard, M.; Boettcher, P. Quality management practices of gene banks for livestock: A global review. Biopreserv. Biobank. 2020, 18, 244–253. [Google Scholar] [CrossRef]
- Blackburn, H. Biobanking genetic material for agricultural animal species. Annu. Rev. Anim. Biosci. 2018, 6, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Leroy, G.; Boettcher, P.; Besbes, B.; Danchin-Burge, C.; Baumung, R.; Hiemstra, S.J. Cryoconservation of animal genetic resources in Europe and two African countries: A gap analysis. Diversity 2019, 11, 240. [Google Scholar] [CrossRef]
- Mariante, A.d.S.; do SMAlbuquerque, M.; Egito Ad McManus, C.; Lopes, M.; Paiva, S. Present status of the conservation of livestock genetic resources in Brazil. Livest. Sci. 2009, 120, 204–212. [Google Scholar] [CrossRef]
- Jacques, A.; Duclos, D.; Danchin-Burge, C.; Mercat, M.-J.; Tixier-Boichard, M.; Restoux, G. Assessing the potential of germplasm collections for the management of genetic diversity: The case of the French National Cryobank. Peer Community J. 2024, 4, e13. [Google Scholar] [CrossRef]
- Blackburn, H. Development of national animal genetic resource programs. Reprod. Fertil. Dev. 2003, 16, 27–32. [Google Scholar] [CrossRef]
- Scherf, B.D.; Pilling, D. The second report on the state of the world’s animal genetic resources for food and agriculture. In FAO Commission on Genetic Resources for Food and Agriculture Assessments; FAO: Rome, Italy, 2015. [Google Scholar]
- Blackburn, H. The national animal germplasm program: Challenges and opportunities for poultry genetic resources. Poult. Sci. 2006, 85, 210–215. [Google Scholar] [CrossRef]
- Blackburn, H. Genetic selection and conservation of genetic diversity. Reprod. Domest. Anim. 2012, 47, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, H.; Plante, Y.; Rohrer, G.; Welch, E.; Paiva, S. Impact of genetic drift on access and benefit sharing under the Nagoya Protocol: The case of the Meishan pig. J. Anim. Sci. 2014, 92, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Paiva, S.R.; McManus, C.M.; Blackburn, H. Conservation of animal genetic resources–A new tact. Livest. Sci. 2016, 193, 32–38. [Google Scholar] [CrossRef]
- Hiemstra, S.J.; de Haas, Y.; Mäki-Tanila, A.; Gandini, G. Local Cattle Breeds in Europe: Development of Policies and Strategies for Self-Sustaining Breeds; Wageningen Academic Publishers: Wageningen, The Netherlands, 2010. [Google Scholar]
- Hiemstra, S.; Martyniuk, E.; Duchev, Z.; Begemann, F. European Gene Bank network for animal genetic resources (EUGENA). Proc. 10th WCGALP (Mackay) 2014, 10, 1. [Google Scholar]
- Buck, M.; Hamilton, C. The Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the Convention on Biological Diversity. Rev. Eur. Community Int. Environ. Law 2011, 20, 47–61. [Google Scholar] [CrossRef]
- Tixier-Boichard, M.; Marthey, S.; Marthey, N. The CRB-Anim web portal: Access to biological resources for animal sciences. In Proceedings of the 69 Annual Meeting of the European Federation of Animal Science (EAAP), Dubrovnik, Croatia, 27–31 August 2018. [Google Scholar]
- Plucknett, D.L.; Smith, N.J. Gene Banks and the World’s Food; Princeton University Press: Princeton, NY, USA, 2014. [Google Scholar]
- Takeya, M.; Yamasaki, F.; Uzuhashi, S.; Aoki, T.; Sawada, H.; Nagai, T.; Tomioka, K.; Tomooka, N.; Sato, T.; Kawase, M. NIASGBdb: NIAS Genebank databases for genetic resources and plant disease information. Nucleic Acids Res. 2010, 39, D1108–D1113. [Google Scholar] [CrossRef]
- Okuno, K.; Shirata, K.; Niino, T.; Kawase, M. Plant genetic resources in Japan: Platforms and destinations to conserve and utilize plant genetic diversity. Jpn. Agric. Res. Q. JARQ 2005, 39, 231–237. [Google Scholar] [CrossRef]
- Jonatan, J. NordGen Annual Review 2021; NordGen: Alnarp, Sweden, 2022; p. 11. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:norden:org:diva-12489 (accessed on 5 January 2025).
- White, E.-L.F.; Kjetså, M.; Peippo, J. The First Status Report on the Conservation of Farm Animal Genetic Resources (AnGR) in the Nordics: 40 Years of Nordic Collaboration in the Conservation of Animal Genetic Resources; NordGen: Alnarp, Sweden, 2024; p. 7. [Google Scholar]
- Berg, P.; Nielsen, J.; Sørensen, M.K. EVA: Realised and predicted optimal genetic contributions. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Minas Gerais, Brazil, 13–18 August 2006. [Google Scholar]
- Fagerheim White, E.-L.; Peippo, J.; Honkatukia, M. The Nordfrost Project Report: Farm Animal Gene Banks in the Nordic Region–Added Value Through Nordic Cooperation. 2024. Available online: https://discovery.researcher.life/article/the-nordfrost-project-report-farm-animal-gene-banks-in-the-nordic-region-added-value-through-nordic-cooperation/e66d1b94efff3ae4a43962babafe7afe (accessed on 5 January 2025).
- Zonabend, E.; Okeyo, A.; Ojango, J.M.; Hoffmann, I.; Moyo, S.; Philipsson, J. Infrastructure for sustainable use of animal genetic resources in Southern and Eastern Africa. Anim. Genet. Resour./Resour. Génétiques Anim./Recur. Genéticos Anim. 2013, 53, 79–93. [Google Scholar] [CrossRef]
- Leroy, G.; Baumung, R.; Notter, D.; Verrier, E.; Wurzinger, M.; Scherf, B. Stakeholder involvement and the management of animal genetic resources across the world. Livest. Sci. 2017, 198, 120–128. [Google Scholar] [CrossRef]
- Wollny, C.B. The need to conserve farm animal genetic resources in Africa: Should policy makers be concerned? Ecol. Econ. 2003, 45, 341–351. [Google Scholar] [CrossRef]
Country | Genebank Name | Species | Breeds | Numbers | Source |
---|---|---|---|---|---|
United States | NAGP | 45 | 172 | 1,263,298 | https://agrin.ars.usda.gov/ (accessed on 20 May 2024) |
Brazil | MFRF, AB | 16 | 90 | 1,635,311 | https://agrin.ars.usda.gov/ (accessed on 20 May 2024) |
Canada | AGRC | 1 | 71 | 202,109 | https://agrin.ars.usda.gov/ (accessed on 20 May 2024) |
Netherlands | CGN | 11 | 154 | 547,886 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Austria | AREC Raumberg-Gumpensteinn | 4 | 46 | 421,389 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | BNGA | 6 | 66 | 107,066 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Hungary | NCBGC | 10 | 31 | 18,757 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Latvia | LBTU | 5 | 6 | 3318 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Montenegro | UMo, BTF | 3 | 8 | 568 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Poland | NBBM | 3 | 13 | 58,995 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Poland | MCB Sp. z o. o. | 1 | 8 | 338,066 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Serbia | SVCVP | 1 | 1 | 585 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Serbia | Temerin | 1 | 3 | 261,133 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Serbia | IAH | 4 | 14 | 1109 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Slovakia | GB NPPC-VÚŽV | 5 | 15 | 4250 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Portugal | INIAV | 6 | 40 | 265,929 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | BIOMEJAN AGR 218 | 7 | 19 | 27,717 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | YEGUADA CARTUJA | 1 | 4 | 5561 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | CENSYRA Badajoz | 6 | 35 | 416,305 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | CENSYRA-Cantabria | 1 | 3 | 146,003 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | CENSYRA-Colmenar Viejo | 4 | 30 | 154,349 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | CENSYRA-LEON | 3 | 24 | 1,180,804 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | CERSYRA-IRIAF | 2 | 7 | 43,491 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | INSAVET | 1 | 2 | 5911 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | IRFAP | 5 | 10 | 78,266 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | SERIDA | 6 | 6 | 184,770 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
Spain | UHU | 1 | 1 | 2294 | https://www.eugena-erfp.net/ (accessed on 4 January 2025) |
France | CRB | / | 260 | 600,000 | https://www.crb-anim.fr/ (accessed on 20 May 2024) |
Japan | NARO Genebank | / | / | 910,000 | https://www.naro.go.jp/ (accessed on 20 May 2024) |
Nordic | NordGen | / | 160 | / | https://www.nordgen.org/ (accessed on 20 May 2024) |
China | CNGBdb | / | 390 | 1,270,000 | https://www.cngb.org/ (accessed on 20 May 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Q.; Gong, Y.; Su, P.; Liu, G.; Pu, Y.; Yu, F.; Ma, Y.; Wang, Z.; Li, Y.; Jiang, L. How Developments in Genebanks Could Shape Utilization Strategies for Domestic Animals. Agriculture 2025, 15, 133. https://doi.org/10.3390/agriculture15020133
Ren Q, Gong Y, Su P, Liu G, Pu Y, Yu F, Ma Y, Wang Z, Li Y, Jiang L. How Developments in Genebanks Could Shape Utilization Strategies for Domestic Animals. Agriculture. 2025; 15(2):133. https://doi.org/10.3390/agriculture15020133
Chicago/Turabian StyleRen, Qianzi, Ying Gong, Peng Su, Gang Liu, Yabin Pu, Fuqing Yu, Yuehui Ma, Zhenqing Wang, Yefang Li, and Lin Jiang. 2025. "How Developments in Genebanks Could Shape Utilization Strategies for Domestic Animals" Agriculture 15, no. 2: 133. https://doi.org/10.3390/agriculture15020133
APA StyleRen, Q., Gong, Y., Su, P., Liu, G., Pu, Y., Yu, F., Ma, Y., Wang, Z., Li, Y., & Jiang, L. (2025). How Developments in Genebanks Could Shape Utilization Strategies for Domestic Animals. Agriculture, 15(2), 133. https://doi.org/10.3390/agriculture15020133