Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Authors = Pengbo He

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7513 KiB  
Article
Study on the Inhibitory Effects of Three Endophytic Bacillus Strains on Aspergillus flavus in Maize
by Siyu Ma, Min Li, Siqi Zhang, Yin Yang, Fengsha Zhu, Xingyu Li, Shahzad Munir, Pengfei He, Pengbo He, Yixin Wu, Yueqiu He and Ping Tang
Metabolites 2025, 15(4), 268; https://doi.org/10.3390/metabo15040268 - 11 Apr 2025
Viewed by 647
Abstract
Background: Maize is easily contaminated by Aspergillus flavus, and the aflatoxin produced by A. flavus has been classified as a Group 1 carcinogen, for which there are currently no effective control measures. Biological control is regarded as an environmentally friendly and safe [...] Read more.
Background: Maize is easily contaminated by Aspergillus flavus, and the aflatoxin produced by A. flavus has been classified as a Group 1 carcinogen, for which there are currently no effective control measures. Biological control is regarded as an environmentally friendly and safe approach. Strains ZH179, ZH409, and ZH99 are three bacteria isolated from our laboratory that exhibit antagonistic effects against A. flavus. We conducted experiments to investigate their biocontrol efficacy. Results: The experimental results demonstrated that these three strains effectively inhibited A. flavus on plates and stored maize seeds. Identification revealed that ZH179 is Bacillus velezensis, while ZH409 and ZH99 are B. amyloliquefaciens. We also identified lipopeptide synthetase-related genes, including srfAA, srfAD, fenA, fenB, ituA, ituB, ituD, bmyA, bmyB, and bmyC, in these three strains. Furthermore, LC-MS analysis confirmed that these strains could produce lipopeptide compounds such as surfactin, fengycin, iturin, and bacillomycin. Using the Oxford cup method, we found that the lipopeptide compounds produced by these strains can inhibit the growth of A. flavus. Conclusion: These findings suggest that strains ZH179, ZH409, and ZH99 have good control effects on A. flavus during the storage of maize, primarily due to the lipopeptide compounds. This study provides a theoretical basis for using these three strains in the biological control of A. flavus. Full article
(This article belongs to the Special Issue Advances in Plant and Microbial Metabolic Engineering)
Show Figures

Figure 1

20 pages, 13646 KiB  
Article
Biocontrol Effect of Bacillus velezensis D7-8 on Potato Common Scab and Its Complete Genome Sequence Analysis
by Yu Jiang, Pengfei He, Huihui Kong, Pengbo He, Yixin Wu, Guowen Tang, Ping Tang, Yining Di, Xingyu Li, Lufeng Liu, Shahzad Munir and Yueqiu He
Microorganisms 2025, 13(4), 770; https://doi.org/10.3390/microorganisms13040770 - 28 Mar 2025
Viewed by 783
Abstract
Potato common scab, caused by Streptomyces species, is a widespread soil-borne disease that poses a significant threat to potato cultivation globally. In this study, a Bacillus velezensis D7-8 strain was isolated from a potato. This endophytic bacterium exhibited broad-spectrum antifungal activity, and pot [...] Read more.
Potato common scab, caused by Streptomyces species, is a widespread soil-borne disease that poses a significant threat to potato cultivation globally. In this study, a Bacillus velezensis D7-8 strain was isolated from a potato. This endophytic bacterium exhibited broad-spectrum antifungal activity, and pot trials demonstrated that the D7-8 strain effectively controlled potato common scab with an efficacy of 42.07%. The complete genome sequence of the D7-8 strain was sequenced and subsequently identified as B. velezensis through multiple bioinformatic methods, primarily through structural variation analysis of whole-genome sequences. The machine learning method predicted that the expression profiles of colinear genes among closely related Bacillus species were highly consistent. Metabolite analysis of crude extracts using ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive HRMS) revealed that D7-8 produces bioactive compounds, including surfactin and fengycin, both known for their antimicrobial properties. This study elucidates the antagonistic effect of B. velezensis D7-8 against Streptomyces acidiscabies and provides a valuable reference for future research on accurate microbial identification. Full article
(This article belongs to the Special Issue Microorganisms as Biocontrol Agents in Plant Pathology, 2nd Edition)
Show Figures

Figure 1

17 pages, 7444 KiB  
Article
Ultrastructure of the Sensilla on Antennae and Mouthparts of Larval and Adult Cylas formicarius (Coleoptera: Brentidae)
by Yuanchang Xu, Pengbo He, Faxu Lu, Mengjiao Li, Shahzad Munir, Mingfu Zhao, Yixin Wu, Yueqiu He and Guowen Tang
Insects 2025, 16(3), 235; https://doi.org/10.3390/insects16030235 - 21 Feb 2025
Viewed by 875
Abstract
The quarantine pest, Cylas formicarius, is a key pest of sweet potatoes during both production and storage, posing a major threat to food security in various countries. To investigate behavioral mechanisms, the ultrastructure of the heads of larval and adult stages was [...] Read more.
The quarantine pest, Cylas formicarius, is a key pest of sweet potatoes during both production and storage, posing a major threat to food security in various countries. To investigate behavioral mechanisms, the ultrastructure of the heads of larval and adult stages was analyzed using scanning electron microscopy, with an emphasis on the sensilla of the mouthparts and antennae. The results reveal degeneration of the antennae and ocelli in larvae. The larval mouthparts are equipped with three types and six subtypes of sensilla. Both male and female adults have four types and six subtypes of sensilla on their mouthparts. Compared to larvae, the adult mouthparts display a greater diversity of sensilla types and higher numbers of sensilla basicaonica (SB), sensilla chaetica (SC), and sensilla digitiformia (SD). Adult antennae consist of a scape, a pedicel, and eight flagellomeres (F1–F8), with F8 showing sexual dimorphism. Seven types of sensilla, excluding SB and sensilla ligulate (SL), each with two subtypes, were identified on the antennae of adults of both sexes. SC, sensilla furcatea, Böhm bristles, and SL were newly observed in the antennae of C. formicarius adults. Additionally, one type and seven subtypes of sensilla on the adult antennae exhibit distinct sexual dimorphism in terms of structure or number. The relationship between the head structure and adaptability of C. formicarius was examined, and the functions of each sensilla were discussed, providing a theoretical basis for future studies on the behavior of this pest. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

18 pages, 6711 KiB  
Article
Insight into Antifungal Metabolites from Bacillus stercoris 92p Against Banana Cordana Leaf Spot Caused by Neocordana musae
by Qunfang Yu, Pengbo He, Yanxiang Qi, Pengfei He, Ayesha Ahmed, Xin Zhang, He Zhang, Yixin Wu, Shahzad Munir and Yueqiu He
Biomolecules 2024, 14(12), 1495; https://doi.org/10.3390/biom14121495 - 24 Nov 2024
Cited by 1 | Viewed by 1309
Abstract
Banana crop ranks among the most crucial fruit and food crops in tropical and subtropical areas. Despite advancements in production technology, diseases such as cordana leaf spot, caused by Neocordana musae, remain a significant challenge, reducing productivity and quality. Traditional chemical controls [...] Read more.
Banana crop ranks among the most crucial fruit and food crops in tropical and subtropical areas. Despite advancements in production technology, diseases such as cordana leaf spot, caused by Neocordana musae, remain a significant challenge, reducing productivity and quality. Traditional chemical controls are becoming less effective due to the development of resistance in target pathogens, which pose significant environmental and health concerns. Consequently, there is growing attention toward the development of biocontrol strategies. Here, we identified a new bacterial strain, Bacillus stercoris 92p, from the rhizosphere soil of banana. We evaluated its ability to suppress the growth of N. musae and other fungal pathogens that cause leaf spot disease in bananas. The inhibitory effect of B. stercoris 92p were checked using dual culture assays, microscopic observations, and pot experiments. Furthermore, the biocontrol mechanisms were investigated using whole-genome sequencing and biochemical analyses. The results showed that B. stercoris 92p exhibited significant antifungal activity against N. musae and other fungal pathogens, with inhibition rates exceeding 70%. Microscopic examination revealed significant morphological alterations in the hyphae and conidia of the tested pathogens. In pot experiments, B. stercoris 92p effectively reduced the severity of cordana leaf spot, achieving a biocontrol efficacy of 61.55%. Genomic analysis and biochemical tests indicated that B. stercoris 92p produces various antifungal compounds, including lipopeptides (fengycins and surfactins), hydrolytic enzymes (proteases and amylases), and phosphate-solubilizing metabolites. In conclusion, the study highlights that B. stercoris could potentially be used as a potential biological control agent against cordana leaf spot. Full article
(This article belongs to the Special Issue Microbial Biocontrol and Plant-Microbe Interactions)
Show Figures

Figure 1

24 pages, 3353 KiB  
Article
Determining Rock Joint Peak Shear Strength Based on GA-BP Neural Network Method
by Chuangwei Zhu, Baohua Guo, Zhezhe Zhang, Pengbo Zhong, He Lu and Anthony Sigama
Appl. Sci. 2024, 14(20), 9566; https://doi.org/10.3390/app14209566 - 20 Oct 2024
Cited by 1 | Viewed by 1309
Abstract
The peak shear strength of a rock joint is an important indicator in rock engineering, such as mining and sloping. Therefore, direct shear tests were conducted using an RDS-200 rock direct shear apparatus, and the related data such as normal stress, roughness, size, [...] Read more.
The peak shear strength of a rock joint is an important indicator in rock engineering, such as mining and sloping. Therefore, direct shear tests were conducted using an RDS-200 rock direct shear apparatus, and the related data such as normal stress, roughness, size, normal loading rate, basic friction angle, and JCS were collected. A peak shear strength prediction model for rock joints was established, by which a predicted rock joint peak shear strength can be obtained by inputting the influencing factors. Firstly, the study used the correlation analysis method to find out the correlation coefficient between the above factors and rock joint peak shear strength to provide a reference for factor selection of the peak shear strength prediction model. Then, the JRC-JCS model and four established GA-BP neural network models were studied to identify the most valuable rock joint peak shear strength prediction method. The GA-BP neural network models used a genetic algorithm to optimize the BP neural network with different input factors to predict rock joint peak shear strength, after dividing the selected data into 80% training set and 20% test set. The results show that the error of the JRC-JCS model is a little bigger, with a value of 11.2%, while the errors of the established GA-BP neural network models are smaller than 6%, which indicates that the four established GA-BP neural network models can well fit the relationship between the peak shear strength and selected input factors. Additionally, increasing the factor number of the input layer can effectively improve the prediction accuracy of the GA-BP neural network models, and the prediction accuracy of the GA-BP neural network models will be higher if factors that have higher correlation with the output results are used as input factors. Full article
(This article belongs to the Special Issue Artificial Neural Network Applications for Geotechnical Engineering)
Show Figures

Figure 1

16 pages, 2596 KiB  
Article
Multi-Span Tension Control for Printing Systems in Gravure Printed Electronic Equipment
by Kui He, Shifa Li, Pengbo He, Jian Li and Xingmei Wei
Appl. Sci. 2024, 14(18), 8483; https://doi.org/10.3390/app14188483 - 20 Sep 2024
Viewed by 1033
Abstract
The tension system is one of the most critical systems in gravure printed electronic equipment. It possesses a complex structure that spans the entire feeding process, from unwinding through printing to rewinding. This article focuses on the research of multi-span tension control for [...] Read more.
The tension system is one of the most critical systems in gravure printed electronic equipment. It possesses a complex structure that spans the entire feeding process, from unwinding through printing to rewinding. This article focuses on the research of multi-span tension control for printing systems. Firstly, the characteristics and requirements of the tension-control system in the printing section were analyzed, and a multi-span tension-control structure was devised. Then, based on the coupled mathematical model of the multi-span tension system, a static decoupling model was formulated, and a first-order active disturbance rejection control (ADRC) controller was designed utilizing active disturbance rejection control technology. Finally, to verify the control performance of the ADRC decoupling controller for the printing tension system, simulation and experimental studies were conducted using MATLAB/Simulink R2018a and a dedicated experimental platform, and the results were then compared with those obtained from a traditional PID controller. The research findings indicate that the designed multi-span tension-control system demonstrates outstanding decoupling performance and anti-interference capabilities, effectively enhancing the tension-control accuracy of gravure printed electronic equipment. Full article
(This article belongs to the Special Issue Intelligent Control of Electromechanical Complex System)
Show Figures

Figure 1

15 pages, 2894 KiB  
Article
The Response of Murine Gut Microbiome in the Presence of Altered rpoS Gene of Klebsiella pneumoniae
by Muhammad Zafar Iqbal, Pengfei He, Pengbo He, Yixin Wu, Shahzad Munir and Yueqiu He
Int. J. Mol. Sci. 2024, 25(17), 9222; https://doi.org/10.3390/ijms25179222 - 25 Aug 2024
Cited by 1 | Viewed by 1500
Abstract
The murine model is invaluable for studying intricate interactions among gut microbes; hosts; and diseases. However; the impact of genetic variations in the murine microbiome; especially in disease contexts such as Klebsiella pneumoniae (Kp) infection; still needs to be explored. Kp [...] Read more.
The murine model is invaluable for studying intricate interactions among gut microbes; hosts; and diseases. However; the impact of genetic variations in the murine microbiome; especially in disease contexts such as Klebsiella pneumoniae (Kp) infection; still needs to be explored. Kp; an opportunistic global pathogen; is becoming increasingly prevalent in regions like Asia; especially China. This study explored the role of the gut microbiota during Kp infection using mouse model; including wild-type and rpoS mutants of Kp138; KpC4; and KpE4 from human; maize; and ditch water; respectively. Under stress conditions; RpoS reconfigures global gene expression in bacteria; shifting the cells from active growth to survival mode. Our study examined notable differences in microbiome composition; finding that Lactobacillus and Klebsiella (particularly in WKp138) were the most abundant genera in mice guts at the genus level in all wild-type treated mice. In contrast; Firmicutes were predominant in the healthy control mice. Furthermore; Clostridium was the dominant genus in all mutants; mainly in ∆KpC4; and was absent in wild-type treated mice. Differential abundance analysis identified that these candidate taxa potentially influence disease progression and pathogen virulence. Functional prediction analysis showed that most bacterial groups were functionally involved in biosynthesis; precursor metabolites; degradation; energy generation; and metabolic cluster formation. These findings challenge the conventional understanding and highlight the need for nuanced interpretations in murine studies. Additionally; this study sheds light on microbiome–immune interactions in K. pneumoniae infection and proposes new potential therapeutic strategies. Full article
Show Figures

Figure 1

11 pages, 6205 KiB  
Article
Study on Multi-Span Tension Coupling Relationship of Gravure Printed Electronic Equipment
by Kui He, Pengbo He, Shifa Li, Jian Li and Xingmei Wei
Appl. Sci. 2024, 14(16), 7054; https://doi.org/10.3390/app14167054 - 12 Aug 2024
Cited by 1 | Viewed by 1093
Abstract
To improve the performance of the tension control system in gravure printed electronic equipment, it is necessary to study the tension system model of gravure-printing electronic equipment. This paper focuses on the coupling characteristics of multi-span tension systems. Firstly, based on the single-span [...] Read more.
To improve the performance of the tension control system in gravure printed electronic equipment, it is necessary to study the tension system model of gravure-printing electronic equipment. This paper focuses on the coupling characteristics of multi-span tension systems. Firstly, based on the single-span tension model, the mathematical model of the printing tension subsystem is established and simplified into a general multi-span tension coupling model. Then, using the relationship between the inputs and outputs of the system, the coupling model is simulated using MATLAB/Simulink and verified through experiments on the gravure printed electronic platform. Finally, the coupling relationship and influence laws among multi-physical quantities of the system are analyzed. The research results show that changes in the input web tension of the multi-span system will affect the steady-state tension values of all subsequent spans. Moreover, the speed change in a roller in the multi-span system will not only affect the steady-state tension value of its own span, but also cause transient tension fluctuations in all subsequent spans. The findings of this paper provide an important theoretical basis for the research of the tension system in gravure printed electronic equipment, contributing to the enhancement of printed electronic product quality. Full article
Show Figures

Figure 1

18 pages, 4842 KiB  
Article
A Lightweight and High-Precision Passion Fruit YOLO Detection Model for Deployment in Embedded Devices
by Qiyan Sun, Pengbo Li, Chentao He, Qiming Song, Jierui Chen, Xiangzeng Kong and Zhicong Luo
Sensors 2024, 24(15), 4942; https://doi.org/10.3390/s24154942 - 30 Jul 2024
Cited by 12 | Viewed by 2306
Abstract
In order to shorten detection times and improve average precision in embedded devices, a lightweight and high-accuracy model is proposed to detect passion fruit in complex environments (e.g., with backlighting, occlusion, overlap, sun, cloud, or rain). First, replacing the backbone network of YOLOv5 [...] Read more.
In order to shorten detection times and improve average precision in embedded devices, a lightweight and high-accuracy model is proposed to detect passion fruit in complex environments (e.g., with backlighting, occlusion, overlap, sun, cloud, or rain). First, replacing the backbone network of YOLOv5 with a lightweight GhostNet model reduces the number of parameters and computational complexity while improving the detection speed. Second, a new feature branch is added to the backbone network and the feature fusion layer in the neck network is reconstructed to effectively combine the lower- and higher-level features, which improves the accuracy of the model while maintaining its lightweight nature. Finally, a knowledge distillation method is used to transfer knowledge from the more capable teacher model to the less capable student model, significantly improving the detection accuracy. The improved model is denoted as G-YOLO-NK. The average accuracy of the G-YOLO-NK network is 96.00%, which is 1.00% higher than that of the original YOLOv5s model. Furthermore, the model size is 7.14 MB, half that of the original model, and its real-time detection frame rate is 11.25 FPS when implemented on the Jetson Nano. The proposed model is found to outperform state-of-the-art models in terms of average precision and detection performance. The present work provides an effective model for real-time detection of passion fruit in complex orchard scenes, offering valuable technical support for the development of orchard picking robots and greatly improving the intelligence level of orchards. Full article
(This article belongs to the Special Issue Intelligent Sensing and Machine Vision in Precision Agriculture)
Show Figures

Figure 1

12 pages, 3362 KiB  
Article
Alternaria alternata Pathogen from Cuscuta japonica Could Serve as a Potential Bioherbicide
by Yinglong Liu, Ayesha Ahmed, Shahzad Munir, Lei Chen, Pengfei He, Yueqiu He, Ping Tang, Baohua Kong, Yixin Wu and Pengbo He
J. Fungi 2024, 10(7), 494; https://doi.org/10.3390/jof10070494 - 17 Jul 2024
Cited by 1 | Viewed by 1525
Abstract
Dodder (Cuscuta spp.) is a dangerous parasitic plant that causes serious damage to crop production and is challenging to eliminate. Herbicide application is a common strategy to control dodder in the field, but it is costly, ineffective, and further results in hazardous [...] Read more.
Dodder (Cuscuta spp.) is a dangerous parasitic plant that causes serious damage to crop production and is challenging to eliminate. Herbicide application is a common strategy to control dodder in the field, but it is costly, ineffective, and further results in hazardous outcomes. Therefore, our study aims to identify the potential pathogens in naturally occurring dodder infections which may provide efficient biocontrol options. In this regard, the pathogens were isolated from the infected plants, their pathogenicity was validated through inoculation, and the optimal culture conditions for their growth were identified by determining the pathogenicity difference. The pathogenicity range was determined in vitro using the leaves of common horticultural plants and crops. Furthermore, a small range of horticultural plants parasitized by Cuscuta reflexa in the field were inoculated with the pathogen to determine their biosafety and biocontrol potential, and the pathogens were identified by morphological and molecular characterization. We found 7 strains that were isolated after pathogen enrichment culture. Among them, Cbp6 and Cbp7 showed the highest pathogenicity against C. reflexa. After testing the inoculation of more than 50 species of plants, only 9 species showed varying degrees of lesions on leaves, which proved the high biosafety for common plants. Field spraying of these pathogens showed a good control effect on C. reflexa after 21 days; the disease severityreached 66.0%, while its host plant did not display obvious symptoms. In conclusion, the pathogens Cbp6 and Cbp7 were identified as Alternaria alternata, and the results of this study provide a theoretical basis for the biological control of dodder. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

17 pages, 4984 KiB  
Article
Multi-Objective Cutting Parameter Optimization Method for the Energy Consumption and Machining Quality of Computerized Numerical Control Lathes
by Jian Li, Pengbo He, Huankun Li, Shifa Li, Liping Xu and Kui He
Appl. Sci. 2024, 14(2), 905; https://doi.org/10.3390/app14020905 - 21 Jan 2024
Cited by 5 | Viewed by 1572
Abstract
In order to achieve minimum energy consumption in computerized numerical control (CNC) lathe processing under the premise of ensuring the imposed roughness of the machined surface, a black hole-continuous ant colony optimization algorithm (BH-ACOR) is proposed to optimize the turning parameters. [...] Read more.
In order to achieve minimum energy consumption in computerized numerical control (CNC) lathe processing under the premise of ensuring the imposed roughness of the machined surface, a black hole-continuous ant colony optimization algorithm (BH-ACOR) is proposed to optimize the turning parameters. Taking turning specific energy and surface roughness as the optimization objectives, a turning test was designed. Subsequently, a multi-objective mathematical model of the cutting stage was formulated through the application of the least-squares method to fit the test data. The black hole algorithm was introduced to mitigate the shortcomings of the continuous-domain ant colony algorithm, which easily falls into a local optimum, so as to put forward a kind of BH-ACOR that is applicable to multi-objective optimization. The algorithm was applied to the multi-objective mathematical model in the turning stage to determine the optimal cutting parameters. Through simulation and test verification, the validity and practicability of the proposed method are further proved. Full article
Show Figures

Figure 1

18 pages, 4361 KiB  
Article
A Multi-Agent Integrated Energy Trading Strategy Based on Carbon Emission/Green Certificate Equivalence Interaction
by Jiaqi Tian, Bonan Huang, Qiuli Wang, Pengbo Du, Yameng Zhang and Bangpeng He
Sustainability 2023, 15(22), 15766; https://doi.org/10.3390/su152215766 - 9 Nov 2023
Cited by 4 | Viewed by 1978
Abstract
To meet the demand for constructing a market mechanism that adapts to the integrated energy system and promotes market-oriented reforms in the energy sector, in-depth research on integrated energy trading strategies is required. This study focused on the integrated energy trading problem and [...] Read more.
To meet the demand for constructing a market mechanism that adapts to the integrated energy system and promotes market-oriented reforms in the energy sector, in-depth research on integrated energy trading strategies is required. This study focused on the integrated energy trading problem and clarify the relationships among participants in the integrated energy market. A regional integrated energy system model was established that enables trading of electricity, gas, heat, and cold, and propose a integrated energy trading strategy based on the carbon emissions/green certificate equivalence interaction. Firstly, the trading process of carbon emissions and green certificates, the underlying representation of green attributes, and market transaction prices are analyzed. Combining with a tiered carbon trading system that includes rewards and penalties, a carbon emissions/green certificate equivalence interaction mechanism is constructed. Secondly, the paper utilized the flexible characteristics of loads within the industrial park to establish a integrated energy demand response model for electricity, heat, and cold. Finally, with the objective of minimizing regional operating costs, a integrated energy trading model considering the carbon emissions/green certificate equivalence interaction mechanism was developed. In the simulation, the operating cost of the system is reduced by 4%, and the carbon emission is reduced by 11.4%, which verifies the effectiveness of the model. Full article
Show Figures

Figure 1

15 pages, 16155 KiB  
Article
Bacillus amyloliquefaciens AK-12 Helps Rapeseed Establish a Protection against Brevicoryne brassicae
by Shixiong Qian, Ayesha Ahmed, Pengbo He, Pengfei He, Shahzad Munir, Mengyuan Xia, Chaoyun Tang, Ping Tang, Zaiqiang Wang, Rizwan Khan, Xingyu Li, Yixin Wu and Yueqiu He
Int. J. Mol. Sci. 2023, 24(21), 15893; https://doi.org/10.3390/ijms242115893 - 2 Nov 2023
Cited by 4 | Viewed by 1829
Abstract
Aphids are a serious threat to rapeseed (Brassica napus L.) production, and cause unmanageable loss. Therefore, effective prevention and management strategies are urgently required to avoid losses. Bacillus amyloliquefaciens AK-12 isolated from a dead aphid with aphicidal activity was tagged with a [...] Read more.
Aphids are a serious threat to rapeseed (Brassica napus L.) production, and cause unmanageable loss. Therefore, effective prevention and management strategies are urgently required to avoid losses. Bacillus amyloliquefaciens AK-12 isolated from a dead aphid with aphicidal activity was tagged with a green fluorescent protein through a natural transformation. The transformed strains were checked for stability and growth, and the best-performing strain was tested for its colonization inside and outside the rapeseed plant. The stability of AK-12-GFP reached more than 95%, and the growth curve was consistent with that of AK-12. After 30 days of treatment, the colonization of 1 × 106 CFU/g was recorded in rapeseed leaves. Interestingly, AK-12 reduced the aphid transmission rate compared with the control and improved the growth of the rapeseed seedlings. Meanwhile, the AK-12 strain also exhibited phosphorus, potassium-solubilizing, and nitrogen-fixing activity, and produced 2.61 µg/mL of IAA at 24 h. Regulation in the activity of four enzymes was detected after the AK-12 treatment. Phenylalanine ammonia lyase (PAL) was recorded at a maximum of 86.84 U/g after 36 h, and catalase (CAT) decreased after 48 h; however, peroxidase (POD) and polyphenol oxidase (PPO) reached the maximum within 12 h of AK-12 application. Additionally, important resistance genes related to these enzymes were upregulated, indicating the activation of a defense response in the rapeseed against aphids. In conclusion, defense enzymes and defense-related gene activation could improve the pest resistance in rapeseed, which has good application prospects for the future to be developed into biopesticide. Full article
Show Figures

Figure 1

21 pages, 7485 KiB  
Article
A Signal Model Based on the Space–Time Coding Array and a Novel Imaging Method Based on the Hybrid Correlation Algorithm for F-SCAN SAR
by Yuqing Liu, Pengbo Wang, Zhirong Men, Yanan Guo, Tao He, Rui Bao and Lei Cui
Remote Sens. 2023, 15(17), 4276; https://doi.org/10.3390/rs15174276 - 31 Aug 2023
Cited by 1 | Viewed by 1726
Abstract
The F-SCAN principle is a better alternative to the scan-on-receive technique (SCORE) based on digital beamforming (DBF), which can avoid low gain caused by a conventional broad beam in the case of a wide swath. In F-SCAN SAR, a pencil beam scans the [...] Read more.
The F-SCAN principle is a better alternative to the scan-on-receive technique (SCORE) based on digital beamforming (DBF), which can avoid low gain caused by a conventional broad beam in the case of a wide swath. In F-SCAN SAR, a pencil beam scans the entire target area from far to near, providing high energy independent of the position and ensuring a low range ambiguity-to-signal ratio (RASR). Moreover, echo compression can be achieved via appropriate system parameter configuration, significantly shortening the receive window and reducing the amount of data. A wider range swath can, therefore, be achieved. However, for this novel F-SCAN SAR working mode, signal modeling and imaging processing are key issues that needed to be addressed. In this paper, the far-field synthetic antenna pattern of the space–time coding array (STCA) is first derived and analyzed, based on which the signal modeling of the F-SCAN SAR is carried out. Then, according to the signal model and echo characteristics, a novel imaging processing method based on the hybrid correlation algorithm is presented for the F-SCAN SAR. First, the dechirp operation is performed to compensate for the quadratic phase of the range time. The range compressed result is obtained after a range Fourier transform, where different range targets are successfully separated and range aliasing is avoided. Then, the modified azimuth reference function is correlated with the echo at each range cell to complete range cell migration correction (RCMC) and azimuth compensation. The received signal parameters and the Doppler parameters of each range cell are derived to update the azimuth reference function. Finally, accurate focused results are obtained in the range-frequency, azimuth-time domain. The simulation results indicate that the signal model based on the STCA can satisfy the requirements of the F-SCAN principle, and the proposed imaging algorithm can complete the precise focusing processing of the F-SCAN SAR echo. Full article
Show Figures

Graphical abstract

19 pages, 20906 KiB  
Article
A Modified Range Doppler Algorithm for High-Squint SAR Data Imaging
by Yanan Guo, Pengbo Wang, Zhirong Men, Jie Chen, Xinkai Zhou, Tao He and Lei Cui
Remote Sens. 2023, 15(17), 4200; https://doi.org/10.3390/rs15174200 - 26 Aug 2023
Cited by 4 | Viewed by 3308
Abstract
The high-squint airborne Synthetic Aperture Radar (SAR) has the ability to detect the target area flexibly, and the detection swath is significantly increased compared with the side-looking SAR system. Therefore, it is of great significance to carry out research on high-precision imaging methods [...] Read more.
The high-squint airborne Synthetic Aperture Radar (SAR) has the ability to detect the target area flexibly, and the detection swath is significantly increased compared with the side-looking SAR system. Therefore, it is of great significance to carry out research on high-precision imaging methods for high-squint airborne SAR. However, the high-squint SAR echoes have large Range Cell Migration (RCM), resulting in severe range–azimuth coupling and strong spatial variation. In this paper, a Modified Range Doppler Algorithm (MRDA) is proposed to cope with these effects introduced by the significant RCM in high-squint airborne SAR imaging. The bulk compensation preprocessing is first adopted to remove the considerable RCM and severe cross-coupling in a two-dimensional frequency domain. Then, Non-Linear Chirp Scaling (NLCS) in the range direction is utilized to equalize the range-variant chirp rate caused by the residual RCM and coupling and, therefore, the consistent range phase compensation can be fulfilled in range frequency domain. The modified correlation processing is executed to compensate the residual Doppler phase modulation, the residual RCM and the range-variant cubic phase modulation, which guarantees the characteristics of high efficiency and high precision. The simulations have demonstrated that the MRDA can focus the SAR echoes with large squint angles more effectively than the algorithms based on the Linear Range Walk Correction (LRWC) method. Full article
(This article belongs to the Special Issue Advanced Radar Signal Processing and Applications)
Show Figures

Figure 1

Back to TopTop