Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Authors = Nazamid Saari

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5720 KiB  
Article
Cassia fistula Leaves; UHPLC-QTOF-MS/MS Based Metabolite Profiling and Molecular Docking Insights to Explore Bioactives Role towards Inhibition of Pancreatic Lipase
by Zain Ul Aabideen, Muhammad Waseem Mumtaz, Muhammad Tayyab Akhtar, Muhammad Asam Raza, Hamid Mukhtar, Ahmad Irfan, Syed Ali Raza, Tooba Touqeer, Muhammad Nadeem and Nazamid Saari
Plants 2021, 10(7), 1334; https://doi.org/10.3390/plants10071334 - 29 Jun 2021
Cited by 14 | Viewed by 4932
Abstract
The present work was aimed at investigating hydroethanolic leaf extracts of Cassia fistula for their antioxidant and pancreatic lipase (PL) enzyme inhibitory properties. The most active extract was selected to profile the phytoconstituents by UHPLC-QTOF-MS/MS technique. Among the tested extracts, the 80% hydroethanolic [...] Read more.
The present work was aimed at investigating hydroethanolic leaf extracts of Cassia fistula for their antioxidant and pancreatic lipase (PL) enzyme inhibitory properties. The most active extract was selected to profile the phytoconstituents by UHPLC-QTOF-MS/MS technique. Among the tested extracts, the 80% hydroethanolic extract exhibited the maximum levels of total phenolic and flavonoid contents (TPC and TFC) with a contribution of 201.3 ± 2.6 mg of gallic acid equivalent per gram of extract (GAE/g extract), and 116.3 ± 2.4 mg of rutin equivalent per gram of extract (RE/g extract), respectively. The same extract also showed promising 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and PL inhibitory activity with an IC50 (half maximal inhibitory concentration) of 30.5 ± 2.8 µg/mL and 17.31 ± 1.18 μg/mL, respectively. The phytochemical profiling of 80% hydroethanolic extract confirmed the presence of 23 metabolites of immense medicinal significance. Docking studies were conducted to investigate the potential interactions of compounds identified in the study. The docking study-based binding energy data and the interaction scheme both revealed the possible role of the identified compounds towards PL inhibitor. Moreover, energies of frontier molecular orbitals (FMOs), ionization potentials (IP), electron affinities (EA) and molecular electrostatic potentials (MEP) were also explored. The findings of the current work suggest that C. fistula is a promising natural source of antioxidant and antiobesity agents, which may be exploited to add pharmacological functionalities to food. Full article
(This article belongs to the Special Issue Trends in Plants Phytochemistry and Bioactivity Analysis)
Show Figures

Figure 1

15 pages, 1475 KiB  
Article
Potentiality of Self-Cloned Lactobacillus plantarum Taj-Apis362 for Enhancing GABA Production in Yogurt under Glucose Induction: Optimization and Its Cardiovascular Effect on Spontaneous Hypertensive Rats
by Farah Salina Hussin, Shyan Yea Chay, Mohammad Zarei, Anis Shobirin Meor Hussin, Wan Zunairah Wan Ibadullah, Nurul Dhania Zaharuddin, Hazrati Wazir and Nazamid Saari
Foods 2020, 9(12), 1826; https://doi.org/10.3390/foods9121826 - 9 Dec 2020
Cited by 22 | Viewed by 4275
Abstract
The current study evaluated the γ-aminobutyric acid (GABA) producing ability from three novel strains of lactic acid bacteria (L. plantarum Taj-Apis362, assigned as UPMC90, UPMC91, and UPMC1065) co-cultured with starter culture in a yogurt. A combination of UPMC90 + UPMC91 with starter [...] Read more.
The current study evaluated the γ-aminobutyric acid (GABA) producing ability from three novel strains of lactic acid bacteria (L. plantarum Taj-Apis362, assigned as UPMC90, UPMC91, and UPMC1065) co-cultured with starter culture in a yogurt. A combination of UPMC90 + UPMC91 with starter culture symbiotically revealed the most prominent GABA-producing effect. Response surface methodology revealed the optimized fermentation conditions at 39.0 °C, 7.25 h, and 11.5 mM glutamate substrate concentration to produce GABA-rich yogurt (29.96 mg/100 g) with desirable pH (3.93) and water-holding capacity (63.06%). At 2% glucose to replace pyridoxal-5-phosphate (PLP), a cofactor typically needed during GABA production, GABA content was further enhanced to 59.00 mg/100 g. In vivo study using this sample revealed a blood pressure-lowering efficacy at 0.1 mg/kg GABA dosage (equivalent to 30 mg/kg GABA-rich yogurt) in spontaneously hypertensive rats. An improved method to produce GABA-rich yogurt has been established, involving shorter fermentation time and lower glutamate concentration than previous work, along with glucose induction that omits the use of costly PLP, fostering the potential of developing a GABA-rich functional dairy product through natural fermentation with desirable product quality and antihypertensive property. Full article
(This article belongs to the Special Issue Advanced Research of Lactic Acid Bacteria in Food Field)
Show Figures

Graphical abstract

20 pages, 4180 KiB  
Article
Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum officinale
by Zain Ul Aabideen, Muhammad Waseem Mumtaz, Muhammad Tayyab Akhtar, Hamid Mukhtar, Syed Ali Raza, Tooba Touqeer and Nazamid Saari
Molecules 2020, 25(21), 4935; https://doi.org/10.3390/molecules25214935 - 26 Oct 2020
Cited by 41 | Viewed by 8194
Abstract
The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. [...] Read more.
The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. The 2,2-diphenyl-1-picrylhydrazyl method was adopted to evaluate antioxidant potential. Porcine pancreatic lipase inhibitory assay was conducted to assess the in vitro antiobesity property. Ultra-high performance chromatography equipped with a mass spectrometer was utilized to profile the secondary metabolites in the most potent extract. The 60% ethanolic extract exhibited highest extract yield (25.05 ± 0.07%), total phenolic contents (123.42 ± 0.007 mg GAE/g DE), total flavonoid contents (55.81 ± 0.004 RE/g DE), DPPH-radical-scavenging activity (IC50 = 81.05 ± 0.96 µg/mL) and pancreatic lipase inhibitory properties (IC50 = 146.49 ± 4.24 µg/mL). The targeted metabolite fingerprinting highlighted the presence of high-value secondary metabolites. Molecular-binding energies computed by docking tool revealed the possible contribution towards pancreatic lipase inhibitory properties of secondary metabolites including myricetin, isomangiferin, icariside B4, kaempferol and luteolin derivatives when compared to the standard drug orlistat. In vivo investigations revealed a positive impact on the lipid profile and obesity biomarkers of obese mice. The study presents Taraxacum officinale as a potent source of functional bioactive ingredients to impart new insights into the existing pool of knowledge of naturopathic approaches towards obesity management. Full article
(This article belongs to the Special Issue Phytotherapy: Medicinal Plants and Natural Products in Healthcare)
Show Figures

Figure 1

20 pages, 5739 KiB  
Article
Response Factorial Design Analysis on Papain-Generated Hydrolysates from Actinopyga lecanora for Determination of Antioxidant and Antityrosinase Activities
by Aqilah Noor Bahari, Nazamid Saari, Norazlinaliza Salim and Siti Efliza Ashari
Molecules 2020, 25(11), 2663; https://doi.org/10.3390/molecules25112663 - 8 Jun 2020
Cited by 32 | Viewed by 3876
Abstract
Actinopyga lecanora (A. lecanora) is classified among the edible species of sea cucumber, known to be rich in protein. Its hydrolysates were reported to contain relatively high antioxidant activity. Antioxidants are one of the essential properties in cosmeceutical products especially to [...] Read more.
Actinopyga lecanora (A. lecanora) is classified among the edible species of sea cucumber, known to be rich in protein. Its hydrolysates were reported to contain relatively high antioxidant activity. Antioxidants are one of the essential properties in cosmeceutical products especially to alleviate skin aging. In the present study, pH, reaction temperature, reaction time and enzyme/substrate ratio (E/S) have been identified as the parameters in the papain enzymatic hydrolysis of A. lecanora. The degree of hydrolysis (DH) with antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays were used as the responses in the optimization. Analysis of variance (ANOVA), normal plot of residuals and 3D contour plots were evaluated to study the effects and interactions between parameters. The best conditions selected from the optimization were at pH 5.00, 70 °C of reaction temperature, 9 h of hydrolysis time and 1.00% enzyme/substrate (E/S) ratio, with the hydrolysates having 51.90% of DH, 42.70% of DPPH activity and 109.90 Fe2+μg/mL of FRAP activity. The A. lecanora hydrolysates (ALH) showed a high amount of hydrophobic amino acids (286.40 mg/g sample) that might be responsible for antioxidant and antityrosinase activities. Scanning electron microscopy (SEM) image of ALH shows smooth structures with pores. Antityrosinase activity of ALH exhibited inhibition of 31.50% for L-tyrosine substrate and 25.40% for L-DOPA substrate. This condition suggests that the optimized ALH acquired has the potential to be used as a bioactive ingredient for cosmeceutical applications. Full article
Show Figures

Figure 1

27 pages, 8952 KiB  
Article
Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach
by Muhammad Tahir ul Qamar, Zeeshan Shokat, Iqra Muneer, Usman Ali Ashfaq, Hamna Javed, Farooq Anwar, Amna Bari, Barira Zahid and Nazamid Saari
Vaccines 2020, 8(2), 288; https://doi.org/10.3390/vaccines8020288 - 8 Jun 2020
Cited by 82 | Viewed by 9987
Abstract
Respiratory syncytial virus (RSV) is primarily associated with respiratory disorders globally. Despite the availability of information, there is still no competitive vaccine available for RSV. Therefore, the present study has been designed to develop a multiepitope-based subunit vaccine (MEV) using a reverse vaccinology [...] Read more.
Respiratory syncytial virus (RSV) is primarily associated with respiratory disorders globally. Despite the availability of information, there is still no competitive vaccine available for RSV. Therefore, the present study has been designed to develop a multiepitope-based subunit vaccine (MEV) using a reverse vaccinology approach to curb RSV infections. Briefly, two highly antigenic and conserved proteins of RSV (glycoprotein and fusion protein) were selected and potential epitopes of different categories (B-cell and T-cell) were identified from them. Eminently antigenic and overlapping epitopes, which demonstrated strong associations with their respective human leukocyte antigen (HLA) alleles and depicted collective ~70% coverage of the world’s populace, were shortlisted. Finally, 282 amino acids long MEV construct was established by connecting 13 major histocompatibility complex (MHC) class-I with two MHC class-II epitopes with appropriate adjuvant and linkers. Adjuvant and linkers were added to increase the immunogenic stimulation of the MEV. Developed MEV was stable, soluble, non-allergenic, non-toxic, flexible and highly antigenic. Furthermore, molecular docking and molecular dynamics (MD) simulations analyses were carried out. Results have shown a firm and robust binding affinity of MEV with human pathogenic toll-like receptor three (TLR3). The computationally mediated immune response of MEV demonstrated increased interferon-γ production, a significant abundance of immunoglobulin and activation of macrophages which are essential for immune-response against RSV. Moreover, MEV codons were optimized and in silico cloning was performed, to ensure its increased expression. These outcomes proposed that the MEV developed in this study will be a significant candidate against RSV to control and prevent RSV-related disorders if further investigated experimentally. Full article
Show Figures

Figure 1

12 pages, 593 KiB  
Review
Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply
by Belal J. Muhialdin, Nazamid Saari and Anis Shobirin Meor Hussin
Molecules 2020, 25(11), 2655; https://doi.org/10.3390/molecules25112655 - 7 Jun 2020
Cited by 124 | Viewed by 9784
Abstract
The challenges to fulfill the demand for a safe food supply are dramatically increasing. Mycotoxins produced by certain fungi cause great economic loss and negative impact on the sustainability of food supplies. Moreover, the occurrence of mycotoxins at high levels in foods poses [...] Read more.
The challenges to fulfill the demand for a safe food supply are dramatically increasing. Mycotoxins produced by certain fungi cause great economic loss and negative impact on the sustainability of food supplies. Moreover, the occurrence of mycotoxins at high levels in foods poses a high health threat for the consumers. Biological detoxification has exhibited a high potential to detoxify foodstuffs on a cost-effective and large scale. Lactic acid bacteria showed a good potential as an alternative strategy for the elimination of mycotoxins. The current review describes the health and economic impacts associated with mycotoxin contamination in foodstuffs. Moreover, this review highlights the biological detoxification of common food mycotoxins by lactic acid bacteria. Full article
(This article belongs to the Collection Advances in Food Chemistry)
Show Figures

Figure 1

15 pages, 2845 KiB  
Article
Whey Protein Concentrate as a Novel Source of Bifunctional Peptides with Angiotensin-I Converting Enzyme Inhibitory and Antioxidant Properties: RSM Study
by Fatima Abdelhameed Hussein, Shyan Yea Chay, Mohammad Zarei, Shehu Muhammad Auwal, Azizah Abdul Hamid, Wan Zunairah Wan Ibadullah and Nazamid Saari
Foods 2020, 9(1), 64; https://doi.org/10.3390/foods9010064 - 8 Jan 2020
Cited by 19 | Viewed by 4820
Abstract
Whey protein concentrate (WPC) is a unique source of protein with numerous nutritional and functional values due to the high content of branched-chain amino acid. This study was designed to establish the optimum conditions for Alcalase-hydrolysis of WPC to produce protein hydrolysates with [...] Read more.
Whey protein concentrate (WPC) is a unique source of protein with numerous nutritional and functional values due to the high content of branched-chain amino acid. This study was designed to establish the optimum conditions for Alcalase-hydrolysis of WPC to produce protein hydrolysates with dual biofunctionalities of angiotensin-I converting enzyme (ACE) inhibitory and antioxidant activities via response surface methodology (RSM). The results showed that the optimum conditions were achieved at temperature = 58.2 °C, E/S ratio = 2.5%, pH = 7.5 and hydrolysis time = 361.8 min in order to obtain the maximum DH (89.2%), ACE-inhibition (98.4%), DPPH• radical scavenging activity (50.1%) and ferrous ion chelation (73.1%). The well-fitted experimental data to predicted data further validates the regression model adequacy. Current study demonstrates the potential of WPC to generate bifunctional hydrolysates with ACE inhibition and antioxidant activity. This finding fosters the use of WPC hydrolysate as a novel, natural ingredient for the development of functional food products. Full article
(This article belongs to the Special Issue Cheese and Whey)
Show Figures

Figure 1

17 pages, 1557 KiB  
Article
Effects of Storage Time and Temperature on Lipid Oxidation and Protein Co-Oxidation of Low-Moisture Shredded Meat Products
by Hazrati Wazir, Shyan Yea Chay, Mohammad Zarei, Farah Salina Hussin, Nor Afizah Mustapha, Wan Zunairah Wan Ibadullah and Nazamid Saari
Antioxidants 2019, 8(10), 486; https://doi.org/10.3390/antiox8100486 - 16 Oct 2019
Cited by 57 | Viewed by 8824
Abstract
Studies on the oxidative changes in meat-based, low-moisture, ready to eat foods are complicated due to complex food system and slow lipid-protein oxidative deterioration. The current study evaluates the oxidative changes over six months of storage on shredded beef and chicken products (locally [...] Read more.
Studies on the oxidative changes in meat-based, low-moisture, ready to eat foods are complicated due to complex food system and slow lipid-protein oxidative deterioration. The current study evaluates the oxidative changes over six months of storage on shredded beef and chicken products (locally known as serunding) for physicochemical analysis, lipid oxidation (conjugated dienes and malondialdehydes) and protein co-oxidation (soluble protein content, amino acid composition, protein carbonyl, tryptophan loss and Schiff base fluorescence) at 25 °C, 40 °C and 60 °C. The lipid stability of chicken serunding was significantly lower than beef serunding, illustrated by higher conjugated dienes content and higher rate of malondialdehyde formation during storage. In terms of protein co-oxidation, chicken serunding with higher polyunsaturated fatty acids (PUFA) experienced more severe oxidation, as seen from lower protein solubility, higher protein carbonyl and Schiff base formation compared to beef serunding. To conclude, chicken serunding demonstrates lower lipid and protein stability and exhibits higher rate of lipid oxidation and protein co-oxidation than beef serunding. These findings provide insights on the progression of lipid oxidation and protein co-oxidation in cooked, shredded meat products and could be extrapolated to minimize possible adverse effects arising from lipid oxidation and protein co-oxidation, on the quality of low-moisture, high-lipid, high-protein foods. Full article
(This article belongs to the Special Issue Protein and Lipid Oxidation in Meat and Meat Products)
Show Figures

Figure 1

11 pages, 2991 KiB  
Article
Angiotensin Converting Enzyme (ACE)-Peptide Interactions: Inhibition Kinetics, In Silico Molecular Docking and Stability Study of Three Novel Peptides Generated from Palm Kernel Cake Proteins
by Mohammad Zarei, Najib Bin Zainal Abidin, Shehu Muhammad Auwal, Shyan Yea Chay, Zaibunnisa Abdul Haiyee, Adi Md Sikin and Nazamid Saari
Biomolecules 2019, 9(10), 569; https://doi.org/10.3390/biom9100569 - 4 Oct 2019
Cited by 21 | Viewed by 5205
Abstract
Three novel peptide sequences identified from palm kernel cake (PKC) generated protein hydrolysate including YLLLK, WAFS and GVQEGAGHYALL were used for stability study against angiotensin-converting enzyme (ACE), ACE-inhibition kinetics and molecular docking studies. Results showed that the peptides were degraded at different cleavage [...] Read more.
Three novel peptide sequences identified from palm kernel cake (PKC) generated protein hydrolysate including YLLLK, WAFS and GVQEGAGHYALL were used for stability study against angiotensin-converting enzyme (ACE), ACE-inhibition kinetics and molecular docking studies. Results showed that the peptides were degraded at different cleavage degrees of 94%, 67% and 97% for YLLLK, WAFS and GVQEGAGHYALL, respectively, after 3 h of incubation with ACE. YLLLK was found to be the least stable (decreased ACE-inhibitory activity) compared to WAFS and GVQEGAGHYALL (increased ACE-inhibitory activity). YLLLK showed the lowest Ki (1.51 mM) in inhibition kinetics study when compared to WAFS and GVQEGAGHYALL with Ki of 2 mM and 3.18 mM, respectively. In addition, ACE revealed the lowest K m app and V max app and higher catalytic efficiency (CE) in the presence of YLLLK at different concentrations, implying that the enzyme catalysis decreased and hence the inhibition mode increased. Furthermore, YLLLK showed the lowest docking score of −8.224 and seven interactions with tACE, while peptide GVQEGAGHYALL showed the higher docking score of −7.006 and five interactions with tACE. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

29 pages, 707 KiB  
Review
Microalgae for High-Value Products Towards Human Health and Nutrition
by Ines Barkia, Nazamid Saari and Schonna R. Manning
Mar. Drugs 2019, 17(5), 304; https://doi.org/10.3390/md17050304 - 24 May 2019
Cited by 507 | Viewed by 23497
Abstract
Microalgae represent a potential source of renewable nutrition and there is growing interest in algae-based dietary supplements in the form of whole biomass, e.g., Chlorella and Arthrospira, or purified extracts containing omega-3 fatty acids and carotenoids. The commercial production of bioactive compounds [...] Read more.
Microalgae represent a potential source of renewable nutrition and there is growing interest in algae-based dietary supplements in the form of whole biomass, e.g., Chlorella and Arthrospira, or purified extracts containing omega-3 fatty acids and carotenoids. The commercial production of bioactive compounds from microalgae is currently challenged by the biorefinery process. This review focuses on the biochemical composition of microalgae, the complexities of mass cultivation, as well as potential therapeutic applications. The advantages of open and closed growth systems are discussed, including common problems encountered with large-scale growth systems. Several methods are used for the purification and isolation of bioactive compounds, and many products from microalgae have shown potential as antioxidants and treatments for hypertension, among other health conditions. However, there are many unknown algal metabolites and potential impurities that could cause harm, so more research is needed to characterize strains of interest, improve overall operation, and generate safe, functional products. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Marine Microalgae)
Show Figures

Figure 1

11 pages, 1864 KiB  
Article
Improved In Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats
by Shehu Muhammad Auwal, Mohammad Zarei, Chin Ping Tan, Mahiran Basri and Nazamid Saari
Nanomaterials 2017, 7(12), 421; https://doi.org/10.3390/nano7120421 - 2 Dec 2017
Cited by 41 | Viewed by 5647
Abstract
Recent biotechnological advances in the food industry have led to the enzymatic production of angiotensin I-converting enzyme (ACE)-inhibitory biopeptides with a strong blood pressure lowering effect from different food proteins. However, the safe oral administration of biopeptides is impeded by their enzymatic degradation [...] Read more.
Recent biotechnological advances in the food industry have led to the enzymatic production of angiotensin I-converting enzyme (ACE)-inhibitory biopeptides with a strong blood pressure lowering effect from different food proteins. However, the safe oral administration of biopeptides is impeded by their enzymatic degradation due to gastrointestinal digestion. Consequently, nanoparticle (NP)-based delivery systems are used to overcome these gastrointestinal barriers to maintain the improved bioavailability and efficacy of the encapsulated biopeptides. In the present study, the ACE-inhibitory biopeptides were generated from stone fish (Actinopyga lecanora) protein using bromelain and stabilized by their encapsulation in chitosan (chit) nanoparticles (NPs). The nanoparticles were characterized for in vitro physicochemical properties and their antihypertensive effect was then evaluated on spontaneously hypertensive rats (SHRs). The results of a physicochemical characterization showed a small particle size of 162.70 nm, a polydispersity index (pdi) value of 0.28, a zeta potential of 48.78 mV, a high encapsulation efficiency of 75.36%, a high melting temperature of 146.78 °C and an in vitro sustained release of the biopeptides. The results of the in vivo efficacy indicated a dose-dependent blood pressure lowering effect of the biopeptide-loaded nanoparticles that was significantly higher (p < 0.05) compared with the un-encapsulated biopeptides. Moreover, the results of a morphological examination using transmission electron microscopy (TEM) demonstrated the nanoparticles as homogenous and spherical. Thus, the ACE-inhibitory biopeptides stabilized by chitosan nanoparticles can effectively reduce blood pressure for an extended period of time in hypertensive individuals. Full article
Show Figures

Figure 1

14 pages, 1840 KiB  
Article
Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology
by Shehu Muhammad Auwal, Mohammad Zarei, Azizah Abdul-Hamid and Nazamid Saari
Mar. Drugs 2017, 15(4), 104; https://doi.org/10.3390/md15040104 - 31 Mar 2017
Cited by 45 | Viewed by 6811
Abstract
The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite [...] Read more.
The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4–7), temperature (40–70 °C), enzyme/substrate (E/S) ratio (0.5%–2%) and time (30–360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries. Full article
(This article belongs to the Special Issue Enzyme Inhibitors of Marine Origin)
Show Figures

Figure 1

14 pages, 1918 KiB  
Article
Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Hypertensive Effect of Protein Hydrolysate from Actinopyga lecanora (Sea Cucumber) in Rats
by Mahdokht Sadegh Vishkaei, Afshin Ebrahimpour, Azizah Abdul-Hamid, Amin Ismail and Nazamid Saari
Mar. Drugs 2016, 14(10), 176; https://doi.org/10.3390/md14100176 - 30 Sep 2016
Cited by 32 | Viewed by 8823
Abstract
Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats [...] Read more.
Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats with ALP at various doses (200, 400, 800 mg/kg body weight) exhibited a significant (p ≤ 0.05) suppression effect after inducing hypertension. To determine the optimum effective dose that will produce maximal reduction in blood pressure, ALP at three doses was fed to the rats after inducing hypertension. The results showed that the 800 mg/kg body weight dose significantly reduced blood pressure without noticeable negative physiological effect. In addition, there were no observable changes in the rats’ heart rate after oral administration of the ALP. It was concluded that Actinopyga lecanora proteolysate could potentially be used for the development of functional foods and nutraceuticals for prevention and treatment of hypertension. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Invertebrates)
Show Figures

Graphical abstract

16 pages, 1711 KiB  
Article
Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates
by Raheleh Ghanbari, Mohammad Zarei, Afshin Ebrahimpour, Azizah Abdul-Hamid, Amin Ismail and Nazamid Saari
Int. J. Mol. Sci. 2015, 16(12), 28870-28885; https://doi.org/10.3390/ijms161226140 - 4 Dec 2015
Cited by 98 | Viewed by 8832
Abstract
In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study [...] Read more.
In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions. Full article
Show Figures

Figure 1

16 pages, 914 KiB  
Article
Optimization of γ-Aminobutyric Acid Production by Lactobacillus plantarum Taj-Apis362 from Honeybees
by Naser Tajabadi, Afshin Ebrahimpour, Ali Baradaran, Raha Abdul Rahim, Nor Ainy Mahyudin, Mohd Yazid Abdul Manap, Fatimah Abu Bakar and Nazamid Saari
Molecules 2015, 20(4), 6654-6669; https://doi.org/10.3390/molecules20046654 - 15 Apr 2015
Cited by 75 | Viewed by 9690
Abstract
Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for [...] Read more.
Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop